Nucleation and growth of feitknechtite from nanocrystalline vernadite precursor
Sylvain Grangeon, Fabienne Warmont, Christophe Tournassat, Bruno Lanson, Martine Lanson, Erik Elkaim, Francis Claret

To cite this version:

HAL Id: insu-01598457
https://hal-insu.archives-ouvertes.fr/insu-01598457
Submitted on 29 Sep 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Nucleation and growth of feitknechtite from nanocrystalline vernadite precursor

SYLVAIN GRANGEON1,*, FABIENNE WARMONT2, CHRISTOPHE TOURNASSAT1,3, BRUNO LANSON4, MARTINE LANSON4, ERIC ELKAÏM5 and FRANCIS CLARET1

1 D3E/SVP, BRGM (French Geological Survey), 3 Avenue Claude Guillemin, 45060 Orléans, France
*Corresponding author, e-mail: s.grangeon@brgm.fr
2 ICMN – CNRS – Université d’Orléans, 1b rue de la Férollerie, 45071 Orléans Cedex 2, France
3 UMR 7327 Institut des Sciences de la Terre d’Orléans, Université d’Orléans – CNRS/INSU – BRGM, 45071 Orléans, France
4 Univ. Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
5 Synchrotron Soleil, L’Orme des Merisiers Saint-Aubin, BP 48, 91192 Gif-sur-Yvette Cedex, France

Abstract: Vernadite is a nanocrystalline manganese oxide, which controls the fate of many trace elements in soils and sediments through sorption and oxidative-degradation mechanisms. This exceptional reactivity directly results from its crystal structure, which may however evolve upon contact with redox-sensitive species. Understanding these changes is a prerequisite to predict and model the geochemical cycle of trace elements in the environment. Here, the structural and morphological modifications affecting synthetic nanocrystalline vernadite (δ-MnO2) upon contact with increasing concentrations of Mn2+ were investigated using wet chemistry, synchrotron X-ray diffraction and transmission electron microscopy. Fresh δ-MnO2 crystals had an Mn oxidation state of 3.94 ± 0.05 and a ∼10 Å layer-to-layer distance. Crystal size was ∼10 nm in the layer plane, and ∼1 nm perpendicular to that. Upon contact with aqueous Mn2+ under anoxic conditions, δ-MnO2 crystals underwent several morphological and mineral evolutions, starting with the stacking, perpendicular to the layer plane, of δ-MnO2 crystals to form crystals ∼10 nm × 2 nm which were then subjected to oriented aggregation along and perpendicular to the layer plane to form lath-like crystals with dimensions of ∼100 nm × 20 nm. These layers were then subjected to oriented aggregation along and perpendicular to the layer plane to form synthetic feitknechtite (β-MnOOH) crystals with sizes up to ∼100 nm × 500 nm when the Mn2+ loading reached 31.9 mmol g−1. Structural transformation from δ-MnO2 to synthetic feitknechtite was detected at Mn2+ loading equal to or higher than 3.27 mmol g−1. These mechanisms are likely to influence the geochemical fate of trace elements in natural settings where Mn2+ is abundant. Firstly, the systematic increase in crystal size with increasing Mn2+ loading may impact the sorption capacity of vernadite and feitknechtite by reducing the density of reactive edge sites. Secondly, the fate of trace elements initially sorbed at the vernadite surface is unclear, as they could either be released in solution or incorporated into the feitknechtite lattice.

Key-words: vernadite; δ-MnO2; feitknechtite; β-MnOOH; manganese oxide; X-ray diffraction; transmission electron microscopy; nucleation; sorption; crystal growth.

1. Introduction

Manganese (Mn) oxides are ubiquitous in surficial environments, where they play a key role in the geochemical cycles of major and trace elements, as they are highly reactive towards nutrients (e.g., Xin et al., 2016), metals (e.g., Halbach, 1986; Bellanca et al., 1996; Manceau et al., 2004, 2007, 2014; Marcus et al., 2004; Boonfeng et al., 2006; Fuller & Bargar, 2014), actinides (e.g., Kunzendorf & Friedrich, 1976; Koppi et al., 1996; Duff et al., 1999) and organic matter and organic molecules (e.g., Cheney et al., 1996; Nasser et al., 2000; Barrett & McBride, 2005; Chang Chien et al., 2009; Johnson et al., 2015). Vernadite, the nanocrystalline and turbostratic analogue to birnessite (Giovanoli, 1980), is one of most abundant (Taylor et al., 1964; Taylor, 1968; Ross et al., 1976; Birnie & Paterson, 1991) and reactive Mn oxides, especially in suboxic aqueous systems such as the upper soil. The vernadite structure consists in the turbostratic stacking of layers of (Mn4+O6)8− octahedra connected through their edges and separated from each other by hydrated interlayer cations (e.g., Giovanoli, 1980; Chukhrov et al., 1985; Jurgensen et al., 2004; Villalobos et al., 2006; Grangeon et al., 2008). In natural settings, vernadite mainly has hexagonal layer symmetry (e.g., Marcus et al., 2004; Manceau et al., 2007, 2014; Bargar et al., 2009). These layers may contain vacancies and/or isomorphic substitutions of Mn4+ by cations of lower
valence (e.g., Mn$^{3+}$, Ni$^{2+}$, Co$^{3+}$; Manceau et al., 1997, 2014; Peacock & Sherman, 2007; Lanson et al., 2008; Peña et al., 2010; Grangeon et al., 2014) which, together with the minute size of the layers (5–10 nm, e.g., Hochella et al., 2005; Bargar et al., 2009), are responsible for the exceptional reactivity of vernadite. The possible contact with redox-sensitive species such as Mn$^{2+}$ can induce structural changes whose nature and extent depend on solution pH and Mn$^{2+}$ concentration. The first step of reaction between aqueous Mn$^{2+}$ and layer Mn$^{4+}$, hereafter referred to as Mn$^{-3+}$ (aq) and Mn$^{4+}$ (s), respectively, is (Elzinga, 2016):

$$\text{Mn}^{2+} \text{(aq)} + \text{Mn}^{4+} \text{(s)} \rightarrow 2\text{Mn}^{3+} \text{(s)},$$

where Mn$^{3+}$ (s) is layer Mn$^{3+}$. The 2Mn$^{3+}$ (s) formed may further disproportionate, returning the system to its initial state. Alternatively, they may accumulate in the structure and induce a change in layer symmetry, from hexagonal to orthogonal, as observed experimentally at pH 9 when the molar ratio of Mn$^{2+}$ to δ-MnO$_2$ is lower than 0.05 (Zhao et al., 2016). At lower pH and/or at higher Mn$^{2+}$ concentration, a transformation to synthetic feitknechtite (β-MnOOH) is observed, following the reaction:

$$\delta\text{-Mn}^{4+}\text{O}_2 + \text{Mn}^{2+} \text{(aq)} \rightarrow 2\beta\text{-Mn}^{3+}\text{OOH}.$$

Feitknechtite, whose structure is built of layers of (Mn$_3$O$_4$)$_9$ octahedra, may upon ageing convert to manganite (γ-MnOOH) at pH 7.0–7.5 or to haussmannite (Mn$_3$O$_4$) at pH > 8 (Elzinga, 2011; Lefkowitz et al., 2013; Lefkowitz & Elzinga, 2015).

The interplay between these structural transformations certainly influences the geochemical cycle of trace elements by modifying the reactivity of Mn oxides through a change in the nature and density of local crystal charges, but also by modifying the fate of trace elements initially adsorbed at the vernadite surface which, by analogy with the phyllomanganate-to-tectomanganate transformation, could either be incorporated in the structure during transformation or released to solution (Atkins et al., 2014, 2016; Grangeon et al., 2015).

The present study aimed at contributing to a better understanding of the vernadite-to-feitknechtite transformation, and in particular at elucidating the reaction mechanisms at the crystal scale, using wet chemistry, X-ray diffraction (XRD) and transmission electron microscopy (TEM).

2. Materials and methods

2.1. Sample synthesis, sorption experiments and chemical analyses

The δ-MnO$_2$ phase was synthesized using a redox method described elsewhere (Villalobos et al., 2003). The average oxidation state (AOS) of Mn was determined by using a potentiometric method (Grangeon et al., 2012). After synthesis, samples were Na-saturated through ten cycles of centrifugation, supernatant removal and resuspension in a 1 M NaCl solution. A last step of three similar cycles with de-ionized water instead of 1 M NaCl was then performed. The obtained δ-MnO$_2$ paste was immediately freeze-dried, and the resulting powder was introduced in a N$_2$-filled glove box where it was left for ~7 d. Eight aliquots of ~20–40 mg powder each were then introduced in previously weighted dialysis membranes. Filled membranes were weighted, filled with a solution containing 0.1 M NaCl and MnCl$_2$ at a concentration ranging 0–0.04 M, sealed, and introduced in 50 mL polypropylene tubes, to which 40.5–45 mL of the solution introduced in the dialysis membrane were added. Initial solution pH was 6.5. Tubes were sealed and left to agitate for 24 h. The dialysis membrane was then separated from the solution whose final pH ranged between 6.5 and 5.8. The solution was acidified to pH ~3 with HNO$_3$ and analyzed for its Mn$^{2+}$ content using an ICP-AES (Horiba-Jobin Yvon Ultima 2). The magnitude of Mn$^{2+}$ retention by δ-MnO$_2$ was quantified using the R_D factor (Tournassat et al., 2013) defined as:

$$R_D = \frac{C_{\text{init}} - C_{\text{aq}}}{C_{\text{aq}} \times R_{\text{SL}}},$$

where C_{init} is the initial concentration of Mn$^{2+}$, C_{aq} the Mn$^{2+}$ concentration in solution after equilibration, and R_{SL} is the solid-to-liquid ratio in the experiment (in kg L$^{-1}$).

The dialysis membrane was opened and the solid separated by filtration (0.01 μm cut-off) before being washed with bi-distilled water. An aliquot was freeze-dried for TEM analysis, whereas the remaining was sealed in a polyimide capillary for XRD analysis in the wet state within 48 h. Samples were labeled MnBi-XX, where XX is the Mn$^{2+}$ loading (in mmol Mn$^{2+}$ per g of dry δ-MnO$_2$).

2.2. Synchrotron X-ray diffraction

The XRD experiments were carried out at station CRISTAL (SOLEIL synchrotron in Orsay, France), using an energy of 28.44 keV (λ = 0.436 Å) and an XPad hybrid pixel detector. Data were recorded over the 1.2–124.5° 2θ range with a total collection time of 30 min and processed with a specific software (Ounsy et al., 2013). To ease comparison with previous studies (e.g., Grangeon et al., 2015, 2017), diffraction data will be expressed relative to the scattering vector q, where $q = [4 \pi \times \sin(\theta)]/\lambda$.

2.3. Transmission electron microscopy

The TEM experiments were carried out using a Philips CM20 microscope operated at 200 kV. Prior to observation, samples were embedded in epoxy resin, left to polymerize for 48 h in the dark and cut with an ultramicrotome (Reichert-Jung Ultra-cut E) equipped with a diamond knife. The ~80 nm thick sections were picked up on lacey carbon films loaded on Cu grids. In addition, to assess possible preparation-induced artefacts (use of an ultramicrotome), a sample identical to MnBi-0.5 (Table 1) was prepared according to the above described protocol, filtered and
Table 1. Experimental conditions of δ-MnO₂ contacts with Mn²⁺ \text{(aq)} and chemical characterization of reacted solids.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn AOS</th>
<th>Mn²⁺ sorbed (mmol g⁻¹)</th>
<th>(C_{\text{aq}}) (mmol L⁻¹)</th>
<th>(R_{\text{SL}}) (g L⁻¹)</th>
<th>log((R_D)) ((R_D) in L kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MndBi-0</td>
<td>3.94 ± 0.05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.65</td>
<td>n.d.</td>
</tr>
<tr>
<td>MndBi-0.5</td>
<td>3.80 ± 0.05</td>
<td>0.49</td>
<td>0.03</td>
<td>0.70</td>
<td>4.21</td>
</tr>
<tr>
<td>MndBi-1.5</td>
<td>n.d.</td>
<td>1.49</td>
<td>0.41</td>
<td>0.68</td>
<td>3.56</td>
</tr>
<tr>
<td>MndBi-3.3</td>
<td>3.54 ± 0.10</td>
<td>3.27</td>
<td>0.94</td>
<td>0.73</td>
<td>3.54</td>
</tr>
<tr>
<td>MndBi-8.6</td>
<td>n.d.</td>
<td>8.61</td>
<td>2.41</td>
<td>0.49</td>
<td>3.55</td>
</tr>
<tr>
<td>MndBi-11.3</td>
<td>n.d.</td>
<td>11.32</td>
<td>6.35</td>
<td>0.91</td>
<td>3.25</td>
</tr>
<tr>
<td>MndBi-28.1</td>
<td>3.62 a</td>
<td>28.05</td>
<td>12.15</td>
<td>0.64</td>
<td>3.36</td>
</tr>
<tr>
<td>MndBi-31.9</td>
<td>n.d.</td>
<td>31.90</td>
<td>20.47</td>
<td>0.55</td>
<td>3.19</td>
</tr>
</tbody>
</table>

Notes: Mn²⁺ loading at the end of the experiment (Mn²⁺ sorbed) is the number of mmol of Mn²⁺ sorbed per g of δ-MnO₂. n.d. stands for “not determined”.
a May be subject to high uncertainties as a single measurement was performed.

3. Results and discussion

3.1. Determination of Mn²⁺ retention coefficient

An increase in Mn²⁺ \text{(aq)} resulted in a decrease in the Mn AOS of the final solids, suggesting retention of Mn²⁺ on δ-MnO₂ (Table 1). The \(R_D \) values (Table 1) compared well with previously reported values obtained after 8 d of equilibration (Fig. 1). The evolution of \(R_D \) as a function of Mn²⁺ concentration and pH (Murray, 1975) has, in some cases, been interpreted in terms of adsorption and quantified in surface-complexation models (Appelo & Postma, 1999; Tonkin et al., 2004). Data interpreted with these models had a Mn²⁺ loading ranging from 1 to 12 Mn²⁺ per nm², depending on the dataset and on the specific surface area considered (value measured by the authors or 600 m² g⁻¹ as recommended by Tonkin et al., 2004). Such loading roughly corresponds to MndBi-1.5 (1.5 Mn²⁺ per nm² assuming a specific surface area of 600 m² g⁻¹), which means that this sample and MndBi-0.5 could have been interpreted in the frame of these models. For other samples, the density of Mn²⁺ at the surface of δ-MnO₂ would be unrealistically high (up to 32 Mn²⁺ per nm² for MndBi-31.9), and interaction of Mn²⁺ with δ-MnO₂ most likely resulted in a structure transformation, which was studied by XRD.

3.2. Mineralogical evolution

Fig. 1. Evolution of the Mn²⁺ retention coefficient as a function of Mn²⁺ concentration. Patterns are indicative of the experiment pH: circles and triangles pointing up, experiments conducted at pH 6 and pH 7, respectively; squares and triangles pointing down, pH 7.5; diamonds, pH 8; triangles pointing left, pH 8.5 (Elzinga, 2011; Lefkowitz et al., 2013). Published data were collected with a contact time of 8 d. Present data (pH 6.5; 1 d contact time) are shown as triangles pointing right.

(Drits et al., 2007). Here, it was symmetric despite the presence of a shoulder on the low-q side, related to a basal reflection (see below), and layer symmetry was hexagonal. For consistency with previous studies (e.g., Lanson et al., 2000, 2008; Webb et al., 2005; Drits et al., 2007; Grangeon et al., 2010, 2012; Zhu et al., 2010; Manceau et al., 2013), bands were indexed with an orthogonal symmetry system \((a = \sqrt{3} \times b, \gamma = 90°)\) and the three maxima were indexed as (11, 20), (31, 02) and (22, 40) \(hkl\) band, respectively. Reflections of the second set were sharp and symmetric and formed a rational series of 00l reflections at 0.62 Å⁻¹, 1.24 Å⁻¹ and 1.85 Å⁻¹ (10.15 Å, 5.08 Å and 3.39 Å). The layer-to-layer distance, inferred from the position of the 003 at 1.85 Å⁻¹, was 10.17 Å. When increasing Mn²⁺ loading up to 1.5 mmol g⁻¹ (MndBi-1.5), the intensity of the 00l reflections decreased, but the position remained essentially unchanged and

re-suspended in alcohol. A drop of the obtained suspension was deposited on a Cu grid. Fast-Fourier transform (FFT) analysis of the micrographs was done with ImageJ (Schneider et al., 2012).

Nucleation and growth of feitknechtite 769

<table>
<thead>
<tr>
<th>Sample</th>
<th>Mn AOS</th>
<th>Mn²⁺ sorbed (mmol g⁻¹)</th>
<th>(C_{\text{aq}}) (mmol L⁻¹)</th>
<th>(R_{\text{SL}}) (g L⁻¹)</th>
<th>log((R_D)) ((R_D) in L kg⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MndBi-0</td>
<td>3.94 ± 0.05</td>
<td>n.d.</td>
<td>n.d.</td>
<td>0.65</td>
<td>n.d.</td>
</tr>
<tr>
<td>MndBi-0.5</td>
<td>3.80 ± 0.05</td>
<td>0.49</td>
<td>0.03</td>
<td>0.70</td>
<td>4.21</td>
</tr>
<tr>
<td>MndBi-1.5</td>
<td>n.d.</td>
<td>1.49</td>
<td>0.41</td>
<td>0.68</td>
<td>3.56</td>
</tr>
<tr>
<td>MndBi-3.3</td>
<td>3.54 ± 0.10</td>
<td>3.27</td>
<td>0.94</td>
<td>0.73</td>
<td>3.54</td>
</tr>
<tr>
<td>MndBi-8.6</td>
<td>n.d.</td>
<td>8.61</td>
<td>2.41</td>
<td>0.49</td>
<td>3.55</td>
</tr>
<tr>
<td>MndBi-11.3</td>
<td>n.d.</td>
<td>11.32</td>
<td>6.35</td>
<td>0.91</td>
<td>3.25</td>
</tr>
<tr>
<td>MndBi-28.1</td>
<td>3.62 a</td>
<td>28.05</td>
<td>12.15</td>
<td>0.64</td>
<td>3.36</td>
</tr>
<tr>
<td>MndBi-31.9</td>
<td>n.d.</td>
<td>31.90</td>
<td>20.47</td>
<td>0.55</td>
<td>3.19</td>
</tr>
</tbody>
</table>
Fig. 2. From top to bottom, XRD patterns of MndBi-0, MndBi-0.5, MndBi-1.5, MndBi-3.3, MndBi 28.1 and MndBi-31.9. Dashed lines and dashed-dotted lines point out to the presence of diffraction maxima of δ-MnO$_2$ and synthetic feitknechtite, respectively.

Fig. 3. Transmission electron microscope (TEM) observation of type 1 crystals from MndBi-0.

hk bands were unaffected. The shoulder on the low-q side of the (31, 02) band weakened, supporting its indexation as the 006 reflection. Note the presence of a weak peak at \sim1.36 Å$^{-1}$ (\sim4.6 Å) in the XRD pattern of MndBi-1.5, which could be attributed to synthetic feitknechtite (see below). Weakening of 00l reflections can be interpreted as a loss of parallelism between adjacent layers and was attributed to the incorporation of Mn$^{3+}$(δ) according to the comproportionation mechanism described above. Indeed, Mn$^{3+}$ octahedra are distorted by the Jahn–Teller effect and their presence within the octahedral layer induces strains that ultimately lead to layer kinking (Webb et al., 2005; Atkins et al., 2014; Grangeon et al., 2014) and subsequent loss of parallelism between layers. In addition to hk bands of δ-MnO$_2$, the XRD pattern of MndBi-3.3 (3.3 Mn$^{2+}$/per nm2) had additional reflections, e.g., at 1.36 Å$^{-1}$, 2.34 Å$^{-1}$, 2.64 Å$^{-1}$ and 3.40 Å$^{-1}$ (4.63 Å, 2.69 Å, 2.38 Å, and 1.85 Å), assigned to synthetic feitknechtite (Bricker, 1965). As the latter reflections became more intense with increasing Mn$^{2+}$ loading, up to 31.90 mmol g$^{-1}$ (MndBi-31.9), the proportion of synthetic feitknechtite increased with Mn$^{2+}$ loading.

Such an evolution was consistent with previous studies (Elzinga, 2011, 2016; Lefkowitz et al., 2013; Lefkowitz & Elzinga, 2015). In the following section, the mechanisms of transformation were studied at the crystal scale, hypothesizing that an increased concentration of Mn$^{3+}$ led to an increased conversion of δ-MnO$_2$ to synthetic feitknechtite without significant dissolution of δ-MnO$_2$. In other words, it was hypothesized that the structural and morphological evolution of samples following their contact with a given concentration of Mn$^{2+}$(aq) underwent intermediate recrystallization steps similar to those observed during post-mortem analysis of samples in contact with lower concentrations of Mn$^{2+}$(aq). This hypothesis is supported by previous TEM observations, from which it was concluded that there was a lack of significant dissolution/reprecipitation during the recrystallization of δ-MnO$_2$ when in contact with aqueous MnSO$_4$ (Tu et al., 1994). Absence of δ-MnO$_2$ dissolution is further substantiated by the study of Elzinga & Kustka (2015) showing that the first steps of transformation involves solely comproportionation and disproportionation reactions induced by interfacial electron transfer between adsorbed Mn$^{2+}$ and Mn$^{4+}$(δ). Experimental validation of this hypothesis would require performing a kinetic experiment at high Mn$^{2+}$(aq) concentration to check whether recrystallization steps observed as a function of Mn$^{2+}$ concentration are similar to those occurring as a function of time. Such a procedure was applied to the study of the δ-MnO$_2$ to synthetic todorokite transformation (Atkins et al., 2014, 2016), but was not possible in the present case because of reaction kinetics. The R_D values obtained in the present study after 1 d of contact time were identical to those reported previously for a contact time of 8 d (Fig. 1). Steady-state was thus reached in less than 1 d of contact time, consistent with previous observations showing that feitknechtite is formed in less than 20 min (Johnson et al., 2016) and that sorption of Mn$^{2+}$ at the δ-MnO$_2$ surface is completed within less than 1 s (Fendorf et al., 1993).

3.3. Morphological evolution during δ-MnO$_2$ to synthetic feitknechtite transformation

Sample MndBi-0 consisted of crystals \sim10 nm in their largest dimension (presumably the layer plane) and \sim1 nm perpendicular (Fig. 3), henceforth denominated
type-1 crystals. The crystal size in the layer plane was in good qualitative agreement with the XRD data, in which broad hk bands could be observed, indicative of crystallites $\sim 5-10$ nm in the layer plane (Lanson et al., 2008; Grangeon et al., 2012; Manceau et al., 2013). On the other hand, the small crystal size perpendicular to the layer plane contrasted with the sharp 00l reflections. This apparent contradiction could be concealed assuming that TEM sample preparation procedure has delaminated δ-MnO$_2$ crystals.
Observation of MnBi-0.5 evinced that a Mn$^{2+}$ loading as low as 0.49 mmol g$^{-1}$ led to the formation of crystals with contrasting morphologies and sizes, ranging \sim10–200 nm in the layer plane (Fig. 4a). In addition to type-1 crystals, three types of such crystals were identified:

- Type-2 crystals had a size of \sim10 nm in the layer plane, \sim2–3 nm perpendicular, and were bent (Fig. 4b), probably as a result of the incorporation of Mn$^{3+}$ in layers containing mainly Mn$^{4+}$. The layer-to-layer distance was \sim5.5 Å, typical for dehydrated phyllomanoganeses (Cygan et al., 2012; Wegorzewski et al., 2015). Dehydration was possibly induced by sample freeze-drying or by the secondary vacuum in the TEM. For type-1 and type-2 crystals having similar lateral dimensions, it is proposed that the latter formed from the coherent stacking of the former;

- Type-3 crystals were \sim50 nm in the layer plane, and were built of \sim10–20 layers stacked parallel to each other, with a layer-to-layer distance of \sim5.5 Å (Fig. 4c, d). As type-2 crystals, they were bent. Images of the lateral terminations of type-3 crystals showed that they consisted of stacked type-2 crystals (Fig. 4c). Layer dislocations were observed also on some crystals (Fig. 4d), suggesting that type-2 crystals connected also within the layer plane to form type-3 crystals. Most likely, the type-3 crystals thus originated from the oriented aggregation of type-2 crystals, both within the layer plane and perpendicular to it;

- Type 4 crystals had lath-like shape, dimensions of \sim50–100 nm in the layer plane and \sim10–20 nm perpendicular (Fig. 4e), layer-to-layer distance of \sim5.5 Å (inset in Fig. 4e), and were rarely found as stacks (Fig. 4f). It is speculated that they resulted from the same aggregation mechanisms proposed for the type-3 crystals, but with fewer defects between connected type-2 crystals and/or a specific distribution of Mn$^{3+}$ so as to minimize layer strains and bending. Note that layer bending and dislocations observed in type-3 crystals cannot be related to sample preparation, as crystals deposited from a drop of a δ-MnO$_2$ suspension exhibited similar microstructural features (Fig. 4g, h).

These observations demonstrate that the surface of δ-MnO$_2$ is modified at loadings as low as 0.5 Mn$^{2+}$ per nm2. As a consequence, surface complexation models, which rely on a reversible sorption hypothesis (Tournassat et al., 2013), may not be suited to describe Mn$^{2+}$ interaction with δ-MnO$_2$.

All types of crystals found in samples with lower Mn$^{2+}$ loadings were observed in MnBi-1.5 that contained also larger crystals (type-5), \sim100–150 nm in the layer plane and \sim20–30 nm perpendicular (Fig. 5a). In contrast, XRD indicated that MnBi-1.5 consisted mainly of isolated δ-MnO$_2$ nanosheets. However, type-5 crystals were bent (Fig. 5b). Bending did not involve layer disruption (Fig. 5c), but likely led to variable layer-to-layer distance, best quantified from FFT analysis of the images (Fig. 5d). This analysis showed that layer-to-layer distance varied within a given crystal, being equal to 4.4–4.6 Å. Both layer bending and layer-to-layer distance heterogeneity within a given crystal reduced crystallite size within the layer plane and led to vanishing of 00l reflection.

Fig. 5. TEM observation of MnBi-1.5. (a) Low-magnification view with the different crystal morphologies indicated with arrows; (b) type-5 crystals at intermediate magnification; (c) type-5 crystal exhibiting layer bending. The area shown with a dotted square in (c) is enlarged in the inset. (d) A detailed view of (c) and the inset is a FFT analysis of the region shown with a dotted square.
Finally, MndBi-28.1 contained, in addition to all previously mentioned types of crystals, type-6 crystals (Fig. 6) whose selected-area electron diffraction (SAED) patterns were typical for synthetic feitknechtite (Fig. 6c). These crystals were up to \(\sim 100 \text{ nm} \times 500 \text{ nm} \) and were built of the stacking of laths resembling type-5 crystals but free of stacking defects and dislocations. These laths were not simply aligned, but were connected (Fig. 6d, e), as shown by both the observation of interference fringes (inset in Fig. 6e) and the FFT image analysis showing a homogeneous layer-to-layer distance (4.4 Å, inset in Fig. 6e). It is proposed that type-6 crystals formed from the oriented aggregation, perpendicular to the layer plane, of type-5 crystals. The presence of dislocations in type-5 crystals is thought to have inhibited their oriented aggregation. Bending was not observed either in type-6 crystals, possibly because all Mn\(^{4+}\)(s) was converted to Mn\(^{3+}\)(s), allowing for their specific distribution to accommodate their Jahn–Teller distortion. No Mn\(^{2+}\)-rich phase could be detected with SAED, despite a molar ratio of sorbed Mn\(^{2+}\) to structural \(\delta\)-MnO\(_2\) Mn of 3 (assuming a defect-free \(\delta\)-MnO\(_2\) and a molar mass of 119 g mol\(^{-1}\), Giovanoli et al., 1970). Consequently, it was concluded that part of the Mn\(^{2+}\) was sorbed by \(\delta\)-MnO\(_2\) and/or synthetic feitknechtite, or precipitated as an amorphous phase.

3.4. The role of oriented aggregation in nanoparticle growth

The present description of the vernadite-to-feitknechtite transformation, from macroscopic to crystal scales, is consistent with our current understanding of this transformation (Elzinga, 2011, 2016; Lefkowitz et al., 2013; Lefkowitz & Elzinga, 2015). One of the key findings is the major role of oriented aggregation in the nucleation and growth of feitknechtite from \(\delta\)-MnO\(_2\) precursors. This process is increasingly recognized as one of the main processes responsible for nanoparticle growth (Penn, 2004; Niederberger & Colfen, 2006; Yuwono et al., 2010): carbonates (Shen et al., 2006), iron (Jia & Gao, 2008a and b) and manganese (Portehault et al., 2007) oxides. It was also shown to be responsible for the phase transformations of nanoparticle precursors (e.g., Hockridge et al., 2009). Recently, oriented aggregation was shown to be involved in the formation of synthetic todorokite and cryptomelane from a \(\delta\)-MnO\(_2\) precursor (Chen et al., 1986; Atkins et al., 2014, 2016; Grangeon et al., 2015) and in the change of \(\delta\)-MnO\(_2\) layer symmetry, from hexagonal to orthogonal (Zhao et al., 2016). It is thus possible to speculate that Mn oxides found in surficial environments were to a large extent formed from vernadite precursors (Bodeï et al., 2007; Xu et al., 2010), possibly through oriented aggregation mechanisms.

![Fig. 6. TEM observation of MndBi-28.1. (a) Low-magnification view; (b) and (c) SAED patterns collected on the smallest crystals (top right in (a)) and the biggest crystals (centre in (a)), respectively; (d) and (e) type-6 crystal. The FFT analysis shown as an inset at the bottom right of (e) was calculated over the whole image while the inset at the top right is an enlarged view of the area delimited with a dotted square.](image-url)
4. Concluding remarks: environmental implications

Vernadite with hexagonal layer symmetry is a sink for many trace elements in the environment. In natural settings were Mn$^{2+}$ (aq) is abundant, such as in lake and marine water columns and in sediments (Burdige, 1993), interactions between vernadite and Mn$^{2+}$ (aq) may induce morphological and mineralogical changes that could impact its reactivity and the fate of trace elements sorbed at its surface. Two main structural transformations were identified during reaction of δ-MnO$_2$ (synthetic vernadite) with Mn$^{2+}$ (aq). At a low Mn$^{2+}$ to δ-MnO$_2$ ratio (<3.27 mmol g$^{-1}$), δ-MnO$_2$ crystal size increased with Mn$^{2+}$ (aq). At a Mn$^{2+}$ to δ-MnO$_2$ ratio of 3.27 mmol g$^{-1}$ or higher, δ-MnO$_2$ was converted to syntheticfeitknechtite, and the size of syntheticfeitknechtite crystals was observed to increase with Mn$^{2+}$ (aq). δ-MnO$_2$ with orthogonal layer symmetry was not detected as a transformation intermediate, possibly because experiments were conducted at slightly acidic pH (Zhao et al., 2016).

When crystal size increases, the specific surface area, and especially the contribution of particle edges to this surface, decreases. Vernadite edge sites being reactive (Simanova et al., 2015), the increase in vernadite crystal size when in contact with Mn$^{2+}$ (aq) even at low concentrations, can be detrimental to its trace-metal scavenging ability. By analogy, the same is expected forfeitknechtite at high Mn$^{2+}$ to δ-MnO$_2$ ratio. The impact of the vernadite-to-feitknechtite transformation on the fate of trace elements remains unclear, however. The lack of any significant dissolution of δ-MnO$_2$ potentially minimizes the release of trace metal elements along the reaction pathway, but their possible incorporation in the newly formedfeitknechtite structure remains undocumented. Unlike tunnel structures,feitknechtite has been observed seldom in natural settings, probably because of its limited chemical stability and high sensitivity to fluctuation in redox conditions, which lead to its back-conversion to vernadite (Bargar et al., 2005). Consequently, no data are currently available to evaluate the affinity of trace elements forfeitknechtite in natural settings. Similar to tunnel structures (Liu et al., 2004; Kumagai et al., 2005; Cui et al., 2011; Atkins et al., 2014), additional insights into vernadite reactivity in suboxic systems and its impact on the fate of trace metals could probably be sought experimentally asfeitknechtite is frequently observed in laboratory experiments mimicking natural conditions (Hem et al., 1982; Murray et al., 1985; Wang et al., 2015).

Acknowledgements: S.G. acknowledges funding by the French National Research Agency (ANR, grant ANR-14-CE01-0006) and thanks Jacques Deparis, Nicolas Marty and Julie Philibert for fruitful discussions. SOLEIL data were acquired in the frame of proposal 20141260. A. Fernandez-Martinez and T. Conte are respectively thanked for help during XRD data collection and Mn$^{2+}$ measurement. This article benefited from comments and suggestions by an anonymous reviewer and Alain Baronnet.

References

Received 23 December 2016
Modified version received 20 March 2017
Accepted 21 May 2017