Effects of early diagenesis on the isotopic signature of wood (δ13C and δ15N): incubation in aquatic microcosm
Romain Tramoy, Thanh Thuy Nguyen Tu, Veronique Vaury, Mathieu Sebilo, Laurence Millot-Cornette, Céline Roose-Amsaleg, Johann Schnyder

To cite this version:

HAL Id: insu-01624744
https://hal-insu.archives-ouvertes.fr/insu-01624744
Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of early diagenesis on the isotopic signature of wood (δ13C and δ15N): incubation in aquatic microcosm

Romain Tramoy1, Thanh Thuy Nguyen Tu1, Véronique Vaury1, Mathieu Sebilo1, Laurence Millot Cornellé1, Celine Roose-Amsaleg1, Johann Schneider1.

1Sorbonne universités, CNRS, UPRC, CMR 7193, ISTEP, France ; 2 Sorbonne universités, CNRS, UPRC, EPHE, UMR 7619; METIS, France ; 3 Sorbonne universités, CNRS, UPRC, IPARI, PDR/Paris-Diderot-UPEC, UMR8168, IEE, France.

*Work published as Tramoy et al. (2017) in Environmental Chemistry

Introduction

1. Observations: Fungi as main decomposers?

Morphologies of the wood pieces before (t0) and after degradation (t1 to t6).

- A (DW) and B (RW) correspond to wood before (t0) and after 6 weeks (t6).
- a) brown-rotted areas = soft or black rot fungi
- b) brown fungi feeding on water and growing in the growth-rings
- c) rotten particles of wood (bottle and spongy traits)
- d) material which aspect = white-rot fungi
- e) color uniformisation = white-rot fungi

Distilled Water (DW) River Water (RW)

<table>
<thead>
<tr>
<th>Visual ASPECTS</th>
<th>Distilled Water (DW)</th>
<th>River Water (RW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dark color</td>
<td>Color uniformisation</td>
<td></td>
</tr>
<tr>
<td>Growth-rings brownish</td>
<td>Mottled & Spongy traits</td>
<td></td>
</tr>
</tbody>
</table>

2. Microflora in powder

Functional diversity of the bacterial communities using Method BiologECO (Garland & Mills 1991)

- Similar community structure, but twice higher activity in DW than in RW

3. Degradation state

Mass loss of wood pieces vs time

- Leaching of table constituents (monosaccharides, amino acids...)
- Biotic degradation by (micro-)organisms like fungi

Bacteria are NOT the main decomposers Fungi are the main decomposers

4. Effects on the isotopic signature of wood pieces and powders

Carbon and Nitrogen

- Pieces: Low variability in δ13C and δ15N
- Loss of 13C-depleted compounds (cf. flotting particles; tannins, lignin, other non-polar compounds; Melillo et al., 1989)
- Powders: complex dynamic
- Key role of respiration leading to δ13C-enrichment

Distilled Water (DW) VS River Water (RW)

- Pieces of wood or powders
- T° = 22 °C - pH neutral
- Permanent Oxygenation (aerobic)
- Darkness (avoid photo-organisms development)
- 73 weeks (wood photo-organisms development)

Initial Variability (%)

<table>
<thead>
<tr>
<th>Elements</th>
<th>Average</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon</td>
<td>47.5</td>
<td>0.9</td>
<td>46.7, 48.3</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>9.0</td>
<td>0.2</td>
<td>8.0, 10.1</td>
</tr>
</tbody>
</table>

Average bacterial activity (AWCD*)

- Similar between pieces and powders
- Nitrogen gain in pieces in RW > δ15N-enrichment

Nitrogen loss in pieces in DW > δ15N-depletion

AWCD: (Average Well Colour Development) index showing the development of microorganisms on different tested substrates. It corresponds to the bacterial activity and diversity in the study environment (Zak et al., 1994; Zhao et al., 2013).

Conclusions

- δ13C values of organic matter has lower variability than δ15N values, which confirms its interest as a source and environment indicator
- Without invalidating the use of δ15N as a paleoenvironmental marker, this study shows that early diagenesis leads to the integration of isotopic compositions from multiple environmental origins that should be addressed when interpreting δ15N in soils and sediments

Acknowledgments

We thank Julien Legrand, who collected the wood used. We are grateful to Véronique Vaury (Institute of Ecology and Environmental Sciences of Paris; IEES-UPMC) for analyses. This study was supported by the BIOLOGUE2 project (FP7 - LIFE). We also thank the financial support for expeditions and limestone for the Centre National de la Recherche Scientifique (CNRS).