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A holistic view of the Bengal–Nicobar Fan system requires sampling the full sedimentary section of the 
Nicobar Fan, which was achieved for the first time by International Ocean Discovery Program (IODP) 
Expedition 362 west of North Sumatra. We identified a distinct rise in sediment accumulation rate (SAR) 
beginning ∼9.5 Ma and reaching 250–350 m/Myr in the 9.5–2 Ma interval, which equal or far exceed 
rates on the Bengal Fan at similar latitudes. This marked rise in SAR and a constant Himalayan-derived 
provenance necessitates a major restructuring of sediment routing in the Bengal–Nicobar submarine 
fan. This coincides with the inversion of the Eastern Himalayan Shillong Plateau and encroachment 
of the west-propagating Indo–Burmese wedge, which reduced continental accommodation space and 
increased sediment supply directly to the fan. Our results challenge a commonly held view that changes 
in sediment flux seen in the Bengal–Nicobar submarine fan were caused by discrete tectonic or climatic 
events acting on the Himalayan–Tibetan Plateau. Instead, an interplay of tectonic and climatic processes 
caused the fan system to develop by punctuated changes rather than gradual progradation.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The Bengal–Nicobar Fan, Indian Ocean (Fig. 1), has the greatest 
area and length of any submarine fan, and has long been studied 
to investigate possible links between Himalayan tectonics and the 
Asian monsoon (e.g., An et al., 2001; Bowles et al., 1978; Clift et 
al., 2008; Curray, 2014; Curray and Moore, 1974; France-Lanord et 
al., 2016; Schwenk and Spiess, 2009; Moore et al., 1974). To date, 
a holistic synthesis of the Indian Ocean fan system history and 
related processes of tectonics, climate and erosion has been ham-
pered by a lack of data from the Nicobar Fan. The importance of 
sampling widely across a sedimentary system to avoid biases due 
to major temporal changes in channel and lobe activity was noted 
(Stow et al., 1990), and highlighted that the under-sampled Nico-
bar Fan may hold a key component of the eastern Indian Ocean 
sedimentation record.

International Ocean Discovery Program (IODP) Expedition 362 
sampled and logged the Nicobar Fan offshore North Sumatra in 
2016 (Fig. 1). The stratigraphic results from this expedition (Dugan 
et al., 2017) are integrated here with results from previous sites on 
the Bengal–Nicobar Fan and Ninetyeast Ridge (NER) of the Deep 
Sea Drilling Program (DSDP Leg 22, von der Borch et al., 1974), 
Ocean Drilling Program (ODP Leg 116, Cochran et al., 1989; Leg 
121, Peirce et al., 1989) and IODP (Expedition 353, Clemens et al., 
2016; Expedition 354, France-Lanord et al., 2016). We present the 
first stratigraphic data from the Nicobar Fan and reappraise pub-
lished chronostratigraphic data from Bengal Fan and NER drillsites 
into a unified modern timescale to facilitate accurate comparison 
of depositional records across the whole system. Comparing sed-
iment accumulation rates (SARs) between these sites gives a new 
and integrative understanding of the timing of fan growth and dis-
tribution of fan deposits.

2. Nicobar Fan stratigraphy and sediment source

Expedition 362 drilled two sites on the northern Nicobar Fan 
east of the NER (Fig. 1), sampling the complete sedimentary sec-
tion at Site U1480 to a basement depth of 1415 m below seafloor 
(mbsf), and from 1150 mbsf to within 10s m of basement at 
Site U1481 at 1500 mbsf. At both sites Units I and II represent 
the Nicobar Fan, with Units III–V representing intervals domi-
nated by pelagic sedimentation with significantly reduced SARs 
(Fig. 1).

Bengal Fan sediments are predominantly micaceous quartzo-
feldspathic sands of the Ganges and Brahmaputra that drain the 
Himalaya and southern Tibet plus contributions from the Meghna 
river that drains northeastern India and Bangladesh (France-Lanord 
et al., 2016). Despite proximity to the Sunda forearc, the Nico-
bar Fan sediments at Sites U1480 and U1481 (Fig. S1) contain 
a similar range of siliciclastic sediment gravity-flow (SGF) de-
posits (mostly turbidites) as Bengal Fan sites. The sand- and silt-
size grain assemblage in the Nicobar Fan is relatively uniform 
downhole as quartzo-feldspathic (arkosic) sands, with pelitic meta-
morphic lithic grains, mica, minor detrital carbonate (<5%), mi-
nor woody debris, and an abundant and diverse assemblage of 
mostly high-grade metamorphic heavy minerals (including kyan-
ite and sillimanite). Candidate sources for the Nicobar Fan in-
clude the Himalayan-derived Ganges–Brahmaputra, Indo–Burman 
Ranges/West Burma, Sunda forearc and arc, and NER. Detrital zir-
con age spectra of samples from the Nicobar Fan sand-silt SGF 
deposits are dominantly sourced from the Greater and Tethyan 
Himalaya mixed with sediment from the Burmese arc-derived Pa-
leogene Indo–Burman Ranges, similar to the provenance of Neo-
gene sands deposited in the eastern Bengal and Surma basins 
(Najman et al., 2008, 2012) (Figs. 1–3). The limited arc-derived 
ash content in sediments at Sites U1480–1481 suggests that the 
Sunda forearc makes only a minor contribution. Significant in-
put from the Irrawaddy drainage is unlikely as it would require 
transfer of material across the forearc and possibly the trench. 
Cenozoic sediment isopachs of the Martaban back arc basin, the 
main north–south-oriented depocentre in the Andaman Sea re-
lated to the development of the Thanlwin–Irrawaddy delta system, 
show no obvious evidence for major routing to the west where 
carbonate-capped volcanic highs (e.g. Yadana High) served as a 
barrier for most of the Neogene (Racey and Ridd, 2015). Never-
theless we consider Irrawaddy sources in our provenance interpre-
tations.

3. Bengal–Nicobar Fan sediment accumulation patterns

Age-depth distributions of calcareous nannofossils, planktonic 
foraminifers, diatoms, silicoflagellates, and radiolarians were used 
to create tie points for SARs for Expedition 362 sites (Dugan et 
al., 2017) (Fig. 4A; Supplementary Material). Also, published lat-
est Eocene-Recent biomagnetostratigraphic data from six represen-
tative DSDP, ODP and IODP Bengal Fan and NER sites were re-
assessed and placed on a common time scale (Hilgen et al., 2012;
Pälike et al., 2006) (Fig. 4; Supplementary Material). The reassess-
ment of previous biostratigraphic data and the choice of age model 
tie points considered recent developments in understanding the 
consistency and reliability of biohorizons in lower latitude environ-
ments. At all sites, the age-depth relationship is non-linear. At Sites 
U1480 and U1481 on the Nicobar Fan, the SAR increases dramati-
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Fig. 1. Regional map of study area. Map includes Bengal–Nicobar Fan system, river systems, eastern Himalayan provinces, and relevant DSDP/ODP/IODP sites. BB = Bengal 
Basin; SP = Shillong Plateau; SB = Surma Basin; IBR = Indo–Burman Ranges. Inset summarizes Site U1480 lithostratigraphy.
cally at 9.5–9 Ma, from <15 m/Myr to >200 m/Myr, which corre-
sponds to the onset of significant fan deposition at the Unit III–II 
boundary. Specifically, at Site U1480 rates increase from 2–15 to 
223 m/Myr, and at Site U1481 from 11–27 to 207 m/Myr (Figs. 4, 
S2). At Site U1480, high rates persist and in the earliest Pleistocene 
(∼2–2.5 Ma), they increase further to 360 m/Myr (Fig. S2). In the 
Bengal Fan, such high rates, of the order of 250–300 m/Myr or 
greater, are only found within the more proximal fan (e.g., We-
ber et al., 1997, although greater spatial and temporal variability 
in rates might be expected here due to high impact of sea level 
fluctuation coupled with shifting channel/levée systems) or in the 
latest Pleistocene (e.g., Expedition 354 results of France-Lanord et 
al., 2016). These results emphasize the significance of the Nico-
bar Fan within the wider Bengal–Nicobar Fan system from the late 
Miocene to early Pleistocene (∼9–2 Ma).

The NER (separating the Bengal and Nicobar fans) is thought 
to capture an elevated expression of fan deposition despite its 
predominantly pelagic composition (Peirce et al., 1989), due to in-
creased flow lofting (cf., Stow et al., 1990) and nepheloid layer 
flux. Remarkably, at all northern NER sites (216, 217 and 758/1443; 
Fig. 2B) SARs increase by a factor of 2–3 at ∼10–8 Ma, coeval with 
the Nicobar Fan site increases. Decreasing carbonate content values 
at Sites 217, 758, 1443, support that the increase in SAR resulted 
from the effect of increased input of clay.

When SARs increase on the Nicobar Fan and NER (at 2–9◦N), 
rates on the Bengal Fan at related mid-fan positions (Fig. 4A) show 
either a marked decrease (e.g., Site 718, at 1◦S) or minimal change 
(e.g., Site 1451, at 8◦N), and all rates are lower than on the Nico-
bar Fan immediately after 9–9.5 Ma. At Site 718, rates decrease 
from 275 to 12–13 m/Myr at 9.5 Ma and only exceed 100 m/Myr 
in the late Pleistocene (Fig. S2). At Site 1451, rates from 9.5 Ma do 
not exceed 150 m/Myr (range: 70–150 m/Myr; Fig. S4). Local vari-
ations in deposition between Leg 116 sites (717, 718, 719) can be 
explained by late Miocene folding on the Indian plate controlling 
accommodation and potential submarine-channel routing (Stow et 
al., 1990).
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Fig. 2. Detrital zircon age plots for samples and equivalent plots of regional rivers and formations. TH = Tethyan Himalaya; GHS = Greater Himalaya Series; LHS = Lesser 
Himalaya Series. Details of Expedition 362 samples are given in Table S1.
Depositional history at a single site is inevitably affected by 
individual channel and lobe positions and there will be vari-
ability across the fan in terms of sediment accumulation due 
to depositional environment, e.g., channel-axis, channel-margin, 
levee-overbank, lobe and lobe fringe etc. (e.g., Stow et al., 1990;
Schwenk and Spiess, 2009). However, on the Nicobar Fan seis-
mic horizons and packages can be traced over large distances 
with confidence in unit correlation and with minimal evidence 
of unit thickness variation across and along the oceanic plate. No 
onlap in the vicinity of the drillsites is observed, and channel-
levée complexes that might correlate with enhanced deposi-
tion are evenly distributed spatially and temporally (Dugan et 
al., 2017). In addition, our analysis of data from other Expedi-
tion 354 Bengal Fan transect sites where SARs may be greater 
than at Site U1451 (e.g., U1450, France-Lanord et al., 2016) con-
tinues to support that during the late Miocene and Pliocene, 
Nicobar Fan rates either exceeded or were broadly compara-
ble with those on the Bengal Fan. This interpretation is fur-
ther supported because the Expedition 354 sites on the Ben-
gal Fan are located 5◦N of the Expedition 362 sites on the 
Nicobar Fan (and therefore probably in a more proximal posi-
tion).

Preliminary benthic foraminiferal data from the Site U1480 pre-
fan and lowermost Nicobar Fan deposits indicate that this part 
of the Indian plate was at upper abyssal depths (2500–3000 m; 
Supplementary Material), not isolated at a higher elevation which 
could delay arrival of fan sediments. Combining these facts, we 
have confidence that the drillsite stratigraphic record is represen-
tative of the wider Nicobar Fan.

Compilation of age-depth plots and SARs from across the fan 
system enables us to examine earlier sedimentation patterns. 
These indicate that by at least 15 Ma, SARs on the Bengal Fan 
were high with sediment directed west of the NER (Fig. 5C). 
The oldest recovered sediments in the central part of the Ben-
gal Fan are Oligocene (25–28 Ma) thin-bedded silts, and the 
first significant sands are late Miocene, although this may be 
related to changes in coring technique and recovery (9–10 Ma: 
Site U1451, France-Lanord et al., 2016). At other Expedition 354 
sites, the apparent earliest onset of substantial sand was <8 
Ma (Sites U1450 and U1455), although we note that low re-
covery in parts of the deeper section at these sites may al-
low for the presence of additional earlier thick sand layers. In 
the distal Bengal Fan (Leg 116 Sites 717–719), early Miocene 
(back to 17 Ma) silts came from the Himalaya and minor com-
ponents from the Indian subcontinent (Cochran et al., 1989;
Bouqillon et al., 1990; Copeland et al., 1990). At Nicobar Fan Site 
U1481, a 20-m interval within the period 19–9 Ma (sample 362–9 
in Figs. 2 and 3) includes minor very fine-grained sandstones and 
siltstones, with the same zircon assemblage as other Expedition 
362 sand/silt samples (Fig. 2), supporting an eastern Himalayan 
source. These predate the dramatic increase in sediment flux to 
the Nicobar Fan sites.
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Fig. 3. Detrital zircon age comparison plots of samples from this study and regional 
rivers and formations. Multidimensional scaling maps (Vermeesch, 2013) based on 
calculated K–S distances between U–Pb age spectra, comparing Nicobar Fan sand 
samples from this study with possible source areas compiled from the literature 
(Allen et al., 2008; Bracciali et al., 2015, 2016; Campbell et al., 2005; Gehrels et al., 
2011; Limonta et al., 2017; Najman et al., 2008). The maps show 362 samples share 
the same sources as the SGF deposits exposed on the Andaman–Nicobar Islands and 
Neogene sediments deposited in northeast Bengal that were originally sourced from 
erosion of the Indo–Burma Ranges. The IODP sands are not directly comparable to 
sands from the modern Brahmaputra or Irrawaddy. See Fig. 2 for acronyms.

In summary, although the Bengal–Nicobar Fan was clearly de-
veloping prior to the late Miocene, the SARs at a range of sites 
support a marked increase in sediment flux at around 9.5 Ma, 
in particular to the eastern part of the system, the Nicobar Fan 
(Fig. 5B; an idea postulated by Bowels et al. (1978), confirmed 
here with detailed and integrated drilling and seismic data). A ma-
jor conclusion from our appraisal of SARs is that when high SARs 
are recorded on the Bengal Fan, they are significantly lower on the 
Nicobar Fan, and that between ∼9.5–2 Ma this switches abruptly 
(Fig. 3), with highest sediment flux deflected to the east.
4. Nicobar Fan volumetrics and late Miocene–recent growth of 
the Sunda forearc

Using sediment thickness from seismic profiles and ocean 
drilling boreholes, we have made a new estimate of the late 
Miocene–Recent Nicobar Fan volume, incorporating the component 
of fan now accreted into the Sunda subduction margin (see Sup-
plementary Material). Estimates of the present day Nicobar Fan 
volume are ∼0.5 × 106 km3 (Figs. 1, S4; Supplementary Material), 
without decompaction. An additional 0.4 × 106 km3 is estimated 
to have been added to the accretionary prism between the Nicobar 
Islands and Southern Sumatra, using present day sediment thick-
nesses and plate convergence rates back to 9 Ma (Fig. S5). This 
generates a minimum late Miocene–Recent (i.e. from ∼9.5 Ma to 
present) Nicobar Fan volume of ∼1 × 106 km3. This volume is 
significant compared with the estimated Bengal Fan volume of 7.2 
× 106 km3 for the entire Neogene, a period of ∼20 Myr (Clift, 
2002).

The increase in thickness of the Indian plate sediment section 
at ∼9.5 Ma would have corresponded to a marked and abrupt 
change in sediment volume input to the north Sunda margin. Off-
shore North Sumatra and the Nicobar Islands, the forearc prism 
is markedly wide (150–180 km) and thick relative to the rest of 
the margin and to other accretionary prisms (McNeill and Hen-
stock, 2014), and the northern Sumatran prism forms an unusual 
plateau inferred to be a consequence of internal and basal ma-
terial properties and/or prism growth history (e.g., Fisher et al., 
2007). The large additional sediment input volume from 9.5 Ma to 
present in the easternmost Indian Ocean is a significant propor-
tion of the prism volume and can explain the anomalously large 
northern Sunda prism (supporting hypotheses by Hamilton, 1973;
Karig et al., 1979).

5. Discussion

Our new integrated Nicobar–Bengal Fan sediment records show 
a net increase in flux to the eastern Indian Ocean at 9.5–9 Ma, 
representing the onset of a new sedimentary regime in the east 
Indian Ocean. Detrital zircon ages (Fig. 2) and petrology from the 
Nicobar Fan sediments show the sand provenance remained un-
changed throughout the middle Miocene to present. To constrain 
sources we compared these results with detrital zircon ages from 
potential source regions in the Himalayas as well as the Burmese 
arc and Irrawady drainage due to the presence of Cenozoic age zir-
cons (mainly between 60–20 Ma). Comparison of the zircon age 
distributions (Fig. 3) show SGF deposits exposed on the Andaman–
Nicobar Islands are closely similar to Nicobar Fan sediments and 
that both have affinities with Himalayan-derived units, the Trans-
Himalaya and arc-derived input from erosion of the Indo–Burman 
Ranges that were expanding westwards during the Pliocene. These 
are the same sources as Neogene sands deposited in the north-
east Bengal and Surma basins via the paleo-Brahmaputra River 
(Najman et al., 2012) (Fig. 1). Between 15–9 Ma the northeast 
Bengal Basin underwent inversion related to tectonic shortening 
and exhumation of the Shillong Basin Plateau which accommo-
dates up to 1/3 of the present-day convergence across the East-
ern Himalaya (Bilham and England, 2001; Biswas et al., 2007;
Clark and Bilham, 2008) (Fig. 1). Exhumation and erosion of the 
Himalayan-derived Surma Group atop the Shillong Plateau began 
at this time followed by the main phase of surface uplift <3.5 Ma 
(Najman et al., 2016) – these timings provide an excellent fit with 
the high SARs on the Nicobar Fan (from 9.5, and 2.5–2 Ma). We 
propose that this inversion of the Shillong region and westward 
migration of the Indo–Burmese wedge reduced accommodation 
and diverted sediments south to the shelf and Nicobar Fan. The 
most significant sediment pulse to the Nicobar Fan, at 2.5–2 Ma, 
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Fig. 4. Age-depth relationships at ocean drilling sites. Panel (A) shows tie points of biomagnetostratigraphic age-depth relationships for Bengal Fan sites (718C, U1451) and 
Nicobar Fan sites (U1480, U1481). Panel (B) shows biomagnetostratigraphic tie points of age-depth relationships for sites from the Ninetyeast Ridge crest (216, 217, 758A, 
1443A). Inset shows sediment accumulation rate (SAR) increase between 9 and 10 Ma. Data are presented in detail in Figs. S2 and S3, and Tables S2 and S3.
may also record erosion of the exhumed eastern Himalayan syn-
taxis and resulting erosion, with at least 12 km of material since 
3 Ma – a signal recorded in the Surma Basin from the latest 
Pliocene (Bracciali et al., 2016) but not previously identified in 
the Indian Ocean. From ∼2 Ma, a SAR reduction on the Nicobar 
Fan supports the hypothesis that impingement of the NER on the 
Sunda Trench diverted the primary flux west of the ridge with con-
comitant high mid-late Pleistocene SARs on the Bengal Fan (e.g., 
France-Lanord et al., 2016) (Fig. 5A), although westward re-routing 
of the Brahmaputra River may also have played a role (Najman et 
al., 2016).

The Nicobar Fan is volumetrically significant within the Bengal–
Nicobar Fan system, and at certain times during the late Miocene–
early Pleistocene, such as the near 400 m/Myr SARs of the earliest 
Pleistocene, it may have been a dominant sediment sink. Since 
10 Ma, sea level has generally fallen (Miller et al., 2005), decreas-
ing accommodation on the shelf, thus amplifying the processes 
driving sediment southward to the fan. Erosion was probably aided 
by South Asian monsoon strengthening in the mid to late Miocene 
(e.g., An et al., 2001; Betzler et al., 2016; Kroon et al., 1991;
Peterson and Backman, 1990; Prell and Kutzbach, 1992) combined 
with the orographic forcing that caused the locus of monsoon pre-
cipitation to shift south onto the newly uplifted Shillong Plateau 
(Biswas et al., 2007). Enhanced erosion rates (Duvall et al., 2012)
and/or uplift in the eastern Tibetan plateau (e.g., An et al., 2001) in 
the late Miocene would also contribute to the volume of sediment 
available.

Avulsion of large-scale channel-levée complexes is common to 
many submarine fans (e.g., Amazon Fan; Flood et al., 1991). We 
propose that the eastward deflection of sediment towards the 
Nicobar Fan at 9.5 Ma was the result of channel avulsion in re-
sponse to increased sediment flux. Consequently, the proportion 
of sediment routed from the northeastern Bengal Basin to the 
Bengal Fan was significantly reduced. Any differential seafloor to-
pography on the shelf and the subsiding NER could have assisted 
this eastward diversion process. Similar processes have been ob-
served in physical flume experiments, for example, lobe switching 
observed with change in sedimentation supply/rate, accommoda-
tion, and depositional slope (Fernandez et al., 2014; Parsons et al., 
2002).

An early, lower-volume phase of fan deposition is recorded 
in the accreted sediments of the Sunda forearc (to ∼40–50 Ma; 
Curray and Moore, 1974; Curray et al., 1979; Karig et al., 1980). 
A model of trench-axial supply, with sediment now almost entirely 
accreted, can explain this earlier phase (nascent Nicobar Fan), with 
trench overspill delivering minor sands/silts recorded at Site U1481 
by the middle Miocene.

An accurate history of siliciclastic deposition on the Bengal–
Nicobar Fan system necessitates knowledge of both fans. Using 
estimates of fan volume, we demonstrate that the Nicobar Fan 
is significant within the overall sediment budget of the Bengal–
Nicobar Fan, particularly from 9.5–2 Ma. This previously unquanti-
fied sediment sink likely also contributes to organic carbon burial 
budgets (cf. Galy et al., 2007). An interplay of tectonic, climatic 
and sedimentological processes, rather than a discrete tectonic or 
climatic event or mechanism such as monsoon onset, as often in-
voked (e.g., Betzler et al., 2016; Clift et al., 2008), moved sediment 
through a series of staging areas and controlled SARs in the various 
sediment sinks of the Indo–Asian system. Our reappraisal of inte-
grated drilled fan data is inconsistent with the long-held notion of 
gradual fan progradation (Curray et al., 2003) but rather suggests a 
more dynamic system of punctuated and abrupt changes (Fig. 5D). 
Our work highlights the importance of sediment routing from the 
uplifting Eastern Himalaya along the eastern Indian Ocean to the 
Nicobar Fan during the late Neogene, a region whose role has been 
significantly underappreciated.
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