E. Abarca, A. Nardi, F. Grandia, and J. Molinero, Feedback between reactive transport 641 and convective flow during CO2 migration in a saline aquifer, p.642, 2013.

L. Amir and M. Kern, A global method for coupling transport with chemistry in heterogeneous porous media, Computational Geosciences, vol.25, issue.2, pp.465-481, 2010.
DOI : 10.1007/s11270-008-9691-2

V. J. Azad, C. Li, C. Verba, J. H. Ideker, and O. B. Isgor, A COMSOL?GEMS interface 648 for modeling coupled reactive-transport geochemical processes, p.649, 2016.
DOI : 10.1016/j.cageo.2016.04.002

URL : http://doi.org/10.1016/j.cageo.2016.04.002

D. A. Barry, C. T. Miller, and P. J. Culligan-hensley, Temporal discretisation errors in non-iterative split-operator approaches to solving chemical reaction/groundwater transport models, Journal of Contaminant Hydrology, vol.22, issue.1-2, pp.1-17, 1996.
DOI : 10.1016/0169-7722(95)00062-3

S. A. Bea, J. Carrera, C. Ayora, F. Batlle, and M. W. Saaltink, CHEPROO: A Fortran 90 object-oriented module to solve chemical processes in Earth Science models, Computers & Geosciences, vol.35, issue.6, p.655, 2009.
DOI : 10.1016/j.cageo.2008.08.010

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

C. M. Bethke, Geochemical and biogeochemical reaction modeling, 2007.
DOI : 10.1017/CBO9780511619670

C. Beyer, D. Li, M. De-lucia, M. Kühn, and S. Bauer, Modelling CO2-induced fluid???rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation, Environmental Earth Sciences, vol.21, issue.10, pp.573-588, 2012.
DOI : 10.1016/j.apgeochem.2005.11.002

J. Carrayrou, R. Mosé, and P. Behra, Operator-splitting procedures for reactive transport and comparison of mass balance errors, Journal of Contaminant Hydrology, vol.68, issue.3-4, pp.239-667, 2004.
DOI : 10.1016/S0169-7722(03)00141-4

S. R. Charlton and D. L. Parkhurst, Modules based on the geochemical model PHREEQC for use in scripting and programming languages, Computers & Geosciences, vol.37, issue.10, pp.1653-670, 2011.
DOI : 10.1016/j.cageo.2011.02.005

S. Commend and T. Zimmermann, Object-oriented nonlinear finite element programming: a primer, 675 COMSOL, A., 2010. COMSOL Multiphysics-LiveLink for Matlab User's Guide, pp.611-628, 2001.
DOI : 10.1016/S0965-9978(01)00011-4

P. Csomós and I. Faragó, Error analysis of the numerical solution of split differential equations, Mathematical and Computer Modelling, vol.48, issue.7-8, pp.1090-1106, 2008.
DOI : 10.1016/j.mcm.2007.12.014

C. De-dieuleveult and J. Erhel, A global approach to reactive transport: application to the 683, 2010.

C. De-dieuleveult, J. Erhel, and M. Kern, A global strategy for solving reactive transport equations, Journal of Computational Physics, vol.228, issue.17, pp.6395-6410, 2009.
DOI : 10.1016/j.jcp.2009.05.044

URL : https://hal.archives-ouvertes.fr/hal-00566602

H. G. Diersch, Interactive, graphics-based finite-element simulation system 687 FEFLOW for modeling groundwater flow, contaminant mass and heat transport 688 processes, WASY Institute for Water Resource Planning and System Research Ltd, p.689, 1996.
DOI : 10.1016/0965-9978(92)90039-i

P. Engesgaard and K. L. Kipp, A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: A case of nitrate removal by oxidation of pyrite, Water Resources Research, vol.25, issue.1, pp.2829-2843, 1992.
DOI : 10.1029/WR025i001p00093

Y. Fang, G. Yeh, and W. D. Burgos, A general paradigm to model reaction-based 694 biogeochemical processes in batch systems, Water Resources Research, vol.39, p.695, 1083.

I. Faragó, B. Gnandt, and Á. Havasi, Additive and iterative operator splitting methods and their numerical investigation, Computers & Mathematics with Applications, vol.55, issue.10, pp.2266-2279, 2008.
DOI : 10.1016/j.camwa.2007.11.017

I. Faragó, P. G. Thomsen, and Z. Zlatev, On the additive splitting procedures and their computer realization, Applied Mathematical Modelling, vol.32, issue.8, pp.1552-1569, 2008.
DOI : 10.1016/j.apm.2007.04.017

J. C. Friedly and J. Rubin, Solute transport with multiple equilibrium-controlled or kinetically controlled chemical reactions, Water Resources Research, vol.25, issue.7, pp.1935-1953, 1992.
DOI : 10.1029/WR025i001p00093

J. Geiser, Decomposition methods for differential equations: theory and applications, 2009.
DOI : 10.1201/9781439810972

URL : http://www.crcnetbase.com/doi/pdfplus/10.1201/9781439810972.fmatt

G. Hammond, P. Lichtner, C. Lu, and R. Mills, Pflotran: reactive flow & transport code 708 for use on laptops to leadership-class supercomputers. Groundwater reactive transport 709 models, pp.141-159, 2012.

J. Hoffmann, S. Kräutle, and P. Knabner, A parallel global-implicit 2-D solver for reactive 714 transport problems in porous media based on a reduction scheme and its application, p.715, 2010.

J. Hoffmann, S. Kräutle, and P. Knabner, A general reduction scheme for reactive transport in porous media, Computational Geosciences, vol.29, issue.70, pp.1081-1099, 2012.
DOI : 10.1007/3-540-26825-1_14

W. Hundsdorfer and J. G. Verwer, Numerical solution of time-dependent advection- 719 diffusion-reaction equations, p.720, 2013.

A. Kazemi-nia-korrani, K. Sepehrnoori, and M. Delshad, Coupling IPhreeqc with UTCHEM to model reactive flow and transport, Computers & Geosciences, vol.82, issue.169, pp.152-722, 2015.
DOI : 10.1016/j.cageo.2015.06.004

J. Kool and M. T. Van-genuchten, Hydrus: One-dimensional Variably Saturated Flow and 727, 1991.

S. Kräutle and P. Knabner, A new numerical reduction scheme for fully coupled 730 multicomponent transport-reaction problems in porous media, Water Resources 731 Research 41, pp.9414-732, 2005.

U. R. Berner, GEM-Selektor geochemical modeling package: revised algorithm 734 and GEMS3K numerical kernel for coupled simulation codes, p.735, 2013.

K. Lie, An introduction to reservoir simulation using MATLAB: User guide for the 737, 2014.

J. Liu and R. E. Ewing, An Operator Splitting Method for Nonlinear Reactive Transport 740, 2005.

M. G. Mcdonald and A. W. Harbaugh, A modular three-dimensional finite-difference 752 ground-water flow model, Denver, Colorado. 753 MIKE(DHI), 2016. piChem: A FEFLOW Plugin for Advanced Geochemical Reactions, p.754, 1988.

S. Molins, J. Carrera, C. Ayora, and M. W. Saaltink, A formulation for decoupling 756 components in reactive transport problems, Water Resources Research, vol.40, p.757, 2004.

F. M. Morel and J. G. Hering, Principles and applications of aquatic chemistry, p.759, 1993.

C. Multiphysics, Pesticide transport and reaction in soil, Earth Science Module Model, p.760, 2008.

M. Muniruzzaman and M. Rolle, Modeling multicomponent ionic transport in 762 groundwater with IPhreeqc coupling: Electrostatic interactions and geochemical 763 reactions in homogeneous and heterogeneous domains, Advances in Water Resources, vol.764, pp.98-99, 2016.

A. Nardi, A. Idiart, P. Trinchero, L. M. De-vries, and J. Molinero, Interface COMSOL-PHREEQC (iCP), an efficient numerical framework for the solution of coupled multiphysics and geochemistry, Computers & Geosciences, vol.69, pp.10-21, 2014.
DOI : 10.1016/j.cageo.2014.04.011

O. Nasir, M. Fall, E. D. Evgin, and C. Appelo, A simulator for modeling of porosity and permeability 769 changes in near field sedimentary host rocks for nuclear waste under climate change Parkhurst, User's guide to PHREEQC (Version 2): A computer 772 program for speciation, batch-reaction, one-dimensional transport, and inverse 773 geochemical calculations, p.774, 1999.

D. L. Parkhurst, K. L. Kipp, P. Engesgaard, and S. R. Charlton, PHAST, a program for 775 simulating ground-waterflow, solute transport, and multicomponent geochemical 776 reactions, USGS Techniques and Methods, vol.6, p.8, 2004.

D. L. Parkhurst and L. Wissmeier, PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC, Advances in Water Resources, vol.83, pp.176-779, 2015.
DOI : 10.1016/j.advwatres.2015.06.001

S. Peterson, C. Hostetler, W. Deutsch, and C. Cowan, MINTEQ user's manual, 1987.

N. Lab and W. Richland, Nuclear Regulatory Commission, Div. of Waste Management

H. Prommer, G. Davis, and D. Barry, PHT3D?A three-dimensional biogeochemical 789 transport model for modelling natural and enhanced remediation, 1999.

D. Rouson, J. Xia, and X. Xu, Scientific software design: the object-oriented way, p.796, 2011.
DOI : 10.1017/CBO9780511977381

M. W. Saaltink, C. Ayora, and J. Carrera, A mathematical formulation for reactive transport that eliminates mineral concentrations, Water Resources Research, vol.30, issue.7, pp.1649-799, 1998.
DOI : 10.1029/94WR00230

M. W. Saaltink, J. Carrera, and C. Ayora, On the behavior of approaches to simulate reactive transport, Journal of Contaminant Hydrology, vol.48, issue.3-4, pp.213-235, 2001.
DOI : 10.1016/S0169-7722(00)00172-8

M. W. Saaltink, A. Yakirevich, J. Carrera, and C. Ayora, Fluid flow, solute and heat 803 transport equations. Geochemical Modeling of Groundwater, 2011.

M. J. Simpson and K. A. Landman, Theoretical analysis and physical interpretation of 806 temporal truncation errors in operator split algorithms, Mathematics and Computers in 807 Simulation, pp.9-21, 2008.

J. ?im?nek, D. Jacques, M. T. Van-genuchten, and D. Mallants, Multicomponent 809 geochemical transport modeling using HYDRUS-1D and HP1, J. Am. Water Resour, p.810, 2006.

J. ?im?nek, T. Vogel, and M. T. Van-genuchten, The SWMS-2D code for simulating 812 water and solute transport in two dimensional variably saturated media?Version 1.2, p.813, 1994.

R. D. Skeel and M. Berzins, A method for the spatial discretization of parabolic equations Steefel CrunchFlow software for modeling multicomponent reactive flow and 818 transport. User's manual. Earth Sciences Division, 1990.

C. I. Steefel, D. J. Depaolo, and P. C. Lichtner, Reactive transport modeling: An essential tool and a new research approach for the Earth sciences, Earth and Planetary Science Letters, vol.240, issue.3-4, pp.539-558, 2005.
DOI : 10.1016/j.epsl.2005.09.017

C. I. Steefel and K. T. Macquarrie, Approaches to modeling of reactive transport in porous 824 media, Reviews in Mineralogy and Geochemistry, vol.34, pp.85-129, 1996.

G. Strang, On the Construction and Comparison of Difference Schemes, SIAM Journal on Numerical Analysis, vol.5, issue.3, pp.506-517, 1968.
DOI : 10.1137/0705041

L. Trotignon, V. Devallois, H. Peycelon, C. Tiffreau, and X. Bourbon, Predicting the long term durability of concrete engineered barriers in a geological repository for radioactive waste, Physics and Chemistry of the Earth, Parts A/B/C, vol.32, issue.1-7, pp.259-274, 2007.
DOI : 10.1016/j.pce.2006.02.049

A. J. Valocchi and M. Malmstead, Accuracy of operator splitting for advection-dispersion-reaction problems, Water Resources Research, vol.1, issue.3, pp.1471-1476, 1992.
DOI : 10.1016/0022-1694(81)90214-6

J. Van-der-lee, L. De-windt, V. Lagneau, P. Goblet, and W. Alves, Module-oriented modeling of Van Genuchten, 1982.

L. Wissmeier and D. A. Barry, Simulation tool for variably saturated flow with 843 comprehensive geochemical reactions in two-and three-dimensional domains, Environmental Modelling & Software, vol.844, issue.26, pp.210-218, 2011.

G. T. Yeh and V. S. Tripathi, A critical evaluation of recent developments in 846 hydrogeochemical transport models of reactive multichemical components, p.847, 1989.

F. Zhang, Groundwater reactive transport models, 2012.
DOI : 10.2174/97816080530631120101

C. Zheng and P. P. Wang, MT3DMS: a modular three-dimensional multispecies transport 850 model for simulation of advection, dispersion, and chemical reactions of contaminants 851 in groundwater systems; documentation and user's guide. DTIC Document, p.852, 1999.