The association of a J -burst with a solar jet

D. E. Morosan 1 P. Gallagher 1 R. A. Fallows 2 H. Reid 3 G. Mann 4 M. M. Bisi 5 J. Magdalenić 6 H. O. Rucker 7 B. Thidé 8 C. Vocks 4 J. Anderson 9 A. Asgekar 2 I. M. Avruch 10 M. Bell 11 M. J. Bentum 2 P. Best 12 R. Blaauw 2 A. Bonafede 13 F. Breitling 4 J. W. Broderick 2 M. Brüggen 14 L. Cerrigone 2 B. Ciardi 15 E. de Geus 2 S. Duscha 2 J. Eislöffel 16 H. Falcke 2 M. A. Garrett 2 Jean-Mathias Grießmeier 17 A. W. Gunst 2 M. Hoeft 16 M. Iacobelli 18 E. Juette 19 G. Kuper 2 R. Mcfadden 2 D. Mckay-Bukowski 20 J. P. Mckean 2 D. D. Mulcahy 15 H. Munk 2 A. Nelles 21 E. Orru 2 H. Paas 2 M Pandey-Pommier 22 V. N. Pandey 2 R. Pizzo 2 A. G. Polatidis 2 W. Reich 23 D. J. Schwarz 24 J. Sluman 2 O. Smirnov 25 M. Steinmetz 26 Michel Tagger 17 S. Ter Veen 2 S. Thoudam 21 M. C. Toribio 2 R. Vermeulen 2 R. J. Van Weeren 27 O. Wucknitz 23 P. Zarka 28
Abstract : Context. The Sun is an active star that produces large-scale energetic events such as solar flares and coronal mass ejections, and numerous smaller scale events such as solar jets. These events are often associated with accelerated particles that can cause emission at radio wavelengths. The reconfiguration of the solar magnetic field in the corona is believed to be the cause of the majority of solar energetic events and accelerated particles. Aims. Here, we investigate a bright J-burst that was associated with a solar jet and the possible emission mechanism causing these two phenomena. Methods. We used data from the Solar Dynamics Observatory (SDO) to observe a solar jet and radio data from the Low Frequency Array (LOFAR) and the Nancay Radioheliograph (NRH) to observe a J-burst over a broad frequency range (33-173 MHz) on 9 July 2013 at similar to 11:06 UT. Results. The J-burst showed fundamental and harmonic components and was associated with a solar jet observed at extreme ultraviolet wavelengths with SDO. The solar jet occurred in the northern hemisphere at a time and location coincident with the radio burst and not inside a group of complex active regions in the southern hemisphere. The jet occurred in the negative polarity region of an area of bipolar plage. Newly emerged positive flux in this region appeared to be the trigger of the jet. Conclusions. Magnetic reconnection between the overlying coronal field lines and the newly emerged positive field lines is most likely the cause of the solar jet. Radio imaging provides a clear association between the jet and the J-burst, which shows the path of the accelerated electrons. These electrons travelled from a region in the vicinity of the solar jet along closed magnetic field lines up to the top of a closed magnetic loop at a height of similar to 360 Mm. Such small-scale complex eruptive events arising from magnetic reconnection could facilitate accelerated electrons to produce continuously the large numbers of Type III bursts observed at low frequencies, in a similar way to the J-burst analysed here.
Complete list of metadatas

Cited literature [19 references]  Display  Hide  Download

https://hal-insu.archives-ouvertes.fr/insu-01629172
Contributor : Nathalie Pothier <>
Submitted on : Thursday, November 16, 2017 - 10:19:33 AM
Last modification on : Tuesday, May 14, 2019 - 10:37:52 AM
Long-term archiving on : Saturday, February 17, 2018 - 3:11:50 PM

File

1707.03428.pdf
Publisher files allowed on an open archive

Identifiers

Citation

D. E. Morosan, P. Gallagher, R. A. Fallows, H. Reid, G. Mann, et al.. The association of a J -burst with a solar jet. Astronomy and Astrophysics - A&A, EDP Sciences, 2017, 606 (A81), ⟨10.1051/0004-6361/201629996⟩. ⟨insu-01629172⟩

Share

Metrics

Record views

336

Files downloads

71