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Abstract. Quasi-perpendicular supercritical shocks are char-
acterized by the presence of a magnetic foot due to the accu-
mulation of a fraction of the incoming ions that is re�ected by
the shock front. There, three different plasma populations co-
exist (incoming ion core, re�ected ion beam, electrons) and
can excite various two-stream instabilities (TSIs) owing to
their relative drifts. These instabilities represent local sources
of turbulence with a wide frequency range extending from
the lower hybrid to the electron cyclotron. Their linear fea-
tures are analyzed by means of both a dispersion study and
numerical PIC simulations. Three main types of TSI and cor-
respondingly excited waves are identi�ed:

i. Oblique whistlers due to the (so-called �fast�) relative
drift between re�ected ions/electrons; the waves prop-
agate toward upstream away from the shock front at a
strongly oblique angle (� � 50�) to the ambient mag-
netic �eld Bo, have frequencies a few times the lower
hybrid, and have wavelengths a fraction of the ion iner-
tia length c=!pi.

ii. Quasi-perpendicular whistlers due to the (so-called
�slow�) relative drift between incoming ions/electrons;
the waves propagate toward the shock ramp at an angle
� a few degrees off 90�, have frequencies around the
lower hybrid, and have wavelengths several times the
electron inertia length c=!pe.

iii. Extended Bernstein waves which also propagate in
the quasi-perpendicular domain, yet are due to the
(so-called �fast�) relative drift between re�ected
ions/electrons; the instability is an extension of the elec-
tron cyclotron drift instability (normally strictly perpen-

dicular and electrostatic) and produces waves with a
magnetic component which have frequencies close to
the electron cyclotron as well as wavelengths close to
the electron gyroradius and which propagate toward up-
stream.

Present results are compared with previous works in order to
stress some features not previously analyzed and to de�ne a
more synthetic view of these TSIs.

Keywords. Interplanetary physics (planetary bow shocks) �
magnetospheric physics (plasma waves and instabilities) �
space plasma physics (wave�particle interactions)

1 Introduction

A hallmark of supercritical shocks in collisionless plasmas
is the presence of a sizable ion population that is re�ected
off of the steep shock front. These ions carry a substantial
amount of energy: they are the source of microturbulence
within the shock front and are fundamental to the transforma-
tion of directed bulk �ow energy into thermal energy, a tenet
of shock physics. For quasi-perpendicular geometries, the re-
�ected ions’ velocity, as seen in the normal incidence frame,
is in large part directed at 90� to the magnetic �eld Bo. The
relative drifts across Bo between the populations of incom-
ing ions, re�ected ions, and electrons enable the excitation
of several microinstabilities (Wu et al., 1984, and references
within)

Whistler waves are an attribute of collisionless fast-mode
shocks. They have been observed in association with shocks
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in space for a very long time (e.g., Rodriguez and Gurnett,
1975). The term �whistler� covers waves over a large range
of frequencies and many observations related to shocks per-
tain to the ion frequency range (a few hertz and below).
Waves with higher frequencies from the lower-hybrid to the
electron cyclotron range have also been observed. Their char-
acteristics, however, can be dif�cult to establish because of a
potentially important Doppler shift in frequency between the
spacecraft frame where they are measured and the plasma
frame where they can be properly identi�ed. Whistler waves
especially in the lower-hybrid range have interested theorists
and simulationists owing to their potential role for transfer-
ring energy between ions and electrons (e.g., Wu et al., 1983;
Winske et al., 1985; Matsukiyo and Scholer, 2003, 2006).
Observationally, an important characteristic of whistlers in
this regime is that the waves appear to propagate obliquely
with respect to Bo (Krasnoselskikh et al., 1991; Hull et al.,
2012; Sundkvist et al., 2012; Dimmock et al., 2013). More-
over, when the waves can be put into their macroscopic
context, their wavevectors have been measured as equally
oblique with respect to the shock normal (Hull et al., 2012;
Dimmock et al., 2013). Since the normal presumably cor-
responds to the direction of the drift between the ion pop-
ulations, the waves appear to propagate at a sizable angle
with respect to the drift. The measurements made by the Po-
lar mission, which recorded a substantial number of whistler
waves as detailed by Hull et al. (2012), bene�t from captur-
ing all components of the electric and magnetic �elds. The
whistler waves in the lower-hybrid frequency range, it was
concluded, have wavevectors which are close to the copla-
narity plane and which make an angle� 50� to Bo and� 50�
to the shock normal (where the latter is pointing upstream).

In this article, we present a synthetic view of the plasma
microinstabilities which can occur in the foot of supercritical
quasi-perpendicular shocks as the result of the relative drifts
between incoming ions, re�ected ions, and electrons. Fig-
ure 1 illustrates the relations between the three plasma pop-
ulations in the shock’s foot. The resulting instabilities cover
wavelengths from the ion inertia length to the electron gyro-
radius and frequencies from the lower-hybrid to the electron
cyclotron. The study can be viewed as an extension of our
previous work, which was focussed on 90� propagation and
electron Bernstein waves (Muschietti and LembŁge, 2013).
By contrast, we consider here various propagation angles and
lower frequencies, with a special emphasis on whistlers that
propagate obliquely and have frequencies in the lower-hybrid
range.

Our notations are as follows: VA designates the AlfvØn
speed, c is the speed of light, !pi (!pe) is the ion (elec-
tron) plasma frequency, and �ci (�ce) is the ion (electron)
cyclotron frequency. When we use the warm plasma model,
Tj (where j D e, c, b) represents the temperature of the elec-
trons (subscript e), the incoming ion core (subscript c), and
the re�ected ion beam (subscript b), respectively. The asso-
ciated betas (ratio of thermal pressure to magnetic pressure)
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Figure 1. Model of ion and electron populations in the foot region
of a supercritical perpendicular shock extracted at a given time from
a 1-D PIC simulation. (a) View of the ion phase space with pro�le of
the magnetic �eld B; (b) enlargement of the local ion core, re�ected
ion beam, and electron distributions to be used for the dispersion
analysis; reference frame set such that the electrons are at rest.

are de�ned as �j D .8�njTj /=Bo2, where the densities nj
satis�es ne D ncC nb D ni. Finally Mi.me/ denotes the ion
(electron) mass.

Results of linear dispersion analysis are presented in
Sect. 2 for a stable situation without beam. We �rst address
the cold plasma model in Sect. 2.1. In Sect. 2.2 we show
that the electrons are in a kinetic regime and that thermal
effects are very important, unless an extremely small �e is
assumed. We treat the unstable case where there is an ion
drift in Sect. 3. Again, we examine the question �rst within
the framework of the cold model (Sect. 3.1), then turn to the
warm plasma by numerically solving the full dispersion rela-
tion (Sect. 3.2). The extension of the electron cyclotron drift
instability (ECDI) beyond the electrostatic framework and to
quasi-perpendicular angles (close to yet off 90�) is discussed
in Sect. 4. In Sect. 5 we present PIC simulations to illustrate
the dispersion results of Sects. 2�4. Finally, Sect. 6 discusses
our results and Sect. 7 concludes our work.
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Figure 2. Orientation of the wavevector k with respect to the
directions of the background magnetic �eld .0;0;Bo/ and beam
.Vb;0;0/. In blue are axes t1 (into the page), t2, and L (along vec-
tor k) used in 1-D oblique simulations, which are performed with a
predetermined angle � de�ned from the dispersion study.

2 Whistler mode in oblique propagation
(without ion beam)

2.1 Cold approximation

In the cold plasma model, the mode which can propagate in
the frequency range above the ion cyclotron frequency is the
right-handed wave. It is often referred to as the R-X mode
because it becomes the extraordinary wave in perpendicular
propagation (e.g., Swanson, 2003). Let � be the angle be-
tween the wavevector and the direction of the background
magnetic �eld Bo D .0;0;Bo/, as displayed in Fig. 2. A con-
venient, approximate expression for its dispersion relation
can be obtained from the low-frequency relation that Stringer
(1963) derived using �uid equations and neglecting terms of
orderme=Mi. Assuming further that the phase speed is much
larger than the acoustic speed, one can write the explicit dis-
persion relation

!.k;�/D
kVA

T1C .kc=!pe/2U1=2

�

"

1C cos2�
.kc=!pi/2

1C .kc=!pe/2

#1=2

: (1)

In the very low-frequency (!��ci) and long wavelength
limit (kc=!pi� 1), we recover a magnetosonic wave with
phase velocity equal to the AlfvØn speed VA. When fre-
quencies become comparable to the ion cyclotron frequency,
i.e., kVA ��ci, the term kc=!pi D kVA=�ci becomes of or-
der unity, whereby an angle � dependence appears. As the
wavenumber keeps increasing, kc=!pi > 1, the second term
in the square bracket becomes important, the phase speed in-
creases, and the mode enters the domain of the whistler wave.

Figure 3 shows the dispersion relation in a log�log rep-
resentation for different angles � . Colors are used to distin-
guish between three angles: quasi-parallel propagation with
10� (green), oblique with 55� (blue), and quasi-perpendicular
with 85� (red). The wavenumbers k (horizontal axis) range
from !pi=c to many !pe=c and the frequencies ! (vertical
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Figure 3. Solutions of the cold dispersion relation (without ion
beam) above the ion cyclotron frequency �ci in a log�log repre-
sentation, shown for three propagation angles for the right-handed,
whistler wave (from Eq. 1). Grey, dashed lines indicate the elec-
tron cyclotron frequency �ce and the phase speed VA. A grey star
on the � D 85� solution marks the location where the dispersion
curve changes from concave to convex. For reference, electron tem-
perature effects (see Table 1) are introduced to indicate the Bern-
stein branch de�ned for 90� propagation and the electron gyrora-
dius scale (k�e D 1).

axis) range from �ci up to �ce, which is marked here with
a horizontal dashed line. The sloped dashed line indicates
the AlfvØn speed. If .cos� kc=!pi/2� 1, the frequency ! in-
creases quadratically with k and one can rewrite Eq. (1) into
the familiar whistler relation

! D�ce cos�
.kc=!pe/2

1C .kc=!pe/2
: (2)

For very short wavelengths, k� !pe=c, the dispersion
presents a resonance, becomes independent of k, and sim-
pli�es to ! D�ce cos� . Noteworthy is the double curvature
of !.k/, �rst concave (at low k) and then convex (at high k)
(e.g., Swanson, 2003, Fig. 3.1) (e.g., Tidman and Krall, 1971,
Fig. 2.3). As visible here in Fig. 3 for � D 85�, the dispersion
changes from concave to convex at the point marked with a
star. The feature plays an important role as we will see when
discussing the effect of a beam in Sect. 3.

For drawing Fig. 3, we choose parameter values such as
mass ratio and magnetization that are the same as those used
in the simulations to be shown later, namelyM=mD 900 and
!pe=�ce D 10. This will facilitate future comparisons. In ad-
dition, we refer the reader to Table 1 and assume a value of
�e D 0:22 to mark the position of the electron gyroradius as
well as the �rst Bernstein branch on the plot.
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Table 1. Plasma parameters in normalized units.

AlfvØn speed VA D 1
Ion inertia length c=!pi D 1
Ion gyrofrequency �ci D 1
Speed of light c D 300
Ion/electron mass Mi=me D 900
Plasma/cyclotron
Frequency !pe=�ce D 10
Electron beta �e D 0:22
Ion beta �i D 0:22

2.2 Thermal effects on obliquely propagating whistlers

Ion temperature effects are negligible. Indeed, since vti D
VA.�i=2/1=2, where vti �

p
Ti=Mi is the thermal velocity of

the ions, one can substitute vti for VA in Eq. (1). It is easy
then to see that kvti=! < .�i=2/1=2, unless one deals with
very short wavelengths such that kc=!pe� 1. One even has
kvti=!� .�i=2/1=2 if the angle � stays away from 90�. It
is thus clear that for moderate values of �i the ion thermal
velocity vti is much smaller than the phase velocity of the
whistlers. As an example, for �i D 0:22, kc=!pi D 15 and
� D 60�, one obtains kvti=! D 5:5�10�2. Hence it is appro-
priate to treat the ions as a cold �uid.

By contrast, the electrons’ temperature has signi�cant ef-
fects on the dispersion properties. We �rst examine the im-
pact on the real part of the frequency, which is shown in
Fig. 4 versus wavenumber k and angle � to the magnetic
�eld. A contour representation is used, where the frequency
expressed in units of �ci is marked on the contour. For ref-
erence, the lowest contour at !=�ci D 30 corresponds to
the lower-hybrid frequency !LH; the one at !=�ci D 300
corresponds to the ion plasma frequency, and the one at
!=�ci D 450 corresponds to half the electron cyclotron fre-
quency, for the chosen mass ratio. The two panels compare
the cold dispersion relation given by Eq. (1) (Fig. 4a) to the
solution obtained from the full dispersion tensor that includes
thermal effects of both ions and electrons (Fig. 4b). The
agreement is rather good, except in the area shaded in light
yellow. For example, if kc=!pi D 15 and � D 60�, Eq. (1)
yields ! D 91 �ci. Meanwhile, the numerical solution gives
! D 101 �ci when �e D 0:22, ! D 99 �ci when �e D 0:14,
and ! D 97 �ci when �e D 0:06. Hence, there is a modest
frequency increase associated with the electron pressure, yet
the cold plasma Eq. (1) is fairly reliable.

What about the discrepancy in the shaded area where the
wavenumbers are large? Unlike the ions, the electrons are
in a kinetic regime where they can resonate with the waves
and this causes damping. We have numerically solved the
full dispersion relation for three electron temperatures and
show the results including the damping in Fig. 5. As for
Fig. 4, contours describe the real part of the frequency !=�ci.
The associated imaginary part 
 is shown in various shades

kc/ pi 

kc/ pi 

  

  

(a) 

(b) 

Figure 4. Solutions of the dispersion relation (without ion beam) in
a linear, 2-D Tk;� U representation. Frequency is indicated by con-
tours labeled with the value of !=�ci. (a) Solution of the cold �uid
dispersion relation given by Eq. (1); (b) real part Re.!/ solution
to the full kinetic dispersion tensor including thermal effects for
�e D �i D 0:22. Note the discrepancy between the two panels in the
light-yellow area.

of blue. As indicated in the color code at the bottom of
Fig. 5, the shades correspond to the relative damping val-
ues 
 =!. It is evident that the damping can be very strong, in
some instances resulting in quasi-modes where j
 =!j> 0:3.
Figure 5a displays the dispersion for our nominal electron
temperature, �e D 0:22. Modes in the lower-right corner are
indeed heavily damped, which explains the large discrep-
ancy in real frequencies we noted between the cold formula
(Fig. 4a) and the full dispersion result (Fig. 4b).

Figure 5b and c demonstrate how the damping progres-
sively weakens when the electrons become colder. When
�e D 0:06 (Fig. 5c) the damping drops under 5 % for most
wavenumbers and angles under concern. Only in the extreme
lower-right corner of the plot does it exceed 5 %. In line with
the weaker values of 
 =!, we point out that the contours for
the real frequency agree better in this instance with those of
the cold formula plotted in Fig. 4a.

The terms in the full dispersion tensor are numerous and
re�ect different contributions. As shown in Appendix A,
since the electrons are magnetized, their contribution to the
tensor’s elements is made of combinations of Bessel func-
tions and derivatives with the plasma dispersion function
Z.�n/, where

Ann. Geophys., 35, 1093�1112, 2017 www.ann-geophys.net/35/1093/2017/
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Figure 5. Solutions of the full kinetic dispersion relation (without
ion beam) including thermal effects for various �e (�i D 0:22). Rep-
resentation is similar to that of Fig. 4, with contours marking the
value of !=�ci. In addition, the damping 
 relative to the real fre-
quency! is indicated by shades of blue. Note that the relative damp-
ing is substantial in this range of wavenumbers and angles except
for very low �e.

�n �
!C n�cep
2k cos� vte

: (3)

We will show that the resonant velocities vrn � �n
p

2vte
which need to be considered here are the Cerenkov velocity
vr0 and the Doppler-shifted velocity vr1, respectively de�ned
by

vr0 �
!

k cos�
and vr1 �

!��ce

k cos�
: (4)

Other resonant velocities fall outside the electron distribution
function. In Fig. 6a we consider the same Tk;� U space used in
previous plots, yet display here iso-contours of the Cerenkov
velocity as obtained from the solution of the full dispersion
relation. The values marked on the contours represent the
ratio vr0=vte D

p
2�0, where vte D

p
Te=m. It is clear from

the values that this resonance lies on the core of the electron
distribution and so is important. What about the other res-
onances (n 6D 0), which are shifted in velocity from vr0 by
increments of �ce=.k cos�/? For the range of wavenumbers
and angles considered in Fig. 5, let us evaluate the possible
sizes of the increment. The smallest possible increment cor-
responds to modes in the lower-right corner of the plot with
kc=!pi D 40 and � D 10�. There, one has �ce=.k cos�/D
2:3 vte. As one moves away toward other corners, the size
of the increment grows. For example, with kc=!pi D 40 and
� D 60� one obtains �ce=.k cos�/D 4:5 vte, i.e., an incre-
ment already large compared to the width of the electron
distribution (Fig. 6d). Thus, given that vr0 itself lies within
the core of the distribution, typically vr0=vte < 1:8 (as illus-
trated in Fig. 6a), two conclusions can be drawn. First, reso-
nances with n 6D 0 play a role only for modes belonging to the
lower-right corner of the plot. Second, for these modes one
needs to consider only the three resonances nD�1;0;C1.
We tested that assertion by replacing in the dispersion tensor
the Z function by its �uid approximation (see, e.g., Swan-
son, 2003) for terms other than nD�1;0;C1. The resulting
dispersion plot (not shown) looks the same as Fig. 5a. The
nDC1 resonance interacts with electrons with a speed larger
than 3 vte and hence plays a minor role, unless the distribu-
tion includes a tail. We point out that our model of electron
distribution is a simple Maxwellian. A more realistic model
would include a halo. If core electrons with speed vte have
energy of 10 eV, a halo with 100 eV electrons would inter-
act with the waves via the nDC1 resonance. We emphasize
the asymmetry between nC 1 and n� 1 resonances. Unlike
the nC 1 resonance, the n� 1 resonance interacts with core
electrons with speeds as small as 1:4 vte. This resonance is in
fact responsible for the strong damping which affects modes
in the lower-right corner of Fig. 5a. Whistlers with wavevec-
tors in the quarter disk marked with contours in Fig. 6c (i.e.,
wavenumbers 22< kc=!pi < 40 and 10�<� < 60�) interact
with the electron distribution through both vr1 and vr0. For
large k and small � , the vr1 resonance leads to the strong
damping of the waves seen in Fig. 5a. In summary, the two
important resonant velocities for damping the whistlers are
the Cerenkov velocity vr0 and the Doppler-shifted velocity
vr1.

We point out that the two resonant velocities vr0 and vr1
are in opposite directions. A given wave which has, say, a
wavevector component kz D k cos� > 0 is affected both by
electrons moving with vz > 0 through vr0 and by electrons
moving with vz < 0 through vr1. As an example, let us con-
sider the wave with kc=!pi D 30 and � D 25�, whose location
in Fig. 6a and c is marked with a red star. This wave interacts

www.ann-geophys.net/35/1093/2017/ Ann. Geophys., 35, 1093�1112, 2017
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Figure 6. Composite �gure illustrating the damping role of the resonant velocities on the electron distribution (for �e D 0:22) in the case
without ion beam. (a) Iso-contours of the Cerenkov resonant velocity vr0=vte (Eq. 4) versus Tk;� U. The velocities, marked on the contours,
lie on the core of the electron distribution, which indicates that the terms associated with nD 0 in the dispersion tensor contribute to the
damping (see Appendix A). (b) Solution of the dispersion relation to be compared with Fig. 5a. Here, the treatment is kinetic only for the
nD 0 terms and �uid for all others. See main text for discussion. (c) Iso-contours of the Doppler-shifted resonant velocity vr1=vte (where
vr1 is de�ned for nD�1 in Eq. 4). (d) Location of the two resonant velocities associated with one given wave (marked with a red star in
panels a and c) in the electron distribution.

with both sides of the distribution, where many electrons can
participate in its damping, as illustrated in Fig. 6d. Accord-
ing to quasilinear theory, we could expect that the electrons
at vr0 are accelerated in the parallel direction, whereas the
electrons at vr1 are accelerated in the perpendicular direc-
tion.

We will see in Sect. 3 that the two-stream instabilities
occur at large angles (� � 50� and � > 80�). Under these
conditions the important resonance is the Cerenkov reso-
nance (nD 0). In order to understand its role in damping the
oblique whistlers, we replace theZ function in the dispersion
tensor by its �uid approximation for the n 6D 0 terms, keeping
Z for the nD 0 terms only. The resulting dispersion relation
is shown in Fig. 6b (same nominal value �e D 0:22), which
has to be compared to Fig. 5a, where no �uid approximation
is introduced. We use the same hues of blue in both plots
to facilitate the comparison. Ignoring the lower-right corner
for the moment, it is clear that Fig. 6b reproduces the fea-
tures of Fig. 5a well. One notes the same trend of increased
damping with increasing wavenumber. The angular depen-
dences of ! and 
 =! at �xed wavenumber are also well re-
produced. From quasi-parallel to quasi-perpendicular propa-
gation, let us stress the way the damping intensi�es, reaches a
maximum, and then quickly decreases as 90� is approached.

Meanwhile, the resonant velocity vr0 remains in the bulk
of the electron distribution and does not vary dramatically.
What physically enters into the damping is not only the loca-
tion of the resonance on the electron distribution but also the
relative amplitude of the parallel component of the electric
�eld. Larger values of Ez lead to more electron acceleration
via the Cerenkov resonance and thus more damping of the
wave. Can we evaluate the way Ez changes as one varies
the angle �? In order to deal with tractable algebra, we will
assume that the cold dielectric tensor is suf�cient to assess
this variation in polarization and judge the assumption’s va-
lidity from the result obtained. The calculations which are
developed in Appendix B show that indeed Ez varies signi�-
cantly as � increases. We repeat here just the �nal result, i.e.,
Eq. (B9):

iEz

Ey
�
m
M

�
kc
!pi

� 3

�
T1C .kc=!pe/2Ucos� sin�

T1C .kc=!pe/2C .kc=!pi/2cos2� U1=2
U.k/; (5)

where U.k/ is de�ned in Appendix B and is of order unity
for our parameters (! � !LH and kc=!pi � 1). Starting from
� D 0 and increasing the angle, Eq. (5) shows that the par-

Ann. Geophys., 35, 1093�1112, 2017 www.ann-geophys.net/35/1093/2017/
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allel electric �eld �rst rises, peaks, and then declines dra-
matically when � approaches 90�. We point out that jEzj
maximizes at quite oblique propagation angles (e.g., � � 70�
for kc=!pi D 15). Furthermore, this maximum shifts closer to
90� as larger wavenumbers are considered. This behavior is
precisely what Fig. 6b indicates for the damping associated
with the Cerenkov resonance. Incidentally, the vanishing of
Ez described by Eq. (5) in either parallel or perpendicular
propagation is to be expected from the R-X mode: the po-
larization morphs to a circular R mode for �! 0� and to an
X mode for �! 90�. To close this section, keep in mind that
the low value �e D 0:06 assumed in Fig. 5c is unrealistic. We
used it here in order to clarify the role of the electron tem-
perature. Within the context of planetary shocks at least, our
nominal value of �e D 0:22 is more probable. Thus, oblique
whistlers are indeed damped by the electrons and, if an insta-
bility occurs, this damping has to be overcome.

3 Unstable oblique whistlers due to a drifting
ion population

Consider now the situation where an ion population is drift-
ing at speed Vd with respect to the electrons, as depicted in
Fig. 1 for the core and the re�ected beam. In the following,
Vd can represent either the relative fast drift of the re�ected
ions/electrons or the relative slow drift of the core/electrons.
A simple way to understand the possible instabilities that can
result is to return to the cold plasma model.

3.1 Cold plasma and cold beam

We revert to Fig. 3 for the three angles considered (� D 10,
55, 85�), on which we superpose the Doppler frequency as-
sociated with a drift Vd,

! D k sin� Vd: (6)

The result is shown in Fig. 7a for a drift Vd D 8VA. The
same color convention used in Fig. 3 distinguishes the vari-
ous propagation angles: � D 10� (green), 55� (blue), and 85�
(red). Couplings between the beam mode and the oblique
whistlers, and hence possible instabilities, can only occur at
locations where the triplet .!;k;�/ is the same. Thus, we
look for the intersections of dashed curves (beam mode) with
solid curves (whistler) of the same color. For quasi-parallel
waves (� D 10� in green), there is no intersection because the
beam mode is at a frequency lower than the whistler every-
where. Conversely, for quasi-perpendicular waves (� D 85�
in red), there is no intersection because the beam mode is at a
frequency higher than the whistler everywhere. Nonetheless,
a coupling to another wave mode is possible for such a large
angle. The �rst Bernstein branch, which is indicated here
in purple, intersects the beam mode at a high wavenumber
k�e > 1. The location is marked ECDI for the electron cy-
clotron drift instability. In Sect. 4 we will discuss the question
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Figure 7. Similar to Fig. 3 with the addition of beam modes (colored
dashed lines) described by Eq. (6) for the three angles considered:
� D 10, 55, 85�. (a) Example of a fast drift Vd D 8 VA. Possible
couplings of the beam modes to the oblique whistlers (same triplet
.!;k;�/) can only occur at locations marked WH-A and WH-B.
Coupling to the Bernstein wave is at ECDI; see text for details.
(b) Example of a slow drift Vd D 1:5 VA. As compared to (a), the
frequency of the beam modes is now lowered. As a result, pos-
sible couplings to the oblique whistlers can only occur for very
oblique propagation at the location marked MTSI; see text for de-
tails. (c) Plot of Eq. (7), where �e � kc=!pe for the two values of
Vd D 1:5 VA and 8 VA.

of this instability for angles � that are off 90�. At this point,
we just note how much larger is the frequency of the ECDI
than any frequency of a whistler propagating at � D 85� (full
red curve).

When whistlers propagate obliquely (for example here
� D 55� in blue) two intersections exist because their dis-
persion relation !.k/ displays some curvature. The intersec-
tions are marked as WH-A and WH-B in Fig. 7a. Following
Eq. (6), their locations depend upon Vd. WH-A and WH-B
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come closer to each other as Vd increases and the dashed line
moves up. Varying � leads to a similar, albeit a little more
complex, change since both Eqs. (6) and (1) depend upon � .

We now derive an equation that describes the locations
of all WH intersections in a Tk;� U space. One de�nes the
wavenumber in terms of electron inertia length, �e D kc=!pe,
and introduces the parameter � � .Mi=me/1=2.VA=Vd/ for
the drift. Assuming .cos� kc=!pi/2� 1, one can combine
Eqs. (6) and (1) to yield the explicit relation

�.�e/D arctan
�
��e

1C �2
e

�
: (7)

The pro�le �.�e/ is shown in Fig. 7c for two values of the
parameter �. Where �e < 1 it rises at a rate controlled by
�: the slower the drift, the steeper the slope. The maximum
�� is reached for �e D 1, beyond which the pro�le slowly
decreases. The value of �� is given by

�� D arctan
� �

2

�
D arctan

" �
Mi

4me

� 1=2VA

Vd

#

: (8)

Hence, for a given propagation angle � < ��, Eq. (7) can be
inverted to yield two possible wavenumbers:

�e D
�
2

cot� �
�
�2

4
cot2� � 1

� 1=2

: (9)

These lower and higher wavenumbers correspond to the lo-
cations marked WH-A and WH-B, respectively, in Fig. 7a.
When the angle reaches � D ��, they merge at the loca-
tion de�ned by �e D kc=!pe D 1 and ! D !LH.VA

2=Vd
2C

4me=Mi/�1=2 � !LH.Vd=VA/, where !LH � .�ci�ce/1=2.
For angles larger than ��, no intersection exists; hence, no
instability is possible with the given drift. For example, in
the case shown in Fig. 7a, where the drift is Vd D 8 VA, the
maximum angle is �� D 62�.

Let us now suppose that we want to destabilize waves
propagating at very large angles, close to � � 90�. Equa-
tion (8) can be inverted to �nd the required drift. The latter
clearly needs to be modest, namely Vd&VA, a condition that
can be satis�ed by the ion core drifting versus the electrons
(see Fig. 1). The case is shown in Fig. 7b, which is drawn for
Vd D 1:5 VA. No intersection exists at either � D 10� (green)
or � D 55� (blue). On the other hand, at � D 85� the two
roots on the red curve are indeed merging, the wavenumber is
close to kc=!pe D 1 (or kc=!pi D 30 for the chosen mass ra-
tioMi=me D 900) and the frequency is close to ! D 1:5 !LH.
This instability which has a propagation angle close to 90�
is known in the literature as MTSI which stands for modi-
�ed two-stream instability (e.g., McBride et al., 1972; Mat-
sukiyo and Scholer, 2003; Umeda et al., 2012). Hence, we
have marked it correspondingly in Fig. 7. Because the waves
are destabilized by the drift of the ion core versus the elec-
trons, these waves clearly propagate in a direction opposite
to the oblique whistlers of WH-A and the Bernstein waves of

the ECDI. As for the other whistlers at location WH-B, we
will show in Sect. 3.2 that they are strongly damped by the
electrons once thermal effects are taken into account.

3.2 Warm plasma and warm beam

Section 2.2 has stressed that a population of warm electrons
substantially damps the obliquely propagating whistlers at
most wavenumbers and angles. The damping rate even be-
comes very strong for large wavenumbers (see Fig. 5a). In
order to have an effective instability, this damping rate needs
to be overcome by a suf�cient growth rate driven by the ion
drift. We investigate the question by numerically solving the
full electromagnetic dispersion relation for varying param-
eters. In the spirit of the lower-hybrid regime, the ions are
taken as unmagnetized, whereas the electrons are magne-
tized. We work in the frame where the total momentum den-
sity vanishes, sometimes called the �proper frame�. We em-
phasize that the drift and density values of the re�ected ion
beam and the incoming ion core cannot be arbitrarily cho-
sen yet must satisfy the zero current condition for an appli-
cation to the shock’s foot, namely nbVbC ncVc D 0. Hence-
forth, the values selected for the numerical results that follow
differ slightly from those discussed in Sect. 3.1. The param-
eter values, which are summarized in Table 2, assume that
the re�ected ion beam of Fig. 1 has density nb D 0:2 ne and
drifts at speed Vb D 10 VA versus the electron population at
rest. The incoming ion core drifts in the opposite direction
with Vc D�2:5 VA and has a density nc D 0:8 ne. Both ion
populations have the same thermal velocity vtc D vtb with
�cC�b D 0:22. Electron temperature will vary as speci�ed.
Details concerning the dielectric tensor entering our calcula-
tions can be found in Appendix A.

3.2.1 Re�ected ion beam

Let us �rst examine the case where an ion population drifts
fast with respect to the electrons, a situation represented by
the re�ected beam in Fig. 1b. The cold model then predicts
two zones of instability for oblique whistlers at �xed � which
are labeled WH-A and WH-B in Fig. 7a. Now, from the study
on electron damping and Fig. 5a, we can expect that whistlers
in WH-B are more damped than those in WH-A due to their
larger wavenumbers. That is indeed the case, as illustrated
in Fig. 8, which shows the effect of the electron tempera-
ture. Pro�les of 
 .k/ at the �xed propagation angle � D 50�
are displayed for two �e values. When electrons are very
cold, namely �e D 0:02, the pro�le exhibits the two zones
of growth (
 > 0) corresponding to WH-A and WH-B, as
expected from the cold model. However, the electron tem-
perature has a dramatic effect, since already with �e D 0:04
the instability at high wavenumbers (for kc=!pi > 40) is sup-
pressed due to electron damping (
 < 0).

Numerical solutions of the dispersion relation in Tk;� U
space for two electron temperatures (�e D 0:06;0:14) are dis-

Ann. Geophys., 35, 1093�1112, 2017 www.ann-geophys.net/35/1093/2017/



L. Muschietti and B. LembŁge: Two-stream instabilities within quasi-perpendicular shock front 1101

Table 2. Species characteristics in normalized units.

Electrons Ion core Ion beam

density ne D 1:0 nc D 0:8 nb D 0:2
Drift Ve D 0: Vc D�2:5 Vb DC10
Gyrofrequency �ce D 900 �cc D 1 �cb D 1
Plasma frequency !pe D 9000 !pc D 268 !pb D 134
Gyroradius �e D 0:0111 �c D 0:332 �b D 0:332
Debye length �de D 1:22� 10�3 �dc D 1:24� 10�3 �db D 2:47� 10�3

Temperature Te D 1 Tc D 1 Tb D 1
Thermal velocity vte D 10 vtc D 0:332 vtb D 0:332
Beta �e D 0:22 �c D 0:197 �b D 0:0984

�c
�i

Figure 8. Effect of the electron temperature on the growth rate. So-
lution of the full dispersion relation for oblique whistlers (� D 50�
�xed) destabilized by an ion beam drifting at Vd D 10 VA (parame-
ters of Table 2). Of the two potential candidates for growth, WH-A
and WH-B (see Fig. 7a), the instability at high wavenumbers is dra-
matically quenched (
 < 0) by even slightly warm electrons (com-
pare �e D 0:04 with �e D 0:02).

played in Fig. 9a, b. We use red hues to indicate growth
rates and blue hues for damping rates. In addition, solid con-
tours as in previous plots mark the real frequency !=�ci.
Figure 9a and b exhibit unstable and damped domains and
demonstrate that the electron temperature quenches the un-
stable locations at high wavenumbers. Recall Fig. 7c of the
cold model and its predicted pro�le for the unstable loca-
tions in the Tk;� U space. This pro�le is noticeable through
the reddish area in Fig. 9a and has a maximum at about
� � 59� and kc=!pi � 30, viz. kc=!pe � 1, as predicted by
Eq. (7). The plot is drawn for the same very cold temper-
ature �e D 0:06 used in Fig. 5c. When electrons warm up,
more of the high wavenumbers are stabilized as demon-
strated with Fig. 9b. The maximum growth rate is then dis-
placed toward lower wavenumbers: here kc=!pi � 20 and
� � 55� for �e D 0:14. For even warmer electrons such as for
our nominal electron temperature of �e D 0:22, the unstable
domain is further shifted toward lower wavenumbers with
almost no instability beyond kc=!pi � 30, viz. kc=!pe � 1.
Figure 9c provides a zoomed-in view of the unstable domain
in this instance. The most unstable waves (dark-red area)
have kc=!pi D 16:5� 4:5 and � D 53�� 4�.

3.2.2 Incoming ion core

Section 3.1 has demonstrated that the relatively slow drift
of the incoming ion core/electrons enables destabilization
of quasi-perpendicularly propagating whistlers with frequen-
cies around !LH. We have numerically solved the warm dis-
persion relation in the case where the ion core with a rela-
tive density nc D 0:8 ne drifts at Vd D 2:5 VA. Figure 10 pro-
vides a zoomed-in view of the domain of maximum growth
in Tk;� U space. As previously, red hues indicate growth rates
and blue hues damping rates. Comparing this plot to Fig. 9c
(fast drift case), one notes two points: �rst, the growth rate is
somewhat larger; second, the aspect ratio of the plot is quite
different. The wavenumber range is more extended yet the
angular range is more limited. This feature is in fact consis-
tent with the pro�le �.�e/ of Fig. 7c. The maximum growth
is now centered about wavenumbers kc=!pi D 30 (or �e �
kc=!pe D 1), where the pro�le is quite �at. Hence, the cor-
responding spread �.kc=!pi/ is large, whereas the spread ��
is limited to a few degrees. By contrast, in the fast drift case
of Fig. 9c the maximum growth is centered about wavenum-
bers kc=!pi D 16:5 (or �e � kc=!pe D 0:55). Here the pro-
�le marked �fast� has a clear positive slope, which leads to a
larger �� spread. Accordingly, the numerical solution plotted
in Fig. 9c shows the angular spread to be at least 10�.

4 Perpendicular/quasi-perpendicular electromagnetic
ECDI

Reverting to the schematic plot in Fig. 7a, which treats the
case where an ion population drifts fast with respect to the
electrons, one sees that for nearly perpendicular propaga-
tion (here � D 85� in red) the beam mode can intersect the
�rst Bernstein branch. The frequency is near �ce and the
wavenumber near k�e � vte=.Vd sin�/� 1. Of course, Bern-
stein modes are commonly de�ned with wavevectors at ex-
actly 90� to Bo and experience no damping. However, they
belong to a larger class of modes, called the electron cy-
clotron harmonic waves (ECHWs), which can propagate in
a narrow angular range between �o and 90� with minimal
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Figure 9. Numerical solutions of the dispersion relation in Tk;� U
space for the case of a fast ion beam with Vd D 10 VA and nb=ne D
0:2. Zones made unstable by the beam are marked with red hues,
while blue hues denote damping. Note the changes in the color code
between the three panels (a, b, c). The real frequency is indicated
by contours labeled with the value of !=�ci. An increased elec-
tron temperature quenches the instability at the higher wavenum-
bers (compare panels a and b). (c) Zoomed-in view of the unstable
region for �e D 0:22, relevant temperature for the simulation pre-
sented in Sect. 5.2.
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Figure 10. Zoomed-in view similar to Fig. 9c for a slow drift case
such as the ion core with Vd D 2:5 VA, nc=ne D 0:8, and �e D 0:22.

damping as compared to their frequencies (Lembege, 1979a,
and references therein). The angle �o is typically a few de-
grees less than 90� and depends upon the wavenumber and
the frequency. For � < �o the damping increases dramatically
due to the Doppler-shifted resonant velocity on the electrons.
Incidentally, the direction of the ECHW’s group speed is
given by the normal to the undamped part of the .k?;kk/ di-
agram. This undamped part can be either convex or concave
depending on the wave frequency ratio !=�ce within a given
dispersion branch, which allows the direction of the group
speed to cover a very large spatial range. This explains why
the waves can be spatially detected in all directions in real
space around a source, even though low-damped wavevec-
tors are themselves con�ned within the narrow angular range
(�o, 90�) in k space (Lembege and Gonfalone, 1978; Lem-
bege, 1979b; Thiel and LembŁge, 1982).

For the present work, the important feature to note is
the quasi-absence of damping for waves with � > �o, which
means that the waves can exist in a cone angle about 90�
that is �nite and not zero as often believed. This is illus-
trated in Fig. 11a, which displays dispersion results com-
puted numerically with the full EM tensor (see Appendix A)
for directions off perpendicular. One sees that the damping
is less than 10�3�ce (lighter hue of blue) for a few degrees
off � D 90�. In the presence of an ion beam, this damp-
ing can easily be overcome, leading to unstable modes. Fig-
ure 11b shows the area in Tk;� U space that is unstable due
to the same ion beam we used in Fig. 9 for the oblique
whistlers. Beam parameters are nb=ne D 0:2 and Vd=VA D
10. The maximum growth rates (marked with dark-red hues)
are 
 > 3�10�2�ce. These are larger than the rates obtained
for the oblique whistlers, which peak at 
 � 8�ci, by over a
factor of 3.
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Figure 11. Waves with much larger wavenumbers and frequencies
than those in Fig. 9c can also be destabilized by the same ion beam
(with Vd D 10 VA and nc=ne D 0:2). They belong to an extension of
the �rst Bernstein branch and are not strictly perpendicular. Disper-
sion relation without (a) and with (b) the ion beam. Real frequen-
cies are indicated by contours labeled with the values of !=�ce.
Wavenumbers are normalized by the electron gyroradius �e. Damp-
ing (due to electrons) is indicated by hues of blue, while the zones
made unstable by the beam are marked with red hues.

5 Simulations

5.1 Description of 1-D PIC simulation

We employ a 1-D electromagnetic PIC code with periodic
boundary conditions and initially load a plasma made of the
three components depicted in Fig. 1b. The simulation is car-
ried out in the same frame as used for the dispersion analysis,
often known as the proper frame, where the total momen-
tum vanishes. The components, namely electrons, ion beam,
and ion core, are given identical characteristics (de�ned in
Table 2) to those used for the dispersion computations of
Sects. 3.2 and 4. In the spirit of lower-hybrid instabilities,
the simulation treats the ions as unmagnetized, whereas the
electrons are magnetized. Since we are restricted to a 1-D
3V code, the direction of the unstable wavevector k is prede-
termined by the simulation setup to one spatial direction (1-
D), while particle velocities can have three spatial directions
(3V). Oblique simulations are performed where the angle �

between k and the background magnetic �eld Bo is prede-
�ned following the information obtained from the dispersion
analysis in Sects. 3�4. Figure 2 shows in blue the orienta-
tion of the three axes associated with the simulations. With
respect to the system of axes de�ned by the direction of V d
and Bo used in previous sections, the simulation system is
rotated by �=2�� within the plane Tk;BoU and composed of
the directions L (for longitudinal �eld) along the wave vector
and two directions t1 and t2 (for transverse �eld). The direc-
tion t2 is contained in the plane Tk;BoU and thus partially
projects along Bo, while t1 is perpendicular to the plane and
has no projection along Bo.

Two series of simulations are performed � one along
an oblique direction � D 55� and one along a quasi-
perpendicular direction � D 84�. The angle � D 55� is cho-
sen to capture the oblique whistlers destabilized by the
fast ion beam which have maximum growth according to
Fig. 9c. The angle � D 84� is chosen to capture the quasi-
perpendicular whistlers destabilized by the slow ion core
which have the maximum growth according to Fig. 10. The
box is long enough to include the most unstable wavelengths
for the oblique whistlers as predicted from Fig. 9c. The grid
consists of 8192 cells and spans 16 384 �de, where �de is the
electron Debye length (or equivalently 546 electron inertia
lengths or 18 ion inertia lengths). The grid cells are small
enough (cell size1D 2�de) to describe the short-wavelength
Bernstein waves expected from Fig. 11b (k�e D 1:4 implies
a wavelength �� 45�de). The electric and magnetic �elds
have �ve components:Et1 ,Et2 ,EL,Bt1 , andBt2 , whereEL is
the longitudinal component satisfying Poisson equation. Fi-
nally, we use 2000 macroparticles per population (ion beam,
ion core, and electrons) and per cell for achieving good statis-
tics.

The simulation results presented here are preliminary due
to the use of a 1-D code. Our objectives are twofold. First, we
want to con�rm by actual PIC results the dispersion analysis
which makes up the bulk of this paper. Second, the aim is
to �calibrate� the various instabilities and prepare the stage
for 2-D simulations to come. In this light the simulation runs
will be limited to the �linear� stage. The nonlinear stage has
to be addressed with 2-D simulations since coupling between
waves propagating at various angles can be expected in this
regime.

5.2 Unstable oblique whistlers

Here, we set � D 55� and run the simulation for several hun-
dreds of ��1

ce , or a few tens of !�1
LH, while the instability is

in its �linear� regime. A sample of the results is visible in
Figs. 12 and 13. The wave energy is heavily dominated by
the magnetic part. We normalized the latter to the kinetic en-
ergy of the electrons at t D 0 and show its time history in
Fig. 12a. A power spectrum is shown at time tA D 780 ��1

ce
in Fig. 12b. The power is clearly concentrated in wavenum-
bers around kc=!pi D 18, as expected from the dispersion
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Figure 12. Whistler instability for oblique propagation, � D 55�
and �e D 0:22. (a) Time history of the magnetic wave energy, which
shows the slow development of the instability. For reference, we
show the time �LH � 2�=!LH, which was characteristic of our pre-
vious simulations on the ECDI (Muschietti and LembŁge, 2013).
Note that the ion cyclotron period �ci D 5:7� 103 ��1

ce is much
longer than the present simulation’s time. (b) Power spectra of the
two magnetic components Bt1 and Bt2 at time tA D 780 ��1

ce indi-
cated in (a). The spectra agree with the results obtained from the dis-
persion study: wavenumbers extend over the range 14< kc=!pi <
22 (destabilized by the fast drift of the ion beam).

analysis shown in Fig. 9c. One can also observe that the mag-
netic component Bt1 is somewhat larger than Bt2 . This fea-
ture is consistent with the asymmetry noted above between
the two transverse directions. For wave frequencies in the
lower-hybrid range, the electrons are magnetized, whereby
their motion in the direction t1 is inhibited as compared to
that in the direction t2, which has a component along Bo.
One can therefore expect the electron current jt1 to be smaller
than jt2 , resulting in Bt1 being larger than Bt2 .

Figure 13 further documents the characteristics of the
waves excited in the simulation. In order to check whether
the frequencies are those expected from the dispersion anal-
ysis, we set up probes at �xed positions and register the lo-
cal magnetic �eld versus time. A sample of such a record is
shown in Fig. 13a, which exhibits oscillations with a period
on the order of 40 ��1

ce . The associated power spectrum is
shown in Fig. 13b, where the frequency is normalized with
respect to�ci for an easy comparison with the frequencies of
Fig. 9c. The power is peaked at ! � 140�10 �ci, which is in
very good agreement with the dispersion study that predicts
a frequency ! D 138 �ci for kc=!pi D 18 and � D 55�.

Another feature to analyze is the polarization of the ex-
cited waves. To this end, we construct hodograms of the
magnetic and transverse electric �elds by means of the fol-
lowing procedure. The components Bt1 , Bt2 , Et1 , and Et2
are assumed to have a phase which varies according to
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Figure 13. Whistler instability for oblique propagation, � D 55�
and �e D 0:22. (a) Time variation of the wave components Bt1
and Bt2 . (b) Power spectrum showing the frequency ! � 140�
10 �ci, in agreement with predictions from the dispersion analysis.
(c) Hodograms of the transverse electric and magnetic �elds after
�ltering (see text). The direction of rotation follows the electron gy-
romotion, which con�rms the whistler nature of the wave.

.k��!tC�/, where � measures the distance along the wave
normal and � is a constant speci�c to each component. After
examining snapshots at increasing times we safely conclude
that the phase speed is positive; hence, k and ! are positive
numbers. Now, one can construct hodograms either by �x-
ing � and letting the time t vary or, conversely, by �xing t
and letting � vary. We choose the latter method because of
a better data sampling. The magnetic signal in � evidences
very clear waveforms which are similar to those shown in
Fig. 13a and translates in the well-peaked power spectra
shown in Fig. 12b. On the other hand, the electric signal
is very noisy even with the large number of macroparticles
employed. Its power spectrum (not shown here) nonetheless
includes a peak at kc=!pi D 18, which is clearly associated
with that in the magnetic spectrum. Therefore, in order to
deal with the noisy electric signal, we design a �lter centered
around kc=!pi D 18 that is wide enough to �t the magnetic
spectrum and its well-de�ned peak. The �lter is then applied
to the electric signal in order to isolate the electric part, which
is related to the magnetic waveforms. Figure 13c displays the
resulting hodograms. The direction of the �eld rotation, indi-
cated by a red arrow, corresponds to that of the electron gy-
romotion. Therefore the wave is right-polarized, which con-
�rms its whistler nature. Applying Faraday’s law enables us
to check another point for consistency. Since Bt=Et D c=vph,
we can independently estimate the phase speed vph of the
waves. One obtains vph D c=35, which yields vph D 8:6 VA
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Figure 14. Quasi-perpendicular instability for � D 84� (MTSI and ECDI). (a) Time history of the electrostatic and magnetic energy. For
reference we show the lower-hybrid period �LH as in Fig. 12. (b) Spectra at tA D 288 ��1

ce agree with predictions from the dispersion study:
wavenumbers extend in the range 20< kc=!pi < 45 for the whistler (destabilized by the slow drift of the ion core) and kc=!pi � 130 (viz.
k�e � 1:44) for the extended Bernstein wave (destabilized by the fast drift of the ion beam). (c) Spectra at tB D 550 ��1

ce show that the
whistler has grown manyfold (compare the different amplitudes of the magnetic component Bt1 at tA and tB). Its electrostatic component
remains modest though. The Bernstein wave has died out due to trapping of the beam ions.

using the value c of Table 1. This value is very close to the
projection of the beam speed (see Table 2) along the direc-
tion of the wave normal: sin(55�)� 10 VA D 8:2 VA. It also
con�rms that the wave is carried by the ion beam.

5.3 Unstable quasi-perpendicular whistlers and
Bernstein waves

Here, we set � D 84� and run the simulation for a somewhat
shorter time than in the previous case as the instability devel-
ops faster. The simulation in fact exhibits two instabilities:
one at early time which has signi�cant electrostatic energy
and one at later time which is dominated by magnetic energy.
Figure 14a shows the time history of the electrostatic energy
E2

L=8� and the magnetic energy B2=8� , both normalized as
in Sect. 5.2 by the kinetic energy of the electrons at t D 0.
Early in the run, the electrostatic energy dominates the mag-
netic energy. At time�cet D 288, both electrostatic and mag-
netic energy equal 1:9� 10�4nTe0 and B2 crosses over E2

L.
Thereafter, B2 dominates E2

L, which reaches a maximum at
�cet D 360 and saturates on levelsE2

L=.8�/� 4�10�4nTe0.
On the other hand, B2=.8�/� 10�2nTe0 by the end of the
run, namely over an order of magnitude larger and still keeps
increasing.

Let us now examine the power spectra of the �elds at time
tA D 288 ��1

ce . Figure 14b shows both the magnetic spec-
trum associated with Bt1 (comparable to Bt2 ) and the elec-
trostatic spectrum of EL. The magnetic spectrum clearly ex-
hibits two types of waves. The short wavelength type with

kc=!pi � 130� 5 is attributed to the ECDI and corresponds
to an extension of Bernstein mode for propagation angles
off 90� (Muschietti and LembŁge, 2013). Indeed, the disper-
sion analysis of Fig. 11b predicts that for � D 84� the beam
can excite waves with wavenumbers in the range 1:44<
k�e < 1:51, or equivalently 130< kc=!pi < 136 after using
Tables 1 and 2. The waves have a strong electrostatic compo-
nent visible in the spectrum ofEL and a magnetic component
showing up here in the spectrum ofBt1 . They are destabilized
by the fast drift of the ion beam versus the electrons, which
is con�rmed by their signature in the ion phase space (not
shown). The long wavelength type with 20< kc=!pi < 45 is
due to the slow drift of the ion core versus the electrons (see
Fig. 1b). Indeed, the dispersion analysis of Fig. 10 predicts
that for � D 84� the ion core excites waves with wavenum-
bers precisely in this range. The waves do have an electro-
static part too weak to show up in the spectrum of EL at this
early time. Being excited and carried by the ion core, they
propagate in the direction opposite to the Bernstein waves.

Figure 14c shows the spectra of Bt1 and EL at late
time tB D 550 ��1

ce . The quasi-perpendicular whistlers have
grown tremendously, as evidenced by comparing the scales
between Fig. 14b and c. Their level is now so high that their
presence is visible in the phase space of the ion core (not
shown). They show up equally in the spectrum of EL. At
such a late time the ECDI has saturated by trapping the ion
beam as explained in Muschietti and LembŁge (2013) and
the short-wavelength Bernstein wave has died out.

www.ann-geophys.net/35/1093/2017/ Ann. Geophys., 35, 1093�1112, 2017
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Figure 15. Quasi-perpendicular instability for � D 84� (MTSI and
ECDI) and �e D 0:22. (a) Time variation of the magnetic compo-
nent Bt2 showing both the growing low-frequency whistler and the
high-frequency extended Bernstein wave. The concurrent electro-
static signal EL con�rms the identi�cation of the Bernstein wave.
We note that the two waves are moving in opposite directions.

We now investigate the frequencies involved in the two
types of waves in order to further the link between the sim-
ulation run and the dispersion analysis presented in Sects. 3
and 4. Probes at �xed positions record the local magnetic and
electric �elds versus time. Figure 15 shows a sample of such
recordings. The magnetic signal, which is illustrated by Bt2
in Fig. 15a, clearly exhibits a slow oscillation with period
of order �cet D 90 on which a fast oscillation is superim-
posed; the fast oscillations appear in the electrostatic signal
EL too. The slow oscillation (period 3�4 !�1

LH) is due to the
growing quasi-perpendicular whistler, whereas the fast oscil-
lation (period 0:15 !�1

LH) is attributed to the Bernstein wave.
Indeed, the power spectrum of the electrostatic signal, shown
in Fig. 15b, indicates a frequency close to 1:35 �ce, which
is exactly the value expected for a Bernstein wave excited by
the relative fast drift of the ion beam versus the electrons (see
Fig. 11b).

The quasi-perpendicular whistlers are the result of an in-
stability that has been known for a long time and is gener-
ally referred to as modi�ed two-stream instability (MTSI)
(e.g., McBride et al., 1972; Matsukiyo and Scholer, 2003).
A reason this instability has attracted a lot of attention is that
it has the remarkable property of requiring only a modest
drift between ion and electron populations and, unlike the
ion-acoustic instability, does not need a large ratio of elec-
tron to ion temperatures. For example, here one has jVcj D
0:25 vte and Te D Tc. Even though the waves have a large
magnetic energy, indeed much larger than the electrostatic
energy as evident in Fig. 14 at time tB, their electric �eld
is mostly electrostatic. For propagation angles close to per-

pendicular (here � D 84�), the longitudinal component EL
completely dominates the transverse componentEt, in agree-
ment with the results of Wu et al. (1983) such as in their
Fig. 7. The apparent paradox derives from the large refrac-
tion index of the excited waves. As we have seen in Figs. 10
and 14, the wavelengths of these whistlers are such that
kc=!pe � 1. Hence, the refraction index kc=! � !pe=! �
!pe=�ce

p
M=m� 1. Thus, applying Faraday’s law, one can

write E2
L=E

2
t D .M=m/.E2

L=B
2/, which shows that thanks to

the large mass ratio the electric �eld can be mostly electro-
static (jELj=jEtj � 1), while simultaneously the ratioE2

L=B
2

is small.
Because a quasi-perpendicular whistler has a wavevector

at a slight angle off 90� to Bo, its longitudinal electric �eld
drives the electrons in two distinct motions: a simple paral-
lel acceleration along Bo and a EL�Bo drift in the direc-
tion t1 de�ned in Fig. 2. The two associated �uctuating elec-
tron currents jk and j? drive the magnetic oscillation with
Bt1 � .4�=c/.jk=k/ and Bt2 � .4�=c/.j?=k/. As discussed
by Matsukiyo and Scholer (2003), the ratio jBt1 j=jBt2 j of the
unstable waves depends upon �e: the ratio is equal to 1 for
very small values of �e yet increases for warm plasmas. Mat-
sukiyo and Scholer (2003) attribute this change to a decrease
in the �uctuating current j? in a warm plasma. Indeed, con-
sidering that k�e D kc=!pe

p
�e=2�

p
�e=2 for the unstable

waves, it is physically clear that, as �e approaches 1, the gy-
roradius becomes comparable to the wavelength for a grow-
ing part of the electron population. These electrons cease to
EL�Bo drift, whereby the current j? decreases.

The other, parallel �uctuating current jk is linked with the
damping that comes from the Cerenkov resonance vr0 (de-
�ned in Eq. 4). Even for as large an angle as 84�, vr0 still
lies on the electron distribution: a wave with kc=!pe D 1 has
vr0 � 2 vte according to Fig. 6a, and an associated damp-
ing on the electrons of 
 ��0:12 ! D�7 �ci according to
Fig. 5a. This damping is overcome by the destabilizing effect
caused by the slow drift of the ion core versus the electrons,
leading to unstable quasi-perpendicular whistlers. Our argu-
mentation shows again that the electrons have to be treated
kinetically when computing the instability’s growth rate (Wu
et al., 1983; Matsukiyo and Scholer, 2003). Warm electrons
both cut the range of unstable wavenumbers and reduce their
growth rates, as shown in Fig. 4 of Matsukiyo and Scholer
(2003). Owing to this unavoidable kinetic nature of the elec-
trons, Wu et al. (1983) renamed the instability �kinetic cross-
�eld streaming instability�. However, the moniker MTSI has
stuck in the literature.

6 Discussion

We now further discuss the relation of the two-stream insta-
bilities studied in this paper with work published previously.
Our aim is to provide a uni�ed context while remaining in
a �linear� regime. We believe that nonlinear stages need be
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addressed with 2-D simulations due to the potential coupling
between waves that propagate at various angles once they
reach large amplitudes.

For perpendicular and quasi-perpendicular propagation,
two different instabilities can arise. By quasi-perpendicular,
we mean here a few degrees off 90�: an angle suf�cient
to enable the electrons to run along Bo under the action
of the wave electric �eld, yet modest enough to keep the
wavenumber kk small, in case the wave experiences strong
damping on the electron distribution. The �rst instability is
also the one which occurs at the highest frequency and has
the fastest growth rate: the ECDI takes its free energy from
the fast drift of the re�ected ion beam versus the electrons
and excites waves close to the electron cyclotron frequency.
The wavevectors are directed within a narrow cone about
an axis perpendicular to Bo and along the direction of the
beam toward upstream. Wavelengths are such that k�e � 1.
The instability has been identi�ed in 1-D shock simulations
(Muschietti and LembŁge, 2006), reported in the 2-D simula-
tions of Matsukiyo and Scholer (2006), and studied in detail
in Muschietti and LembŁge (2013) for strictly perpendicu-
lar propagation. We encounter it here again for an angle 6�
off perpendicular as visible in Figs. 14 and 15. An important
consequence of this slight angle is that ECDI acquires a mag-
netic component induced by the electrons’ motion along Bo
The waves have similarities to those reported by Wind and
STEREO (Breneman et al., 2013; Wilson III et al., 2011).

The second instability occurs around the lower-hybrid fre-
quency and is due to the slow drift of the ion core ver-
sus the electrons. The wavevectors are thus directed to-
ward the shock ramp. As shown with Eq. (7) and Fig. 7c,
a slow drift, on the order of the AlfvØn speed, yields un-
stable wavevectors close to (yet distinct from) 90�. Wave-
lengths are several times the electron inertia length such that
kc=!pe � 1. This instability is known in the literature under
the moniker MTSI, which stands for �modi�ed two-stream
instability�. The �two-stream� denomination stems from ear-
liest investigations based on a simple, electrostatic, and �uid
dispersion relation in which the susceptibility of the elec-
trons associated with their unimpeded motion along Bo re-
duces to .!pe=!/2.cos�/2. This term provided one of the
�stream�, whereas the other was the unmagnetized ion term
!2

pi=.!� kVd/2. If � is close to 90� and the angular term
cos� �

p
me=Mi, the electrons acquire an effective mass

comparable to the ions, which gives rise to a two-stream-like
instability (McBride et al., 1972). On the other hand, the in-
stability has very little similarity to a classic two-stream in-
stability such as the Buneman instability. We have seen in
Sect. 5.3 that (i) the magnetic energy is larger than the elec-
trostatic energy and (ii) the electrons’ behavior is not �uid yet
kinetic in nature and provides a signi�cant Cerenkov damp-
ing that has to be overcome by the destabilizing effect of
the relative drift of the ion core/electrons. Even though those

points have been noted by a few authors since the study by
Wu et al. (1983), the MTSI terminology has remained in use.

The third instability generates whistlers that propagate
obliquely with respect to Bo and have longer wavelengths.
It takes its free energy from the fast drift (many times VA)
of the re�ected ion beam versus the electrons and is thus di-
rected toward upstream. Which wavevectors are excited is the
result of a competition between the destabilizing effect of the
beam and the damping on the electrons due to the Cerenkov
resonance. The wavelength is a fraction of the ion inertia
length and the frequency a few times the lower-hybrid fre-
quency. Speci�cally, with our nominal parameters, we have
maximum growth for �� 0:3 c=!pi and ! � 4�5 !LH, while
� D 55�. Let us emphasize the variability of these values. As
we have seen from Fig. 9, a range of wavenumbers and angles
can be excited. Generally speaking, colder electrons enable
the peak growth to shift toward shorter wavelengths and more
oblique propagation angles. Further, as was discussed in con-
nection with the location marked WH-A in Fig. 7a, decreas-
ing the beam drift increases the wavelength. The waves share
many similarities to the obliquely propagating whistlers mea-
sured in detail by Polar (Hull et al., 2012).

Our present study is at the crossroads of the works of
Hellinger and Mangeney (1997) and Matsukiyo and Sc-
holer (2006). Hellinger and Mangeney (1997) carried out
simulations of quasi-perpendicular shock with a 2-D hybrid
code in which they observed a right-handed mode appearing
to belong to the whistler branch of the fast magnetosonic.
This wave propagated toward upstream obliquely to both the
shock normal and the background magnetic �eld. The au-
thors suggested that these whistlers were generated by the re-
�ected ion beam, which was supported by a dispersion analy-
sis. The wavelengths and frequencies involved were typically
�� c=!pi and! � 30 �ci. On the other hand, Matsukiyo and
Scholer (2006) carried out a full PIC simulation in 2-D in or-
der to study the evolution of the MTSI in the foot of a per-
pendicular shock. Besides the expected quasi-perpendicular
whistlers excited by the drift of the ion core, the simula-
tion exhibited oblique whistlers that propagated in the op-
posite direction and were driven by the re�ected ion beam.
Matsukiyo and Scholer (2006) named this other instability
MTSI-2, a name which was reused by Umeda et al. (2012).
The wavelengths and frequencies involved were typically
�� 6c=!pe (�� 0:14 c=!pi) and ! � 8 !LH (! � 350 �ci).
These wavelengths are twice shorter and those frequencies
twice higher than the oblique whistlers of our paper. This is
consistent with the much colder electrons Matsukiyo and Sc-
holer (2006) used in their simulations: �e D 0:05 instead of
our nominal �e D 0:25. Indeed, Fig. 9a shows the predictions
of our dispersion analysis for cold electrons with �e D 0:06:
the most unstable whistlers have �� 0:2 c=!pi D 6 c=!pe
and ! � 240 �ci D 8 !LH (precisely as in Matsukiyo and
Scholer, 2006). As for the whistlers reported by Hellinger
and Mangeney (1997), they have considerably longer wave-
lengths (by a factor of 3) and lower frequencies (! < !LH)

www.ann-geophys.net/35/1093/2017/ Ann. Geophys., 35, 1093�1112, 2017
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than the whistlers of Matsukiyo and Scholer (2006) and the
present paper. Nonetheless, we propose that Hellinger and
Mangeney (1997) did indeed study the same instability in
a regime with longer wavelengths. Returning to Fig. 5, we
note that for all three electron temperatures the damping of
the waves drops under 5 % when long wavelengths such as
kc=!pi � 5 are considered. This suggests that at such large
scales as compared to the electron scales the role of the elec-
trons becomes secondary, as requested for the use of a hybrid
code (Hellinger and Mangeney, 1997).

Finally, we should mention that the MMS mission, with
its four spacecraft, has made measurements of whistlers in
the Earth’s bowshock which can establish wavevector char-
acteristics together with plasma populations down to the sub-
ion inertia scales. While a typical lower-hybrid period is
�LH � 100 ms, the �uxgate magnetometer can sample wave-
forms in all the magnetic �eld components at the rate of
128 samples per second (Russell et al., 2016). Simultane-
ously, the Fast Plasma Investigation (Pollock et al., 2016) can
provide electron distributions down to 30 ms and ion distri-
butions down to 150 ms. These cadences are certainly high
enough to study the role of the ions with respect to the lower-
hybrid whistlers and the effects the latter have on the elec-
trons.

7 Conclusion

In this study we have examined the wave activity that can
possibly develop in the foot of quasi-perpendicular shocks, as
it arises from the relative drifts across the background mag-
netic �eld Bo of three particle populations: incoming ions,
re�ected ions, and electrons. Our main goal was to consider
the role of different wave propagation angles with respect to
Bo and compare the corresponding two-stream instabilities.
Three main types of instabilities and correspondingly excited
waves are identi�ed:

� Generalized Bernstein waves with wavelengths close
to the electron gyroradius which propagate toward up-
stream at angles within a few degrees off 90� to Bo. Fre-
quencies are close to the electron cyclotron. Their free
energy is provided by the �fast� relative drift between
the re�ected ions/electrons.

� Quasi-perpendicular whistlers with wavelength cover-
ing several times the electron inertia length (such that
kc=!pe � 1) which propagate downstream toward the
ramp at angles larger than 80� to Bo. Frequencies are
close to the lower hybrid. Their free energy is pro-
vided by the �slow� relative drift between the incoming
ions/electrons.

� Oblique whistlers with wavelengths close to the ion in-
ertia length which propagate toward upstream at angles
about 50� to Bo. Frequencies are a few times the lower
hybrid. Their free energy is provided by the �fast� rela-
tive drift between the re�ected ions/electrons.

Data availability. Access to the raw data may be provided upon
reasonable request to the authors.
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Appendix A: The dielectric tensor

The geometry used is displayed in Fig. 2: the background
magnetic �eld Bo points in the Oz direction and the wave vec-
tor lies in the plane containing Ox and Oz, where it makes an
angle � to Oz. For convenience in this appendix, we adopt the
notation that indicates a one-dimensional array by one under-
line and a two-dimensional array by two underlines.

The dielectric tensor � combines with the wave propaga-
tion terms to form the wave equation for the electric �eld
"

��
�
kc
!

� 2
I

T

#

�E D 0; (A1)

where I
T
� I�k k=k2 with I the unit tensor and I

T
the trans-

verse projection tensor (see, e.g., Ichimaru, 1973).
When the plasma is made of various populations, it is con-

venient to write the dielectric tensor as

� D I CQ; (A2)

where the contributions of the various populations are added
into Q. If a population is magnetized, then its contribu-
tions satisfy the symmetries: Qyx D�Qxy , Qyz D�Qzy ,
and Qzx DCQxz. If it is considered as unmagnetized, then
one has Qyx DQxy D 0 and Qyz DQzy D 0.

In our case, we are interested in waves with frequencies
ranging from the lower hybrid up to the electron cyclotron.
Therefore, the ions will be unmagnetized but the electrons
magnetized.

For the ions’ contribution we have four integrals of the
following type to evaluate:

I �� D
Z

dvxdvydvz
v�v�

k � v�!
k �
@F
@v
: (A3)

The ion distribution is modeled by a Maxwellian drifting
perpendicularly to Bo. Since the maximum growth rate is
obtained when the wavevector k lies within the plane de-
�ned by Bo and the drift V d, one chooses V d D .Vx;0;0/
and k D .kx;0;kz/. After some algebra, we can express the
integrals in terms of the plasma dispersion function Z:

Z.� /�
1
�1=2

C1Z

�1

dt
e�t2

t � �
: (A4)

Elements of the tensor Q, where the argument � D .!=k�

Vx sin�/=
p

2vti, are given by

Qxx D
!2

pi

!2

n
cos2� �Z.� /�

�
Vxp
2vti
C � sin�

� 2
Z0.� /

o
; (A5)

Qxz D�
!2

pi

!2 cos�
�

sin� �
�
Z.� /C �Z0.� /

�
C

Vxp
2vti

�Z0.� /
�
; (A6)

Qyy D�
!2

pi

!2

�
1C

1
2
Z0.� /

�
; (A7)

Qzz D
!2

pi

!2

h
sin2� �Z.� /� cos2� � 2Z0.� /

i
: (A8)

We can perform a few checks on those expressions. For ex-
ample, if � D �=2, then one can verify that I��CQ�� reduces
to the usual 1-D expressions for longitudinal and transverse
dielectric

1CQxx D 1�
!2

pi

2k2v2
ti
Z0.� /;

1CQyy D 1CQzz D 1C
!2

pi

!2 �Z.� /: (A9)

The electron distribution is modeled by an isotropic
Maxwellian without drift. However, the electrons being mag-
netized, their contributions to the dielectric tensor are made
of the usual sums combining modi�ed Bessel functions and
plasma dispersion function. The Bessel functions In of order
n have � � .k sin� vte=�ce/2 for argument, while theZ func-
tion has the parallel phase velocity shifted according to the
nth harmonic for argument,

�n �
!C n�cep
2k cos� vte

: (A10)

Elements of the tensor Q associated with the electrons are
listed here:

Qxx D
!2

pe

!2
1
�

nDC1X

nD�1
n2Ine���0Z.�n/; (A11)

Qxy D�i
!2

pe

!2

nDC1X

nD�1
n.In� I 0n/e

���0Z.�n/; (A12)

Qxz D
4!2

pe�ce

!k2v2
te sin2�

nDC1X

nD�1
nIne��Z0.�n/; (A13)

Qyy D
!2

pe

!2
1
�

nDC1X

nD�1

h
n2InC 2�2.In� I 0n/

i
e���0Z.�n/; (A14)

Qyz D�i
!2

pe tan�
2!�ce

nDC1X

nD�1
.In� I 0n/e

��Z0.�n/; (A15)

Qzz D�
!2

pe

!2

nDC1X

nD�1
Ine���n�0Z0.�n/: (A16)

The other elements are found via the symmetries already
mentioned for magnetized species.
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Appendix B: Parallel electric �eld

Our purpose here is to assess how the parallel component of
the electric �eld Ez varies with the direction of the whistler
wave. For the sake of tractability we will assume the cold
plasma model, for which the terms Q�� of the dielectric ten-
sor simplify considerably. One has (see, e.g., Swanson, 2003)

Qxx DQyy D�
!2

pe

!2��2
ce
�

!2
pi

!2��2
ci
; (B1)

Qyx D�Qxy D�i
�ce

!
!2

pe

!2��2
ce
C i

�ci

!

!2
pi

!2��2
ci
; (B2)

Qzz D�
!2

pe

!2 �
!2

pi

!2 : (B3)

All other terms are null.
The wave Eq. (A1) includes a 3�3 matrix, which leads to

three scalar equations. For the cold model, the last two scalar
equations read

QyxEx C

"

Qyy C 1�
�
kc
!

� 2
#

Ey D 0; (B4)

.
kc
!
/2 cos� sin� Ex C

�
QzzC 1� .

kc
!
/2sin2�

�
Ez D 0: (B5)

After eliminating Ex , one can express the parallel compo-
nent of the electric �eld Ez as a ratio to Ey , viz. the compo-
nent that is both transverse and perpendicular:

Ez

Ey
D

�
kc
!

� 2
cos� sin�

Qyy C 1�
� kc
!

� 2

Qyx

h
QzzC 1�

� kc
!

� 2sin2�
i : (B6)

Note that Qyx is imaginary, which means that the phases of
Ez and Ey are in quadrature. It is also noteworthy that the
parallel component vanishes both for parallel propagation,
�! 0, and for perpendicular propagation, �! �=2. In the
latter case, one has an extraordinary wave, where the polar-
ization is linear with the electric �eld oscillating perpendicu-
larly to Bo. In the former case, one has a circularly polarized
transverse wave with the electric �eld rotating in the Tx;yU
plane.

In order to extract further information from Eq. (B6), we
need to introduce approximations to Q�;� which result from
the ordering of frequencies for the oblique whistlers: �ci�
!��ce� !pe. We then have

Qyy �
�
!pe

�ce

� 2
 

1�
!2

LH
!2

!

Qyx � i
!2

pe

�ce!

Qzz ��
!2

pe

!2 ;

which are substituted in Eq. (B6) to yield

iEz

Ey
D
m
M

�
kc
!pi

� 4�ci

!
cos� sin�

1�
� !pi
kc

� 2
�
!2

!2
LH
� 1

�

1C
�
kc
!pe

� 2
sin2�

: (B7)

This equation still has an implicit angular dependence via !
in the denominator. Let us de�ne the function of order unity

U.k/�
1�

� !pi
kc

� 2
�
!2

!2
LH
� 1

�

1C
�
kc
!pe

� 2
sin2�

(B8)

and use Eq. (1) to eliminate the frequency dependence in the
denominator of Eq. (B7). We obtain

iEz

Ey
�
m
M

�
kc
!pi

� 3

�
T1C .kc=!pe/2Ucos� sin�

T1C .kc=!pe/2C .kc=!pi/2cos2� U1=2
U.k/: (B9)

Two remarks are in order. First, due the mass ratio, one
can expect the parallel electric �eld to remain modest, i.e.,
jEzj< jEy j for wavenumbers less than the electron iner-
tia length. For example, if kc=!pi D 15 and M=mD 900
one has jEzj=jEy j. 0:25. Second, the angular dependence
maximizes about � � 70� and this angle gets larger as the
wavenumber increases.
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