Effects of early diagenesis on the isotopic signature of wood (δ^{13}C and δ^{15}N): incubation in aquatic microcosm
Romain Tramoy, Thanh Thuy Nguyen Tu, Veronique Vaury, Mathieu Sebilo, Laurence Millot-Cornette, Céline Roose-Amsaleg, Johann Schnyder

To cite this version:

HAL Id: insu-01624744
https://hal-insu.archives-ouvertes.fr/insu-01624744
Submitted on 30 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of early diagenesis on the isotopic signature of wood (δ^{13}C and δ^{15}N): incubation in aquatic microcosm

Objective
- To investigate the effects of early diagenesis on the isotopic signature of wood incubated in aquatic microcosms.

Methods
- **Incubation in Aquatic microcosm**
 - Initial branch (60 cm)
 - Initial viability
 - Degradation
 - Sampling (Triplicate)
 - Ground for analyses

Results
- **CARBON DYNAMIC**
 - Pieces: Low variability in δ^{13}C and in %C
 - Loss of δ^{13}C-depleted compounds (cf. flotting particles; tannins, lignin, other non-polar compounds; Melillo et al., 1989)
 - Powders: complex dynamic

- **NITROGEN DYNAMIC**
 - Similar between pieces and powders
 - Nitrogen gain in pieces in RW = N-enrichment

Conclusions
- δ^{13}C values of organic matter has lower variability than δ^{15}N values, which confirms its interest as a source and environment indicator
- Without invalidating the use of δ^{15}N as a paleoenvironmental marker, this study shows that early diagenesis leads to the integration of isotopic compositions from multiple environmental origins that should be addressed when interpreting δ^{15}N in soils and sediments.

References

Acknowledgments
- We thank John Legrand, who collected the wood sample. We are also grateful to Vincent Barley (Institute of Biology and Environmental Sciences of Paris, IBES-UPMC) for analysis.

Work published as Tramoy et al. (2017) in Environmental Chemistry

Introduction

1. Observations: Fungi as main decomposers?

| Morphologies of the wood pieces before (t₀) and after degradation (t₀ to t₁) |
|---|---|
| A (DW) and B (RW) correspond to wood before (t₀) and after 15 weeks (t₁) |
| a. brown-rotted areas = saprot or black-rot fungus |
| b. brown fungal mycelium in water and growing in the growth-rings |
| c. floating particles of wood (bottle and spongy tissues) |
| d. molds which appear as white-rot fungus |
| e. color uniformization = white-rot fungus |

2. Microflora in powders

- Functional diversity of the bacterial communities using Method BiologECO (Garland & Mills 1991)

3. Degradation state

Bacteria are NOT the main decomposers

Fungi are the main decomposers

4. Effects on the isotopic signature of wood pieces

Distilled Water (DW) VS River Water (RW)

- Pieces of wood or powders
- T° = 22 °C - pH neutral
- Permanent Oxygenation (aerobic)
- Darkness (avoid photo-organisms development)
- 73 weeks (n = 2, 4, 8, 16, 32, 52 and 73 weeks)

References