Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

Aymeric Spiga, Jean-Baptiste Madeleine, David Hinson, Thomas Navarro, Ehouarn Millour, François Forget, Anni Määttänen, Franck Montmessin

To cite this version:

HAL Id: insu-01621402
https://hal-insu.archives-ouvertes.fr/insu-01621402
Submitted on 23 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Original deep convection in the atmosphere of Mars driven by the radiative impact of dust and water-ice particles

A. Spiga¹, J.-B. Madeleine¹, D. Hinson², T. Navarro³, E. Millour¹, F. Forget¹, A. Määttänen³, F. Montmessin³, aymeric.spiga@upmc.fr LMD (UPMC/CNRS), Paris, France ² SETI Institute / Stanford University, California, USA ³ LATMOS (CNRS/UVSQ), Guyancourt, France

Background and motivation Recent spacecraft observations have shed a new light on “mesoscale” meteorological phenomena in planetary atmospheres, developing at spatial scales smaller than the Rossby radius of deformation: Mars’ regional dust storms¹, Venus’ cloud layer plumes², Titan’s methane storms³, gas giants’ convective storms⁴⁵. Not only those processes have a crucial influence on the whole climate, but they also unveil key characteristics of planetary environments, and fundamental atmospheric fluid dynamics. Some of the above-mentioned mesoscale phenomena (e.g. convective storms on Titan and gas giants) share similarities with moist convective motions on the Earth: convective instability is triggered by the release of latent heat by condensing species such as water, methane, ammonia. By contrast, Mars was thought to be devoid of deep convection: water-ice clouds do form because the atmosphere is close to saturation, but the associated release of latent heat is negligible given the low quantity of water involved⁶. Here, using dedicated mesoscale modeling and Large-Eddy Simulations⁷, using an interactive dust scheme⁸ and a complete radiative + scavenging model for water-ice clouds⁹¹⁰, we unveil two examples of deep convection on Mars – in dust storms¹¹ and water-ice clouds¹² – to demonstrate that the radiative effect of aerosols and clouds can lead to powerful convective motions just as much as the release of latent heat in moist convection.

Convection in water-ice clouds Nighttime mixing layers were unveiled in the troposphere of Mars by radio-occultations on board Mars Global Surveyor and Mars Reconnaissance Orbiter¹⁶ (they went unnoticed for about a decade because the existing temperature data were never displayed as potential temperature which clearly emphasizes the presence of mixed layers as zero-slope signatures along the vertical axis). We were able to show with mesoscale simulations that the observed deep mixing layers can be reproduced by modeling, and that the radiative effect in nighttime water-ice clouds cause those layers to occur through convective destabilization by the radiative cooling (negative buoyancy, Fig 2) exerted by water-ice particles within the cloud¹². It was shown that water ice clouds play a key role through their radiative effect in the large-scale thermal structure and dynamics of the Martian atmosphere⁹, but their impact on the mesoscale dimensions have not been addressed until now. Large-Eddy Simulations of the atmospheric flow within and below water-ice clouds demonstrate that this deep mixing result from powerful convective plumes, which also cause virga-like phenomena to occur when water-ice particles are transported in a downward plume. We proposed to name those phenomena Martian “convective snowstorms” or “ice microbursts”; they provide explanation for not only the observed nighttime mixing layers, but also the precipitating signatures identified by the Phoenix LIDAR in polar regions on Mars.

Convection in dust storms Dust storms are often considered as indicative of regional and global winds, and having an impact on global circulation. Mesoscale modeling could draw a slightly different picture¹³. Our simulations with a dust transport scheme showed that deep convective motions, implying a fast and efficient upward transport of dust particles, occur in Martian local and regional dust storms, a phenomena we named “rocket dust storms”¹¹. The supply of convective energy is provided by the absorption of incoming sunlight by dust particles (positive buoyancy, Fig 1), rather than by latent heating as in moist convection on Earth and other environments. A potentially strong implication is the formation of detached layers of aerosols¹⁴, which needs to be parameterized in Global Climate Models. This new view on local dust storms might also help to understand how a large regional storms becomes a planet-encircling dust storm, with mechanisms possibly analogous to Mesoscale Convective Systems¹⁵ and convective self-aggregation on the Earth.
Perspectives Those two original examples of aerosol-induced deep convection in the Martian atmosphere broaden the knowledge of both aerosol-atmosphere interactions and mechanisms underlying convection in planetary atmospheres, as well as the impact of convection in the regional and global scale (e.g. emission of gravity waves), with possible comparative planetology approaches where the convective dynamics of Martian water-ice clouds could be compared to Venusian sulfuric-acid clouds.

Bibliography