A. C. Allwood, M. R. Walter, B. S. Kamber, C. P. Marshall, and I. W. Burch, Stromatolite reef from the Early Archaean era of Australia, Nature, vol.4, issue.7094, pp.714-718, 2006.
DOI : 10.1016/j.epsl.2005.11.011

A. C. Allwood, M. R. Walter, and C. P. Marshall, Raman spectroscopy reveals thermal palaeoenvironments of c.3.5 billion-year-old organic matter, Vibrational Spectroscopy, vol.41, issue.2, pp.190-197, 2006.
DOI : 10.1016/j.vibspec.2006.02.006

C. P. Marshall, Structural characterization of kerogen in 3.4Ga Archaean cherts from the Pilbara Craton, Western Australia, Precambrian Research, vol.155, issue.1-2, pp.1-23, 2007.
DOI : 10.1016/j.precamres.2006.12.014

M. M. Tice, Environmental Controls on Photosynthetic Microbial Mat Distribution and Morphogenesis on a 3.42???Ga Clastic-Starved Platform, Astrobiology, vol.9, issue.10, pp.989-1000, 2009.
DOI : 10.1089/ast.2008.0330

F. Westall, Implications of in situ calcification for photosynthesis in a ~3.3Ga-old microbial biofilm from the Barberton greenstone belt, South Africa, Earth and Planetary Science Letters, vol.310, issue.3-4, pp.468-479, 2011.
DOI : 10.1016/j.epsl.2011.08.029

URL : https://hal.archives-ouvertes.fr/insu-00619448

F. Westall, Archean (3.33 Ga) microbe-sediment systems were diverse and flourished in a hydrothermal context, Geology, vol.43, issue.7, pp.615-618, 2015.
DOI : 10.1130/G36646.1

URL : https://hal.archives-ouvertes.fr/insu-01167397

J. H. Oehler and J. Schopf, Artificial Microfossils: Experimental Studies of Permineralization of Blue-Green Algae in Silica, Science, vol.174, issue.4015, pp.1229-1231, 1971.
DOI : 10.1126/science.174.4015.1229

S. Francis, E. S. Barghoorn, and L. Margulis, On the experimental silicification of microorganisms. III. Implications of the preservation of the green prokaryotic alga prochloron and other coccoids for interpretation of the microbial fossil record, Precambrian Research, vol.7, issue.4, pp.377-383, 1978.
DOI : 10.1016/0301-9268(78)90048-7

S. Francis, L. Margulis, and E. S. Barghoorn, On the experimental silicification of microorganisms II. On the time of appearance of eukaryotic organisms in the fossil record, Precambrian Research, vol.6, issue.1, pp.65-100, 1978.
DOI : 10.1016/0301-9268(78)90055-4

F. Westall, The experimental silicification of microorganisms, Palaeontology, vol.38, pp.495-528, 1995.

S. V. Lalonde, K. O. Konhauser, A. Reysenbach, and F. G. Ferris, The experimental silicification of Aquificales and their role in hot spring sinter formation, Geobiology, vol.15, issue.1, pp.41-52, 2005.
DOI : 10.1016/S0009-2541(03)00120-7

F. Orange, SP7A: A Long Duration Preservation Study, Geomicrobiology Journal, vol.38, issue.161, pp.578-589, 2014.
DOI : 10.1016/S0016-7037(01)00587-7

URL : https://hal.archives-ouvertes.fr/hal-00947105

V. R. Phoenix, D. G. Adams, and K. Konhauser, Cyanobacterial viability during hydrothermal biomineralisation, Chemical Geology, vol.169, issue.3-4, pp.329-338, 2000.
DOI : 10.1016/S0009-2541(00)00212-6

F. Orange, : applications in the search for evidence of life in early Earth and extraterrestrial rocks, Geobiology, vol.199, issue.4, pp.403-418, 2009.
DOI : 10.1029/164GM18

F. Orange, Preservation and Evolution of Organic Matter During Experimental Fossilisation of the Hyperthermophilic Archaea Methanocaldococcus jannaschii, Origins of Life and Evolution of Biospheres, vol.31, issue.6, pp.587-609, 2012.
DOI : 10.1016/S0146-6380(00)00040-1

URL : https://hal.archives-ouvertes.fr/insu-00762392

F. Orange, Experimental fossilisation of viruses from extremophilic Archaea, Biogeosciences, vol.8, issue.6, pp.1465-1475, 2011.
DOI : 10.5194/bg-8-1465-2011

URL : https://hal.archives-ouvertes.fr/insu-00615454

F. Westall, In Astronomical and Biochemichal Origins and the Search for Life in the Universe, pp.491-504, 1997.

J. Tourney and B. Ngwenya, The role of bacterial extracellular polymeric substances in geomicrobiology, Chemical Geology, vol.386, pp.115-132, 2014.
DOI : 10.1016/j.chemgeo.2014.08.011

J. Li, K. Benzerara, S. Bernard, and O. Beyssac, The link between biomineralization and fossilization of bacteria: Insights from field and experimental studies, Chemical Geology, vol.359, pp.49-69, 2013.
DOI : 10.1016/j.chemgeo.2013.09.013

URL : https://hal.archives-ouvertes.fr/hal-00981383

M. Bourbin, Dating Carbonaceous Matter in Archean Cherts by Electron Paramagnetic Resonance, Astrobiology, vol.13, issue.2, pp.151-162, 2013.
DOI : 10.1089/ast.2012.0855

URL : https://hal.archives-ouvertes.fr/insu-00797807

J. Li, Impact of biomineralization on the preservation of microorganisms during fossilization: An experimental perspective, Earth and Planetary Science Letters, vol.400, pp.113-122, 2014.
DOI : 10.1016/j.epsl.2014.05.031

URL : https://hal.archives-ouvertes.fr/hal-01050089

A. Picard, A. Kappler, G. Schmid, L. Quaroni, and M. Obst, Experimental diagenesis of organo-mineral structures formed by microaerophilic Fe(II)-oxidizing bacteria, Nature Communications, vol.75, p.6277, 2015.
DOI : 10.1128/AEM.00490-09

A. Picard, M. Obst, G. Schmid, F. Zeitvogel, and A. Kappler, Limited influence of Si on the preservation of Fe mineral-encrusted microbial cells during experimental diagenesis, Geobiology, vol.38, issue.3, pp.276-292, 2016.
DOI : 10.1007/s11214-008-9354-z

A. Skrzypczak-bonduelle, EPR of Radicals in Primitive Organic Matter: A Tool for the Search of Biosignatures of the Most Ancient Traces of Life, Applied Magnetic Resonance, vol.175, issue.4, pp.371-397, 2008.
DOI : 10.1142/1854

F. Westall, Habitability on Mars from a Microbial Point of View, Astrobiology, vol.13, issue.9, pp.887-897, 2013.
DOI : 10.1089/ast.2013.1000

URL : https://hal.archives-ouvertes.fr/insu-00866015

C. S. Cockell, Habitability: A Review, Astrobiology, vol.16, issue.1, pp.89-117, 2016.
DOI : 10.1089/ast.2015.1295

S. Clifford, The Evolution of the Martian Hydrosphere: Implications for the Fate of a Primordial Ocean and the Current State of the Northern Plains, Icarus, vol.154, issue.1, pp.40-79, 2001.
DOI : 10.1006/icar.2001.6671

G. L. Villanueva, Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs, Science, vol.105, issue.1, pp.218-221, 2015.
DOI : 10.1029/1999JE001105

F. Westall, Biosignatures on Mars: What, Where, and How? Implications for the Search for Martian Life, Astrobiology, vol.15, issue.11, pp.998-1029, 2015.
DOI : 10.1089/ast.2015.1374

URL : https://hal.archives-ouvertes.fr/insu-01234353

R. Léveillé, In Origin and evolution of life, an astrobiological perspective, pp.507-522, 2011.

K. Doi, Stimulation of Expression of a Silica-Induced Protein (Sip) in Thermus thermophilus by Supersaturated Silicic Acid, Applied and Environmental Microbiology, vol.75, issue.8, pp.2406-2413, 2009.
DOI : 10.1128/AEM.02387-08

S. Iwai, Silica deposition and phenotypic changes to Thermus thermophilus cultivated in the presence of supersaturated silicia, The ISME Journal, vol.174, issue.6, pp.809-816, 2010.
DOI : 10.1074/jbc.M106960200

N. Bost, Testing the ability of the ExoMars 2018 payload to document geological context and potential habitability on Mars, Planetary and Space Science, vol.108, pp.87-97, 2015.
DOI : 10.1016/j.pss.2015.01.006

F. Foucher, M. Ammar, and F. Westall, Revealing the biotic origin of silicified Precambrian carbonaceous microstructures using Raman spectroscopic mapping, a potential method for the detection of microfossils on Mars, Journal of Raman Spectroscopy, vol.7, issue.11, pp.873-879, 2015.
DOI : 10.1111/j.1472-4669.2009.00212.x

URL : https://hal.archives-ouvertes.fr/hal-01171233

P. Serrano, Single-cell analysis of the methanogenic archaeon Methanosarcina soligelidi from Siberian permafrost by means of confocal Raman microspectrocopy for astrobiological research, Planetary and Space Science, vol.98, pp.191-197, 2014.
DOI : 10.1016/j.pss.2013.10.002

G. Lopez-reyes, Analysis of the scientific capabilities of the ExoMars Raman Laser Spectrometer instrument, European Journal of Mineralogy, vol.25, issue.5, pp.721-733, 2013.
DOI : 10.1127/0935-1221/2013/0025-2317

F. A. Miller and C. H. Wilkins, Infrared Spectra and Characteristic Frequencies of Inorganic Ions, Analytical Chemistry, vol.24, issue.8, pp.1253-1294, 1952.
DOI : 10.1021/ac60068a007

K. Maquelin, Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, vol.51, issue.3, pp.255-271, 2002.
DOI : 10.1016/S0167-7012(02)00127-6

R. G. Dickinson and R. T. Dillon, THE RAMAN SPECTRUM OF GYPSUM, Proceedings of the National Academy of Sciences, vol.15, issue.9, pp.695-699, 1929.
DOI : 10.1073/pnas.15.9.695-b

V. Parro, Instrument development to search for biomarkers on mars: Terrestrial acidophile, iron-powered chemolithoautotrophic communities as model systems, Planetary and Space Science, vol.53, issue.7, pp.729-737, 2005.
DOI : 10.1016/j.pss.2005.02.003

D. C. Fernández-remolar, Molecular preservation in halite- and perchlorate-rich hypersaline subsurface deposits in the Salar Grande basin (Atacama Desert, Chile): Implications for the search for molecular biomarkers on Mars, Journal of Geophysical Research: Biogeosciences, vol.33, issue.2, pp.922-939, 2013.
DOI : 10.1130/0091-7613-33.1.e93

V. Parro, Classification of Modern and Old R??o Tinto Sedimentary Deposits Through the Biomolecular Record Using a Life Marker Biochip: Implications for Detecting Life on Mars, Astrobiology, vol.11, issue.1, pp.29-44, 2011.
DOI : 10.1089/ast.2010.0510

M. Vandenbroucke and C. Largeau, Kerogen origin, evolution and structure, Organic Geochemistry, vol.38, issue.5, pp.719-833, 2007.
DOI : 10.1016/j.orggeochem.2007.01.001

URL : https://hal.archives-ouvertes.fr/bioemco-00147220

Y. Zhang and C. Rock, Membrane lipid homeostasis in bacteria, Nature Reviews Microbiology, vol.50, issue.3, pp.222-233, 2008.
DOI : 10.1099/00221287-148-11-3331

E. Guerzoni, R. Lanciotti, and P. S. Concconcelli, Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus, Microbiology, vol.147, issue.8, pp.2255-2264, 2001.
DOI : 10.1099/00221287-147-8-2255

J. Alleon, Early entombment within silica minimizes the molecular degradation of microorganisms during advanced diagenesis, Chemical Geology, vol.437, pp.98-108, 2016.
DOI : 10.1016/j.chemgeo.2016.05.034

URL : https://hal.archives-ouvertes.fr/hal-01331276

J. K. Toporski, A. Steele, F. Westall, K. L. Thomas-keprta, and D. S. Mckay, The Simulated Silicification of Bacteria??? New Clues to the Modes and Timing of Bacterial Preservation and Implications for the Search for Extraterrestrial Microfossils, Astrobiology, vol.2, issue.1, pp.1-26, 2004.
DOI : 10.1089/153110702753621312

E. Couradeau, Cyanobacterial calcification in modern microbialites at the submicrometer scale, Biogeosciences, vol.10, issue.8, pp.5255-5266, 2013.
DOI : 10.5194/bg-10-5255-2013-supplement

URL : https://hal.archives-ouvertes.fr/hal-00981404

V. Souza-egipsy, A. Aguilera, E. Mateo-martí, J. A. Martín-gago, and R. Amils, Fossilization of Acidophilic Microorganisms, Geomicrobiology Journal, vol.175, issue.8, pp.692-706, 2010.
DOI : 10.1111/j.1365-2818.1994.tb04787.x

R. Barbieri and N. Stivaletta, Continental evaporites and the search for evidence of life on Mars, Geological Journal, vol.8, issue.6, pp.513-524, 2011.
DOI : 10.1089/ast.2007.0179

K. C. Benison and F. J. Karmanocky, Could microorganisms be preserved in Mars gypsum? Insights from terrestrial examples, Geology, vol.42, issue.7, pp.615-618, 2014.
DOI : 10.1130/G35542.1

D. Pierre and F. , Are the large filamentous microfossils preserved in Messinian gypsum colorless sulfide-oxidizing bacteria?, Geology, vol.43, issue.10, pp.855-858, 2015.
DOI : 10.1130/G37018.1

A. H. Knoll, An astrobiological perspective on Meridiani Planum, Earth and Planetary Science Letters, vol.240, issue.1, pp.179-189, 2005.
DOI : 10.1016/j.epsl.2005.09.045

S. W. Squyres and A. H. Knoll, Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars, Earth and Planetary Science Letters, vol.240, issue.1, pp.1-10, 2005.
DOI : 10.1016/j.epsl.2005.09.038

P. Vitek, Phototrophic Community in Gypsum Crust from the Atacama Desert Studied by Raman Spectroscopy and Microscopic Imaging, Geomicrobiology Journal, vol.275, issue.2, pp.399-410, 2013.
DOI : 10.1186/1471-2148-6-78

J. Alleon, Molecular preservation of 1.88???Ga Gunflint organic microfossils as a function of temperature and mineralogy, Nature Communications, vol.12, p.11977, 2016.
DOI : 10.1107/S0909049505012719

URL : https://hal.archives-ouvertes.fr/hal-01335724

J. Villar, S. E. Edwards, and H. G. , Raman spectroscopy in astrobiology, Analytical and Bioanalytical Chemistry, vol.130, issue.6, pp.100-113, 2006.
DOI : 10.2138/am-2004-5-601

C. R. Stoker and M. A. Bullock, Organic degradation under simulated Martian conditions, Journal of Geophysical Research: Planets, vol.340, issue.E5, pp.10881-10888, 1997.
DOI : 10.1038/340220a0

URL : http://onlinelibrary.wiley.com/doi/10.1029/97JE00667/pdf

R. L. Kanavarioti and R. L. Mancinelli, Could organic matter have been preserved on Mars for 3.5 billion years?, Icarus, vol.84, issue.1, pp.196-202, 1990.
DOI : 10.1016/0019-1035(90)90165-6

D. Simons and F. Kenig, Molecular fossil constraints on the water column structure of the Cenomanian???Turonian Western Interior Seaway, USA, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.169, issue.1-2, pp.129-125, 2001.
DOI : 10.1016/S0031-0182(01)00222-X

J. H. Oehler, Experimental studies in Precambrian paleontology: Structural and chemical changes in blue-green algae during simulated fossilization in synthetic chert, Geological Society of America Bulletin, vol.87, issue.1, pp.117-129, 1976.
DOI : 10.1130/0016-7606(1976)87<117:ESIPPS>2.0.CO;2