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Relevance of MRMT models to reactive transport

Highlights1

• Generic models of concentration variability in diffusion-dominated porosities.2

• Mobile/immobile models like MRMT are relevant for concentration mean and variance.3

• Combinations of porosities in MRMT inherently conserve concentration variance.4

• Equivalent MRMT models approximate well homogeneous and heterogeneous reactivities.5

• Equivalent MRMT should be of the same minimal dimension as the input/output system.6
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Abstract15

Several anomalous transport approaches have been developed to model the interaction between16

fast advectively-dominated transport in well-connected porosity and fracture structures and slow17

diffusively-dominated transport in poorly-connected or low-permeability ones. Among them, the18

Multi-Rate Mass Transfer approach (MRMT) represents the anomalous dispersion along the main19

flow paths (mobile zone) induced by a large distribution of first-order exchanges with immobile20

zones. Even though MRMTs have been developed for conservative transport processes in the mo-21

bile zone, we demonstrate that they also conserve the variance of the concentration distribution22

in the immobile zones, and, hence, pertain to mixing induced reactivity. This property is estab-23

lished whatever the organization of the immobile zones and whatever the injection and sampling24

conditions in the mobile zone. It inherently derives from the symmetry properties of the diffu-25

sion operator in the immobile zones, but cannot be directly extended to heterogeneous dispersive26

processes in the mobile zone.27

Keywords: Anomalous transport, Reactive transport, Multi-Rate Mass Transfer models,28

Heterogeneous geological media29
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1. Generic models of concentration variability in diffusion-dominated porosities.31

2. Mobile/immobile models like MRMT are relevant for concentration mean and variance.32

3. Combinations of porosities in MRMT inherently conserve concentration variance.33

4. Equivalent MRMT models approximate well homogeneous and heterogeneous reactivities.34
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1. Introduction36

Dispersion in geological media derives from simple advective and diffusive processes in complex37

porous and fracture structures [Gelhar and Axness, 1983]. Solutes are delayed by trapping in38

poorly connected porosity structures and dispersed by exchanges with fast transport in localized39

channels. Such structures are found as intragranular clay particles [Scheibe et al., 2013], stagnant40

zones in carbonates [Bijeljic et al., 2013], poorly connected fracture clusters [Davy et al., 2010],41

hydraulic dead ends in fractures [Park et al., 2003] or incomplete dissolution patterns [Luquot42

et al., 2014]. Diffusion and trapping are significant and may induce non-Fickian anomalously slow43

and highly-dispersed transport [Bouchaud and Georges, 1990; Dentz and Berkowitz, 2003; Havlin44

and Ben-Avraham, 1987]. Anomalous transport has been reported both in porous and in fractured45

media at multiple scales from laboratory experiments [Soler-Sagarra et al., 2016; Zinn et al., 2004;46

Knorr et al., 2016], advanced analysis of microtromography images [Gjetvaj et al., 2015; Gouze47

et al., 2008], field experiments [Greskowiak et al., 2011; Le Borgne and Gouze, 2008] and numerical48

simulations [de Dreuzy and Carrera, 2016; Fernandez-Garcia et al., 2009; Lichtner and Kang, 2007;49

Roubinet et al., 2013; Willmann et al., 2010].50

Several conceptual frameworks have been developed to model anomalous transport [Benson et al.,51

2000; Berkowitz et al., 2006; de Dreuzy and Carrera, 2016; Neuman and Tartakovsky, 2009].52

Among them, the mobile-immobile Multi-Rate Mass Transfer models (MRMT) [Carrera et al.,53

1998; Haggerty and Gorelick, 1995] does not only propose efficient characterization and upscaling54

methodologies [Willmann et al., 2008; Babey et al., 2015; Rapaport et al., 2017] but also a natural55

bridge to equivalent concentration distributions, which relevance can be assessed to model reac-56

tive transport [Donado et al., 2009; Henri and Fernandez-Garcia, 2015; Sanchez-Vila et al., 2010;57

Soler-Sagarra et al., 2016]. Synthetic experiments have shown that MRMT models provide close58

approximations of bulk reactivity even in non-linear equilibrium and kinetically-controlled cases59

[Babey et al., 2016]. This has been linked to the empirical observation that MRMT models do60

not only conserve mass by construction but also the porosity weighted integral of concentrations61

squared [de Dreuzy et al., 2013], which is directly linked to mixing-induced reactivity through the62

scalar dissipation rate [Le Borgne et al., 2010].63

While the conservation of the porosity weighted integral of concentrations squared has so far been64

reported from numerical experiments in a couple of specific cases, we provide here the full demon-65
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stration of its conservation. This property is inherent to the formalism of the mobile/immobile66

models (including MRMT) providing the model to be minimal. It derives from the conservation of67

mass in the mobile zone and from the expression of the immobile concentrations as the direct dif-68

ference between immobile and mobile concentrations. It does not require any additional condition.69

The demonstration applies to any type of diffusively-dominated porosity structure exchanging with70

advectively-dominated transport identified with the so-called mobile zones. We shortly discuss the71

implications on the general relevance of MRMT models to chemical transport.72

2. Dynamics of concentrations in mobile/immobile models73

In this section, we recall the general framework proposed by Babey et al. [2015] to model solute74

transport resulting from the interactions between a mobile zone and a finite number of n immo-75

bile zones. This framework identified as the Structured INteracting Continua (SINC) model was76

introduced as an extension of the classic Multiple INteracting Continua (MINC) model [Pruess77

and Narasimhan, 1985; Karimi-Fard et al., 2006]. Transport is dominated by advection along the78

“mobile zone”, and solutes are exchanged by diffusion with and between the different “immobile79

zones”. Immobile zones can display any connectivity patterns coming, for example, from the dis-80

cretization of diffusion within dead-ends of fractures or pore clusters [Davy et al., 2010; Gouze81

et al., 2008; Karimi-Fard and Durlofsky, 2016], alluvial architectures [Zhang et al., 2013, 2014],82

heterogeneous porous media [Li et al., 2011; Tyukhova et al., 2015; Tyukhova and Willmann, 2016]83

or multi-porosity reservoirs [Geiger et al., 2013]. The SINC model is formalized as:84

∂C

∂t
+ Φ−1MC = BL(c1) (1)

where C is the column vector made up of the solute concentrations in the mobile and immobile85

zones:86

C = [ c1(r, t) . . . cn+1(r, t) ]T . (2)

c1(r, t) is the concentration in the mobile zone and ci(r, t) with i = 2 . . . n+1 are the concentrations87

in the n immobile zones. L is the advective-dispersive transport operator in the mobile zone:88

L(c1) = − 1

φ1

∇ · (qc1) +∇ · (Dm∇c1) (3)
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where φ1, q and Dm are the uniform porosity, Darcian flow and diffusion-dispersion tensor in the89

mobile zone. B is the restriction vector to the mobile zone:90

B = [ 1 0 . . . 0 ]T . (4)

Φ is the porosity matrix of size (n+ 1, n+ 1) which diagonal coefficients are the porosities of the91

different zones φi:92

Φ = diag
(

[ φ1 . . . φn+1 ]
)
. (5)

Finally, the matrix M of size (n+ 1, n+ 1) is the operator describing the diffusive-like exchanges93

between the different zones. M can be compared to a weighted adjacency matrix [Godsil and Royle,94

2001] as its coefficients correspond to rates of mass exchanges. Because it expresses a diffusion95

process, M is a symmetric M-matrix which rows sum to zero. Eq. 1 can be rewritten to highlight96

the interactions between the concentrations of the different zones:97

∂C

∂t
− AC = BL(c1) (6)

where A is the interaction matrix that synthesizes porosity and diffusive mass exchange effects:98

A = −Φ−1M. (7)

Except in the specific case of uniform porosity, A is not symmetric.99

MRMT models with a finite number of immobile zones can be expressed within the SINC framework100

as the subset of models with only mobile-immobile connections, with the corresponding porosity101

and mass exchange matrices Φ and M given by:102

Φ = diag
(

[ φ1 . . . φn+1 ]
)

M(i, j) = 0 for i > 1, j > 1 and i 6= j

M(i, 1) = M(1, i) = −φiαi−1 for i > 1

M(i, i) = − ∑
j,j 6=i

M(i, j)

(8)

where αi and φi are the rates of exchanges and porosities of the MRMT model Haggerty and103

Gorelick [1995].104
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3. Conservation of concentration variance by MRMT models105

Babey et al. [2015] and Rapaport et al. [2017] have demonstrated that any mobile-immobile model106

identified as SINC in the previous section, i.e. whatever the connectivity of its immobile zones,107

is equivalent to a unique (up to the numbering of the immobile zones) MRMT model, proving108

the original model to be minimal. Equivalence between SINC and MRMT is meant here as the109

same number of immobile zones and the same partition of concentrations between the mobile and110

immobile zones:111

c1(r, t) = c̄1(r, t) (9)

n+1∑

i=2

φici(r, t) =
n̄+1∑

i=2

φ̄ic̄i(r, t) (10)

where ci, φi and n are respectively the concentrations, porosities and total number of immobile112

zones for SINC, and c̄i, φ̄i and n̄ are their counterparts for the equivalent MRMT model.113

When the original SINC model is not minimal, the variance of concentration is not conserved as114

shown by the counterexample of Appendix A1. The absence of minimality cannot be detected with115

any straightforward criterion as it concerns the exchanges of the overall immobile structure with116

the mobile zone. The example of Appendix A1 does not show any visual symmetry or redundant117

structure although it is not minimal. Minimality of the system can however be tested by its118

controllability and observability properties [Andréa-Novel and de Lara, 2013] (here observability is119

equivalent to controllability because input and output are in the same mobile zone: see [Rapaport120

et al., 2017]). A system is said controllable if, for all couple of state vectors (Ca, Cb), there exists a121

finite time T ≥ 0 and a input concentration cin1 (·) defined on [0, T ] such that, applying this input122

function, the solution C(·) with initial condition C(0) = Ca satisfies C(T ) = Cb. Controllability123

is checked by the algebraic condition that the controllability matrix given by124

C = [B,AB, ...AnB] (11)

is full rank. The lack of minimality means that there is some redundancy in the SINC structure in125

terms of exchange terms (see example in Appendix A1). When the original model is non minimal,126

it is however possible to reduce the model to an equivalent minimal one ([Chen, 1999]), which can127

6
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be sought here as a SINC model with less immobile zones (n̄ < n) before applying the algorithm128

given in [Rapaport et al., 2017] to then obtain an equivalent MRMT model with n̄ immobile zones.129

After recalling how MRMT models can be built from minimal SINC models, we show that MRMT130

models inherently preserve the porosity weighted integral of the concentrations squared:131

n+1∑

i=1

φic
2
i =

n̄+1∑

i=1

φ̄ic̄
2
i (12)

or equivalently in algebraic form:132

CTΦC = C̄T Φ̄C̄ (13)

with C and Φ the concentration vector and diagonal porosity matrix for SINC, and C̄ and Φ̄ their133

counterparts for the equivalent MRMT model.134

Assuming the identity of concentration partition (Eqs. 9-10), the equivalent MRMT model to a135

SINC model writes:136

∂C̄

∂t
− ĀC̄ = BL(c1) (14)

where Ā and C̄ are the interaction matrix and concentration vector for the equivalent MRMT137

model:138





Ā = RAR−1

C̄ = RC
(15)

with R the transformation matrix from SINC to MRMT. Concentrations C̄ are qualified as semi-139

local as they are still concentrations from the dimension point of view but are only combinations140

of effective concentrations C. R derives from the diagonalization of the sub-matrix AS = A(2 :141

n + 1, 2 : n + 1), which describes exclusively the exchanges between the immobile zones, into142

ĀS = Ā(2 : n+ 1, 2 : n+ 1):143

ĀS = RSASR
−1
S (16)

where RS is the matrix composed of the eigenvectors of AS. The eigenvalues of AS (diagonal144

coefficients of ĀS) are the rates αi of the equivalent MRMT model (Eq. 8). To be representative145

7



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Relevance of MRMT models to reactive transport

of a MRMT model, Ā must have the same shape as A described by Eq. 7:146

Ā = −Φ̄−1M̄ (17)

where Φ̄ and M̄ are the porosity and mass exchange matrices given by Eq. 8. Rapaport et al.147

[2017] have shown that this condition is fulfilled only if the pair (A,B) is controllable. The full148

transformation matrix R then writes:149

R =


 1 0

0 −RSĀS
−1

diag
(
R−1
S A(2 : n+ 1, 1)

)


 . (18)

R verifies the conservation of concentrations in the mobile zone (Eq. 9). By construction, R also150

ensures that any uniform concentration profile in SINC remains equally uniform in its equivalent151

MRMT:152




1
...

1


 = R




1
...

1


 . (19)

From this formulation of the equivalence between SINC and MRMT, we derive the expressions of153

Φ̄ and M̄ as functions of Φ and M and of the transformation matrix R. To this end, we develop154

the expression of Ā in Eq. 15 by introducing the definition of A (Eq. 7):155

Ā = −RΦ−1MR−1, (20)

and introduce the matrices T = RΦ−1/2 and S = Φ−1/2MΦ−1/2 such that156

Ā = −TST−1

= −TT T (T−1)TST−1.
(21)

We note TS and SS the sub-matrices of T and S made up of their last n rows and columns. As157

ĀS is diagonal, TS diagonalizes the matrix SS:158

TSSST
−1
S = RSASR

−1
S = ĀS (22)

and, because SS is symmetric, and ĀS has distinct eigenvalues, TS is of the form DU where D is159

a diagonal matrix and U is a unitary matrix. TST
T
S is in turn equal to a positive diagonal matrix160

8
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D2. Due to the structure of the matrix R, one has:161

TT T =


 1/φ1 0

0 TST
T
S


 . (23)

Because TT T is positive and diagonal, and because (T−1)TST−1 is symmetric, they can be identified162

respectively to Φ̄−1 and M̄ of Eq. 17:163

Φ̄ = (TT T )−1 = (R−1)TΦR−1 (24)

M̄ = (T−1)TST−1 = (R−1)TMR−1. (25)

It should be noted that the transformations of porosities and mass exchange rates from SINC to164

MRMT are identical and directly derive from the change of basis of the concentrations given by165

Eqs. 15, 18 and 19. The conservation of the porosity weighted integral of concentrations squared166

of Eq. 13 derives from the consistency between the change of basis of concentrations and porosities167

(Eqs. 15 and 24):168

C̄T Φ̄C̄ = CTRT (R−1)TΦR−1RC

= CTΦC.
(26)

As this conservation directly results from the construction of MRMT without any additional con-169

straint, it is an inherent property of MRMT models of finite dimension (i.e. having a finite number170

of immobile zones). It fundamentally derives from the symmetry of the exchange matrix M of171

the mobile-immobile model, a fundamental property of the diffusion operator, which conditions172

the orthogonality of the matrix T , a property essential to the demonstration. The conservation of173

the porosity weighted integral of concentrations squared can be extended to all porosity structures174

that are equivalent to the same MRMT, i.e. that have the same mobile concentrations (Appendix175

A2).176

The same conservation of the porosity-weighted sum of concentrations squared can also be es-177

tablished for the uniform radial diffusion in the immobile zone whatever its dimension (1, 2 or178

3), where the equivalent MRMT derives from a separation of variables methodology [Haggerty179

and Gorelick, 1995; Carrera et al., 1998]. As the former demonstration requires the number of180

immobile zones to be finite, we provide for an alternative demonstration in Appendix A3. we181

9
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show that this conservation derives again from the symmetry of the diffusion operator. In fact,182

the orthogonality of the basis function of the diffusion equation in radially uniform media removes183

cross products between basis functions. Proper choice of eigenvector normalization also derives184

from the conservation of uniform concentration profiles as in Eq. 19.185

4. Discussion and conclusions186

Eqs. 10 and 12 show that the first and second moments of the concentration distribution in187

the immobile zones are conserved in the passage from the porosity structure to its equivalent188

MRMT model. This result pertains to any organization of the immobile zones and any injection189

conditions. It is also valid whether the initial porosity organization is described by continuous or190

discrete formalisms, as long as injection and sampling are carried out exclusively in the mobile191

zone. This is typically the case in tracer tests where tracers are injected into and collected from192

the flowing/mobile zone.193

As both the first and second moments of the concentration distribution in the immobile zones are194

conserved in MRMT, so is the concentration variance and, hence, the scalar dissipation rate that195

strongly conditions mixing-induced reactivity [Le Borgne et al., 2011]. In fact, the reaction rate can196

be expressed as the product of the scalar dissipation rate by a chemical term, which depends on the197

nature of the reaction [De Simoni et al., 2005, 2007; Rubin, 1983]. For advective-diffusive transport198

without solute flux across boundaries, the scalar dissipation rate is inversely proportional to half of199

the second moment of the concentration distribution [Le Borgne et al., 2010]. Larger concentration200

variances result in stronger mixing potential between higher and lower concentration values and201

promote homogeneous reactivity (reactivity in solution). By reducing concentration variances,202

diffusive processes induced by mobile-immobile mass exchanges thus promote reactivity and, by203

consequence, reduce further mixing and reaction potentials.204

The scalar dissipation rate only differs from the reaction rate by a chemical term that derives from205

the nonlinearity of the reactivity in the reactant concentrations [De Simoni et al., 2005]. Numer-206

ical simulations have however shown that the influence of this chemical term remains limited for207

most immobile porosity structures and reaction types also extending to heterogeneous reactivity208

including sorption and precipitation/dissolution [Babey et al., 2016]. The relevance of MRMT209

to model reactive transport fundamentally comes from the representativity for the concentration210

10
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distribution of its mean and variance in diffusively-dominated conditions. Although concentration211

distributions are more complex than Gaussian, they do not differ much and lead to close approxi-212

mations. As diffusion further smoothens concentration profiles, approximations become even closer213

with time.214

Use of Multi-Rate Mass Transfer models for reaction rate predictions benefits from the development215

of different numerical approaches proposed for extending classical advection dispersion schemes in216

the mobile zone to account for exchanges with immobile zones. Approaches have been proposed217

based either on Eulerian schemes [Silva et al., 2009] or Lagrangian schemes [Noetinger et al.,218

2016; Roubinet et al., 2013]. They may be used to assess the concentration distribution and the219

associated reactivity rate either in a postprocessing step when transport and reactivity can be220

fully decoupled [Donado et al., 2009; Willmann et al., 2010] or with classical sequential or global221

implicit coupling methods otherwise [de Dieuleveult et al., 2009; Steefel et al., 2005]. Concentration222

gradients necessary for computing local reactivity rates may be obtained directly with appropriate223

schemes [Beaudoin et al., 2017] or eventually derived from finite-differencing the concentration224

field.225

While diffusive processes in poorly connected porosity structures smoothen concentration gradi-226

ents, dispersive processes modeled at the fundamental scale of the spatial and temporal variabilities227

of the velocity field will tend, on the contrary, to retain concentration differences [Le Borgne et al.,228

2011; de Dreuzy et al., 2012]. When diffusive and dispersive processes occur in the same domain229

like in strongly heterogeneous porous media [Delhomme, 1979], mixing eventually results from the230

interplay between the spatial and temporal fluctuations of the velocity field at the origin of dis-231

persion and the diffusive exchanges in the least pervious zones [de Dreuzy et al., 2012; Pool et al.,232

2015]. Multi-Rate Mass Transfer models inherently built for diffusive processes no longer hold to233

model dispersion [de Dreuzy and Carrera, 2016] and other dynamic analysis of the concentration234

field based for examples on lamellas deformed by the velocity fluctuations may be used to approx-235

imate the concentration field [Le Borgne et al., 2015]. Further research is thus needed to explore236

the overall effect of combined dispersion and exchanges with diffusive zones.237

In the restrictive case where macroscopic dispersion is dominantly induced by exchanges between238

advective and diffusive zones, conservative tracer testing already contains most of the information239

11
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necessary to evaluate the physical control of reactivity. Simple breakthrough curves are sufficient240

to calibrate MRMT models and produce predictions of the immobile concentration distribution,241

and reactive transport can be approached by simply coupling MRMT models with the targeted242

reactive processes.243
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Appendix A1: Controllability of diffusive porosity structures247

In this example, we show how the lack of controllability and minimality precludes the conservation248

of the concentration variance. We consider four zones with the porosities φ1 = 1, φ2 = 1, φ3 = 2,249

φ4 = 3 and the exchange coefficients (coefficients of the matrix M of Eq. 1) m12 = 1, m13 = 2,250

m14 = 3, m23 = 3, m24 = 3. The first zone is the mobile zone, the three other ones are immobile251

zones. The sum of the concentrations squared weighted by the porosities is252

Σ = CtΦC = C2
1 + C2

2 + 2C2
3 + 3C2

4 . (27)

The PDE of Eq. 6 can be written at a given position along the mobile zone as an input-output253

representation such as:254

dC

dt
= AC +BCin, Cout = BTC (28)

where Cin, Cout are respectively the input and output concentrations. Only advection is considered255

in the mobile zone. In the specific case considered A and B are given by:256

A =




−7 1 2 3

1 −7 3 3

1 3
2
−5

2
0

1 1 0 −2



, B =




1

0

0

0




(29)

At first look, this structure does not exhibit any special property or symmetry that could make257

believe that the input-output system is non minimal. The pair (A,B) is however non controllable,258

even though one can check that the sub-matrix A(2 : 4, 2 : 4) has distinct eigenvalues. It can be259

shown that:260

AB =




−7

1

1

1



, A2B =




55

−8

−8

−8




= −B − 8AB (30)

and that the rank of the matrix C defined in Eq. (11) is 2, where it should be full ranked. Therefore,261

the system admits a minimal representation of dimension only 2. The equivalent immobile zone262
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can be found by merging the immobile zones in one with a porosity263

φ̄ = φ2 + φ3 + φ4 = 6 (31)

and an equivalent concentration264

C̄ =
φ2C2 + φ3C3 + φ4C4

φ̄
=
C2 + 2C3 + 3C4

6
. (32)

One can check that (C1, C̄) is solution of the differential system:265

d

dt


 C1

C̄


 =


 −7 6

1 −1




 C1

C̄


+


 1

0


Cin, Cout = C1 (33)

that provides an equivalent input-output system. The sum of the concentrations squared weighted266

by the porosities in the equivalent representation is:267

Σ̄ = C2
1 + φ̄C̄2 = C2

1 +
(C2 + 2C3 + 3C4)2

6
(34)

which differs from Σ, because here the original representation is not minimal.268

Indeed, the matrix R given in Eq. 18 is in this example:269

R =




1 0 0 0

0 0 1 0

0 0 1 0

0 0 1 0




(35)

which fails to be a transformation matrix to MRMT. One has270

RS =




0.8626094 −0.4492446 −0.4133648

−0.2886751 −0.5773503 −0.8660254

−0.0600512 −0.6918374 0.7518886


 (36)

that diagonalizes the sub-matrix AS:271

RS




−7 3 3

3
2
−5

2
0

1 0 −2


R

−1
S =




−8.2603986 0 0

0 −1 0

0 0 −2.2396014


 (37)
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but the vector272

R−1
S A(2 : 4, 1) =




0

−1.7320508

0


 (38)

has null entries. In [Rapaport et al., 2017], it is proved that for matrices of the form of Eq. (7)273

the vector R−1
S A(2 : n+ 1, 1) has non-null entries exactly when the pair (A,B) is controllable.274

One may argue that having the pair (A,B) non controllable is a very particular and rare case (as275

the property of having a singular controllability matrix of Eq. (11) is non generic in the set of276

matrices A of the form of Eq. (7)), but the distance to uncontrollability (see [Eising, 1984])277

τ(A,B) = min
λ∈C

σn([A− λI,B]) (39)

(where σn([A− λI,B]) denotes the smallest singular value of the augmented matrix [A− λI,B])278

gives a ”measure” of how far the original model can be from a non-minimal representation (having279

thus some entries of the vector R−1
S A(2 : n + 1, 1) possibly close to 0). Moreover, it is shown280

in [Rapaport et al., 2017] how to exploit the transformation to a MRMT structure for minimal281

representations that are close to non-minimal ones to obtain reduced MRMT models of smaller282

dimension.283
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Appendix A2: Conservation of concentrations squared between equivalent SINC mod-284

els285

We show that the conservation of concentrations squared can be generalized to all SINC models286

that are equivalent in the sense of Haggerty and Gorelick [1995] (i.e. identity of the mobile287

concentrations). Consider two equivalent SINC models given by their interaction matrices A and288

Z. Each of these two SINC admits an equivalent MRMT model given by Eq. 14. Being equivalent289

(and the pairs (A,B) and (Z,B) being controllable), the two MRMT configurations are identical,290

up to the numbering of the immobile zones. So there exist two transformation matrices RA and291

RZ from SINC to MRMT such that (Eq. 15):292

RAAR
−1
A = Ā = RZZR

−1
Z . (40)

Eq. 26 implies the conservation of the porosity weighted integral of concentrations squared:293

CT
AΦACA = C̄T Φ̄C̄ = CT

ZΦZCZ (41)

where CA and ΦA are respectively the concentration vector and the diagonal porosity matrix294

associated with A, and CZ and ΦZ are their counterparts for Z. The relationships between these295

quantities can be further expressed through the transformation matrix RAZ that transforms the296

SINC model given by A into the SINC model given by Z:297





CZ = RAZCA

ΦZ = (R−1
AZ)TΦAR

−1
AZ

with RAZ = R−1
Z RA. (42)
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Appendix A3: Conservation of the weighted sum of concentrations squared in planar,298

cylindrical and spherical inclusions299

The general equation for mobile-immobile models with diffusion into planar, cylindrical or spherical300

continuous immobile inclusions writes [Haggerty and Gorelick, 1995]:301

∂cm
∂t

+ β
∂ < cim >

∂t
= L(cm) (43)

where cm is the mobile concentration, < cim > is the mean concentration in the immobile domain302

and β is equal to the ratio of the immobile to mobile total porosities. The solution of the PDE in303

the immobile domain is given by:304

cim(r, t) =
∞∑

i=1

ai
f(
√
αir)∥∥f(

√
αir)

∥∥2 e
−αit (44)

with305

ai =

1∫

0

rn−1cim(r, 0)f(
√
αir)dr (45)

and306

∥∥f(
√
αir)

∥∥2
=

1∫

0

rn−1f 2(
√
αir)dr. (46)

For the layered (n = 1), cylindrical (n = 2) and spherical (n = 3) cases, the explicit functions307

and square norm values for Eq. 44 are given in Table 1, and the values of MRMT rates αi and308

porosities φ̄i are given in Table 1 of [Haggerty and Gorelick, 1995].309

n 1 2 3

f(.) cos(.) I0(.) sin(.)
∥∥f(
√
αir)

∥∥2 1
2

1
2
I2

1 (
√
αir)

1
2

Table 1: Functions and square norm values of Eq. 44 for n = 1, 2, 3. I0 and I1 are the zero-order and first-order

modified Bessel functions of the first kind.

By construction, f forms an orthogonal set of functions whatever the dimension of the inclusion.310

The orthogonality of the function f more generally derives from the theorem of Sturm-Liouville.311

The Sturm-Liouville theorem states the existence and the orthogonality of the basis function312
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for second-order linear differential equations, but does not give their analytical expression. The313

MRMT model can generally be expressed as:314

c̄im,i(t) =
∞∑

i=1

c̄im,i(t = 0)e−αit. (47)

The relations between the continuous solutions of Eqs. 43-44 and the MRMT model of Eq. 47315

provide constrains on the φ̄i and c̄im(t = 0):316

φ̄ic̄im(t = 0) =
ai∥∥f(
√
αir)

∥∥2

1∫

0

nrn−1f(
√
αir)dr. (48)

Complementary relations derive from the identity of concentrations in the mobile zone:317

1∫

0

cim(r, t)nrn−1dr =
∞∑

i=1

ai∥∥f(
√
αir)

∥∥2

1∫

0

nrn−1f(
√
αir)e

−αitdr. (49)

These equations should be valid whatever the initial conditions and especially for cim(r, t = 0) = 1318

which corresponds to c̄im,i(t = 0) = 1 for all immobile zones i, like in Eq. 19 and in the Appendix B319

of [Haggerty and Gorelick, 1995]. In such a case the MRMT porosities φ̄i can be straightforwardly320

identified as:321

φ̄i =
1

n
∥∥f(
√
αir)

∥∥2

(
1∫
0

nrn−1f(
√
αir)dr

)2

=
1

n

(
1∫
0

nrn−1f(
√
αir)dr

)2

1∫
0

rn−1f 2(
√
αir)dr

(50)

The initial MRMT concentrations are given by:322

c̄im,i(t = 0) =

1∫
0

nrn−1f(
√
αir)cim(r, t = 0)dr

1∫
0

nrn−1f(
√
αir)dr

. (51)

c̄im,i(t = 0) is simply some normalized scalar product of the initial condition cim,i(t = 0) by323

the basis function corresponding to αi. The sum of the concentrations squared weighted by the324
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porosities Σ for the continuous formulation of the solution writes:325

Σ = n
1∫
0

rn−1c2
im(r, t)dr

= n
∞∑
i=1

a2
i∥∥f(

√
αir)

∥∥4 e
−2αit

1∫
0

rn−1f 2(
√
αir)dr

= n
∞∑
i=1

a2
i∥∥f(

√
αir)

∥∥2 e
−2αit.

(52)

The sum of the concentrations squared weighted by the porosities Σ̄ in the equivalent MRMT326

writes:327

Σ̄ =
∞∑
i=1

φ̄ic̄
2
im,i(t = 0)e−2αit

=
∞∑
i=1

(
1∫
0

nrn−1f(
√
αir)dr

)2

n
1∫
0

rn−1f 2(
√
αir)dr

n2a2
i(

1∫
0

nrn−1f(
√
αir)dr

)2 e
−2αit

= n
∞∑
i=1

a2
i∥∥f(

√
αir)

∥∥2 e
−2αit

= Σ.

(53)
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