A. Määttänen and T. Fouchet, A study of the properties of a local dust storm with Mars Express OMEGA and PFS data, Icarus, vol.201, issue.2, pp.504-516, 2009.
DOI : 10.1016/j.icarus.2009.01.024

D. V. Markiewicz, W. J. , and S. S. Limaye, Morphology and dynamics of the upper cloud layer of Venus, Nature, vol.55, issue.7170, pp.633-636, 2007.
DOI : 10.1038/nature06320

E. L. Barth and S. C. Rafkin, TRAMS: A new dynamic cloud model for Titan's methane clouds, Geophysical Research Letters, vol.16, issue.3, p.3203, 2007.
DOI : 10.1080/02786829808965531

U. A. Dyudina and A. P. Ingersoll, Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004???2006, Icarus, vol.190, issue.2, pp.545-555, 2007.
DOI : 10.1016/j.icarus.2007.03.035

A. Sánchez-lavega and T. Del-río-gaztelurrutia, Deep winds beneath Saturn???s upper clouds from a seasonal long-lived planetary-scale storm, Nature, vol.58, issue.7354, pp.71-74, 2011.
DOI : 10.1016/j.pss.2010.04.006

H. Savijärvi and A. Määttänen, Boundary-layer simulations for the Mars Phoenix lander site, Quarterly Journal of the Royal Meteorological Society, vol.115, issue.D4, pp.1497-1505, 2010.
DOI : 10.1029/91JD02472

A. Spiga and F. Forget, A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results, Journal of Geophysical Research, vol.130, issue.E10, p.2009, 2009.
DOI : 10.1186/BF03352130

J. Madeleine and F. Forget, Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model, Journal of Geophysical Research, vol.114, issue.47, p.11010, 2011.
DOI : 10.1029/2009JE003350

URL : https://hal.archives-ouvertes.fr/hal-01120102

J. Madeleine and F. Forget, The influence of radiatively active water ice clouds on the Martian climate, Geophysical Research Letters, vol.108, issue.E9, p.23202, 2012.
DOI : 10.1029/2003JE002057

URL : https://hal.archives-ouvertes.fr/hal-01115801

T. Navarro and J. Madeleine, Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds, Journal of Geophysical Research: Planets, vol.35, issue.E5, p.2014
DOI : 10.1029/2007GL032405

URL : https://hal.archives-ouvertes.fr/hal-01044402

A. Spiga and J. Faure, Rocket dust storms and detached dust layers in the Martian atmosphere, Journal of Geophysical Research: Planets, vol.98, issue.E2, pp.746-767, 2013.
DOI : 10.1029/92JE02936

URL : https://hal.archives-ouvertes.fr/hal-01321113

A. Spiga and D. P. Hinson, Snow precipitation on Mars driven by cloud-induced nighttime convection, Nature Geoscience, p.2017

S. C. Rafkin, A positive radiative-dynamic feedback mechanism for the maintenance and growth of Martian dust storms, Journal of Geophysical Research, vol.189, issue.E7, p.1141009, 2009.
DOI : 10.1029/2008JE003217

N. G. Heavens and M. I. Richardson, Vertical distribution of dust in the Martian atmosphere during northern spring and summer: High-altitude tropical dust maximum at northern summer solstice, Journal of Geophysical Research, vol.325, issue.5936, pp.116-01007, 2011.
DOI : 10.1029/2007JE002966

S. E. Yuter and R. A. Houze, Three-Dimensional Kinematic and Microphysical Evolution of Florida Cumulonimbus. Part III: Vertical Mass Transport, Maw Divergence, and Synthesis, Monthly Weather Review, vol.123, issue.7, p.1964, 1995.
DOI : 10.1175/1520-0493(1995)123<1964:TDKAME>2.0.CO;2

D. P. Hinson and S. W. Asmar, Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: A nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder, Icarus, vol.243, pp.91-103, 2014.
DOI : 10.1016/j.icarus.2014.09.019

M. Lefèvre, A. Spiga, and S. Lebonnois, Three-dimensional turbulenceresolving modeling of the venusian cloud layer and induced gravity waves, Journal of Geophysical Research: Planets, pp.2016-005146, 2017.