17 O NMR evidence of free ionic clusters Mn+ CO3 2− in silicate glasses: Precursors for carbonate-silicate liquids immiscibility
Yann Morizet, Pierre Florian, Michael Paris, Fabrice Gaillard

To cite this version:

HAL Id: insu-01579409
https://hal-insu.archives-ouvertes.fr/insu-01579409
Submitted on 2 Oct 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1

Revision 1

17O NMR evidence of Free Ionic clusters Mn⁺⁺⁺CO₃²⁻ in silicate glasses: Precursors for carbonate-silicate liquids immiscibility

Yann Morizet¹*, Pierre Florian², Michael Paris³, Fabrice Gaillard⁴

¹ Université de Nantes, Nantes Atlantique Universités, Laboratoire de Planétologie et Géodynamique de Nantes (LPG), UMR CNRS 6112, 2 rue de la Houssinière, 44322 NANTES, France

² CNRS-CEMHTI Conditions Extrêmes et Matériaux: Haute Température et Irradiation, UPR 3079, 1D avenue de la Recherche Scientifique, 45071, Orléans, France

³ Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP32229, 44322 NANTES Cedex 3, France

⁴ CNRS/INSU-Université d’Orléans – BRGM, UMR 7327, Institut des Sciences de la Terre d’Orléans, 1A rue de la Férollerie, 45071, Orléans, France

Corresponding author: Yann Morizet

Postal address:

Laboratoire de Planétologie et Géodynamique de Nantes (LPG Nantes), UMR-CNRS 6112, Université de Nantes,

2 rue de la Houssinière, 44322 Nantes Cedex (FRANCE)

phone: +33 (0) 2 5112 5491

fax: +33 (0) 2 5112 5268
Carbon dioxide is a ubiquitous component of low-silica melts such as kimberlites or melilitites. It is currently assumed that CO$_2$ molecules dissolving in low-silica melts as carbonate groups (CO$_3^{2-}$) induce a strong polymerization of the silicate network; however, the exact molecular configuration of this dissolution mechanism is still debated.

Using 17O MAS NMR spectroscopy, we have investigated the carbonate molecular environment in a series of synthesized low-silica (31-41 wt.% SiO$_2$), CO$_2$-bearing (from 2.9 to 13.2 wt.% CO$_2$) silicate glasses analogous to melilitites and kimberlites. With the selective 27Al- and 29Si-17O J HMQC NMR method, we show that CO$_2$ dissolved in the studied low-silica glasses is totally disconnected from the silicate network, forming Free Ionic Clusters (FIC) M^{n+}.CO$_3^{2-}$ with M^{n+} a charge compensating cation.

The M^{n+}.CO$_3^{2-}$ FIC are considered as precursors to immiscibility in between carbonate and silicate liquids. Observed in all studied compositions, we suggest that this immiscibility can be produced from moderately to strongly depolymerized silicate melt compositions.

INTRODUCTION

Providing constraints on the CO$_2$ dissolution mechanisms in depolymerized silicate melts contributes to our knowledge of kimberlite (Brooker et al. 2011; Russell et al. 2012), melilitite (Keller et al. 2006; Bosshard-Stadlin et al. 2014) and carbonatite genesis (Mitchell 2005), which are CO$_2$-enriched magmas. Carbonate – silicate liquid immiscibility is thought to be one possible genetic mechanism for these peculiar magmatic systems (Brooker and Kjarsgaard, 2011; Guzmics et al. 2015); however, the exact modalities of this mechanism remain poorly constrained.
Early work on CO2 dissolution in silicate melt (Mysen et al. 1976; Eggler 1978; Mysen and Virgo 1980; Spera and Bergman 1980) suggested that CO2 plays the role of polymerizing agent of the silicate network structure according to the following reaction:

\[
\text{CO}_2^\text{fluid} + 2Q^{n\text{melt}} \leftrightarrow \text{CO}_3^{2-\text{melt}} + 2Q^{(n+1)\text{melt}} \quad \text{Eq. 1}
\]

In this reaction, a CO2 molecule scavenges available oxygen from a Qn (a SiO4 tetrahedron unit with n bridging oxygen) unit to form a CO3\(^{2-}\) group charge compensated by a network-modifying cation (e.g. Ca\(^{2+}\)). Raman spectroscopic studies (Mysen et al. 2011; Mysen 2012; Moussallam et al. 2016) suggested that Eq. 1 proceeds to the right upon CO2 dissolution inducing a change in the proportion of the different oxygen species (i.e. Non-Bridging Oxygen NBO and Bridging Oxygen BO). However, the exact molecular configuration of the CO3\(^{2-}\) groups is not identified. Several dissolution mechanisms have been invoked for CO2 molecules in silicate melts. It has been suggested that CO2 can form network carbonates (T-CO3\(^{2-}\) with T = Si or Al) and NBO-CO3\(^{2-}\) where a CO2 molecule connects to an available NBO of a tetrahedron (Brooker et al. 2001; Guillot and Sator 2011; Morizet et al. 2014). An additional CO2-dissolution mechanism has been proposed on the basis of molecular dynamic simulations (Xue and Kanzaki 2013; Vuilleumier et al. 2015) and also inferred from Raman spectroscopic studies (Mysen et al. 2011; Mysen 2012; Moussallam et al. 2016). In this mechanism the CO3\(^{2-}\) molecular groups are be present in the silicate network as Free Ionic Clusters M\(^{n+}\)..CO3\(^{2-}\) where M\(^{n+}\) is a charge balancing cation (i.e. alkali or alkaline-earth). Each type of CO2-dissolution mechanism is a strong function of the glass chemical composition (Brooker et al. 2001). For a given chemical composition, the melt physical and chemical properties will be strongly affected by the type of CO2-dissolution mechanism.

In the present work, we show direct proof of the M\(^{n+}\)..CO3\(^{2-}\) FIC existence in low-silica depolymerized melts. Based on \(^{17}\)O MAS NMR spectroscopy, we demonstrate that CO3\(^{2-}\)
molecular groups in low-silica melt are disconnected from the silicate network. Such a
dissolution mechanism represents the precursor of the immiscibility process between a silicate
melt and a carbonate melt.

EXPERIMENTAL METHOD

Several Fe-free glass compositions were investigated via 17O NMR spectroscopy. The studied
compositions are depolymerized with SiO$_2$ content ranging from 30 to 40 wt.% (Table 1) and
a Non-Bridging Oxygen concentration per Tetrahedron (NBO/T) ratio of 1.2 to 3.2 calculated
from the chemical composition obtained from Electron Probe Micro-Analyses (EPMA, see
Table 1 and Supplementary material). Studied compositions are analogous to natural
kimberlites (Kjarsgaard et al. 2009) and melilitites (Keller et al. 2006).

The starting material was weighed into Pt capsules, which were then sealed by arc-welding.
Experiments were performed in piston-cylinder apparatus using ¾ inch talc-Pyrex high-
pressure assemblies between 0.5 and 1.5 GPa and at 1525°C. Details of the experimental
syntheses are provided in the Supplementary material.

ANALYTICAL METHOD

Major elements and CO$_2$ concentrations: EPMA and Raman spectroscopy

We performed micro-Raman analyses on a Jobin-Yvon LabRam 300 spectrometer equipped
with an Innova 300-5W Argon ion laser from Coherent© operating at a wavelength of 514 nm
to determine the CO$_2$ content dissolved in silicate glasses using the protocol proposed by
Morizet et al. (2013). A detailed description of the Raman analyses and the CO$_2$
determination from them is provided in Supplementary material.

NMR spectroscopy
All Solid State 17O NMR were conducted on a Bruker 850 MHz Avance III Wide Bore spectrometer operating at a frequency of 115.3 MHz and referenced against liquid H$_2$O at 0 ppm. The 17O spectra were acquired using Full Hahn-echo and $\{^{27}$Al, 13C, 29Si$\}$ J-HMQC (Heteronuclear Multiple-Quantum Correlation) pulse sequences (Amoureux et al. 2007; Keeler 2010). The details of the analytical conditions are given in the Supplementary material. The J-HMQC experiment uses the so-called scalar coupling (“J”) which arises from the electrons involved in the bond between two nuclei and allows the creation of Heteronuclear Multiple-Quantum Coherences. In an $\{X\}$-17O J-HMQC experiment where oxygen is the observed nuclei and X the indirect one, the resulting 17O spectrum displays only the oxygen environments that are chemically bound to X.

RESULTS AND DISCUSSION

The 17O MAS and $\{X\}$-17O J-HMQC NMR spectra are shown in Figure 1 for several samples: XE-2 (Figure 1A), HK-1 (Figure 1B), HK-M (Figure 1C) and RB8E-12 (Figure 1D). Several oxygen environments are witnessed in the 17O MAS NMR spectra: $\sim+$50 ppm assigned to 17O nuclei in BO configuration associated with Si or Al tetrahedra; $\sim+$100 ppm assigned to 17O nuclei in NBO configuration (Stebbins et al. 1999; Lee and Stebbins 2003; Kelsey et al. 2008) and $\sim+$160 ppm assigned to 17O nuclei in CO$_3^{2-}$ environments (Morizet et al. 2017). The peak at $\sim+$100 ppm is less apparent in Mg-bearing compositions (HK and XE) whereas it is prominent in Mg-free Ca-rich RB8E composition consistent with the peak assignment to Ca$^{2+}$ NBO (Thompson and Stebbins 2011). The presence of Mg$^{2+}$ surrounded by oxygen atoms units is proposed at $\sim+$50-70 ppm (Allwardt and Stebbins 2004) but not clearly visible here due to strong overlap with the BO-(Si,Al) signal at $\sim+$50 ppm. The selective heteronuclear $\{X\}$-17O J-HMQC NMR pulse sequence probes local environments of oxygen atoms bound to X atoms. Hence, it should be pointed out that
chemical bonds involving nuclei other than the considered one (X) will not contribute to the
17O NMR signal in the $\{X\}$-17O J-HMQC spectrum. Serendipitously, the $\{^{13}$C$\}$-17O J-HMQC
spectra show a single line located at $\sim+160$ ppm confirming that this peak is associated with
CO_3^{2-} molecular groups. More importantly, the absence of signal at $\sim+50$ or $+100$ ppm
indicates that the CO_3^{2-} is connected neither to an available NBO nor to a BO. This is also
confirmed by the $\{^{29}$Si$\}$-17O J-HMQC spectra, which do not exhibit a signal at $+160$ ppm but
only at $+50$ and $+100$ ppm; this is consistent with 17O atoms in BO and NBO configuration,
respectively. The absence of common 17O signals in the $\{^{29}$Si$\}$-17O J-HMQC and $\{^{13}$C$\}$-17O J-
HMQC spectra shows that there is no oxygen atom simultaneously bound to silicon and
carbon atoms (within the detection level of $\sim5\%$) thereby precluding the existence of
T-CO_3^{2-}-T and NBO-CO_3^{2-} carbonate units. This CO_2-dissolution mechanism has been proposed on the
basis of FTIR results (Brooker et al. 2001), inferred from Molecular Dynamic simulations
(Vuilleumier et al. 2015) and indirectly suggested from the change in the network structure
upon CO_2-dissolution (Mysen et al. 2011; Mysen 2012; Moussallam et al. 2016). Our results
are consistent with the MD results from Vuilleumier et al. (2015) suggesting that FIC
represents 75% of the dissolved CO_3^{2-} molecular groups and 25% corresponding to network
carbonate units (T-CO_3^{2-}-T with T = Si or Al; Brooker et al. 2001). In the FIC M^{n+}-CO_3^{2-},
M^{n+} is a charge balancing cation which can be Mg^{2+}, Ca^{2+} and Na^{+} to a lower extent (Na_2O is
$\sim5\%$) for the currently investigated compositions. Although, Morizet et al. (2017) showed
that CO_3^{2-} groups dissolve preferentially in the vicinity of Ca^{2+} cations, we do not exclude the
possibility for Mg^{2+}-CO_3^{2-} being formed considering that Mg^{2+} could play a role comparable
to Ca^{2+} (Cormier and Cuello 2013).

At this point, we wish to raise the level of confidence in the above discussion. Indeed, one
could argue that the 17O signal from Si-O-C linkages could be absent from the $\{^{29}$Si$\}$-17O J-
HMQC spectrum if the associated $J(\text{^{29}Si-^{17}O})$ coupling value strongly differs from those
occurring for $^{29}\text{Si}^{-17}\text{O}(\text{BO})$ or $^{29}\text{Si}^{-17}\text{O}(\text{NBO})$ linkages. A simple way to rule out this possibility is to show that the full ^{17}O spectrum can be totally reconstructed as the sum of the 3 selective $\{\text{X}\}^{-17}\text{O}$ J-HMQC spectra. The reconstructions of the ^{17}O MAS NMR spectra from the deconvolution of the $\{\text{X}\}^{-17}\text{O}$ J-HMQC spectra are shown in Figure 2 for three ^{17}O MAS NMR spectra: Mg-free RB8E-12 (Figure 2A) and Mg-bearing XE-2 and HK-1 (Figure 2B and C). The deconvolution procedure was conducted as follows: each $\{\text{X}\}^{-17}\text{O}$ J-HMQC NMR spectrum was fitted with Gaussian lines; one line for the $^{13}\text{C}^{-17}\text{O}$ J-HMQC, one line for the $^{27}\text{Al}^{-17}\text{O}$ J-HMQC and two lines for the $^{29}\text{Si}^{-17}\text{O}$ J-HMQC corresponding to the BO-Si and NBO-Si environments, respectively. The parameters obtained are reported in Table 1. Since the $^{27}\text{Al}^{-17}\text{O}$ J-HMQC spectrum was not acquired for all the samples due to the requirement of very long acquisition times, we used the δ_{iso} and FWHM from the XE-2 deconvolution for HK spectra; and the average δ_{iso} and FWHM obtained from RB8E-12 and RB8E-13 for RB8E-7 spectrum. In Figure 2A, we show that the performed deconvolution adequately reproduces the ^{17}O MAS NMR spectrum for the Mg-free RB8E-12 sample. The high carbon content of this sample excludes the possibility of a lack of ^{17}O signal of significant intensity in the $^{29}\text{Si}^{-17}\text{O}$ J-HMQC spectrum. For Mg-bearing compositions, the ^{17}O MAS NMR spectra are not perfectly reproduced by the deconvolution. Regardless of the glass composition (XE-2 and HK), the residuals of the simulation exhibit a signal located at $\sim+70$ ppm not accounted for. Considering that this residual NMR signal is only observed in Mg-bearing glass composition, the signal could be attributed to oxygen atoms in MgO$_x$ configuration. This assignment would be consistent with the results of Hung et al. (2016) which identified ^{17}O resonance for MgO$_x$ oxygens in Ca/Mg orthosilicate glasses at $+60$ ppm. Considering that the NMR signal of the CO_3^{2-} environments is reproduced adequately by a single line at $\sim+160$ ppm, the majority of the CO_3^{2-} groups are FIC in the investigated glass compositions.
IMPLICATION FOR CARBONATE – SILICATE LIQUID IMMISCIBILITY

Numerous implications arise from the present results; however we only focus on two of them: 1) the immiscibility between carbonate and silicate liquids and 2) the impact of FIC on the carbonated melt transport properties. It is reasonable to consider that the $\text{M}^{n+}..\text{CO}_3^{2-}$ FIC constitutes a carbonate subnetwork intimately mixed within a silicate subnetwork. For instance, Kubicki and Stolper (1995) showed that the molecular energy involved for ion pairs complexes (similar to FIC $\text{M}^{n+}..\text{CO}_3^{2-}$) is low as compared to any other type of carbonates dissolved in silicate melt. Therefore, the energy barrier to dissociate the carbonate subnetwork from the silicate subnetwork is lower in the case of FIC.

Network-modifying cations have varying coordination numbers in a silicate melt (e.g. 5 to 8 for Ca^{2+}; Cormier and Cuello 2013). Upon CO_2 dissolution, the network-modifying cation will share less of its positive charges to the silicate network in order to compensate the negative charges of the CO_3^{2-} groups; resulting in a network-modifying cation that is less connected to the silicate network. In particular, Vuilleumier et al. (2014) showed that the Ca-O distance in molten CaCO$_3$ is on average 2.35 Å, suggesting that Ca^{2+} is more closely connected to the carbonate subnetwork than to the silicate subnetwork. Consequently, we believe that the presence of FIC $\text{M}^{n+}..\text{CO}_3^{2-}$ could be viewed as a possible precursor to immiscibility. For instance, removal of the carbonate network from the silicate network is a proposed mechanism to form calcio carbonatite from a melilitite parental melt (Guzmics et al. 2015).

We suggest that this immiscibility could also proceed from kimberlite owing to the fact that FIC groups are observed in the investigated HK composition analogous to kimberlite melt. However, the molecular configuration $\text{M}^{n+}..\text{CO}_3^{2-}$ FIC poses the problem of the way CO_2 degasses from depolymerized silicate melts. The CO_2 migration into the fluid phase imposes a
molecular structure reconfiguration to dissociate the \(Mn^{n+}..CO_3^{2-} \) groups and causes the network-modifying cation to remain in the silicate melt, thus depolymerizing the silicate network structure. This difficulty could explain the absence of degassing in kimberlitic melt upon decompression as witnessed by Moussallam et al. (2015).

Finally, it turns out that the identified \(CO_2 \)-dissolution mechanism can also affect the physical properties of carbonated melts (e.g. magma transport and electrical conductivity).

Interconnection between FIC molecular groups could explain the high electrical conductivity observed in \(CO_2 \)-bearing silicate melt (Sifré et al. 2014). There is an intimate mixture between a carbonate subnetwork having an extremely low viscosity and a silicate subnetwork with a higher viscosity (Morizet et al. in press). Through immiscibility, the carbonate liquid will migrate towards the surface due to its low viscosity and density (Vuilleumier et al. 2014), whereas the silicate liquid, which becomes enriched in SiO\(_2\), is stalled at depth due to the increased viscosity (Giordano et al. 2008). Therefore, the direct proof of the existence of FIC gives legitimacy to the development and application of the immiscibility theory in a wide range of processes taking place in the Earth’s interior.

Acknowledgement:
The authors thank the ANR agency which financed the current work through the ANR-2010-BLAN-621 “Electrolith”. The authors would like to thank the European Research Council who partly funded this work through the ERC project grant number 279790. The authors thank the University of Orléans, the University of Nantes and the CNRS for their access to analytical facilities. The authors thank the TGIR RMN Très Hauts Champs for accessing to the high field NMR spectrometer.

References

Figure caption:

Figure 1. ^{17}O MAS and ^{1^{13}C}- ^{27}Al- ^{29}Si- ^{17}O J-HMQC NMR spectra of CO₂-bearing silicate glasses: XE-2 (A), HK-1 (B), HK-M (C) and RB8E-12 (D). Three oxygen environments are identified with MAS spectra: FIC M⁺.CO₃²⁻, Ca²⁺ NBO-Si and BO-(Si,Al).

The NMR spectra for the other synthesized glasses can be found in Supplementary material.
Figure 2. 17O MAS spectrum deconvolution obtained from Gaussian lines derived from \{X\} -17O J-HMQC spectra. The deconvolution of the 17O NMR spectra for the other synthesized glasses can be found in Supplementary material.
Table 1: Experimental conditions, chemical compositions of the investigated synthetic Fe-free silicate glasses.

<table>
<thead>
<tr>
<th>Sample</th>
<th>HK-1</th>
<th>HK-2</th>
<th>HK-M</th>
<th>RB8E-7</th>
<th>RB8E-12</th>
<th>RB8E-13</th>
<th>XE-2</th>
<th>Natural Kimberlite§</th>
<th>Natural Melilitite§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure (GPa)</td>
<td>1.5</td>
<td>0.5</td>
<td>1.5</td>
<td>0.5</td>
<td>1.0</td>
<td>1.0</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glass chemical composition in wt.%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>40.2</td>
<td>40.1</td>
<td>31.8</td>
<td>33.3</td>
<td>30.3</td>
<td>30.1</td>
<td>40.6</td>
<td>30.4</td>
<td>36.5</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>4.3</td>
<td>4.4</td>
<td>3.5</td>
<td>8.7</td>
<td>8.1</td>
<td>8.6</td>
<td>14.8</td>
<td>2.3</td>
<td>7.7</td>
</tr>
<tr>
<td>MgO</td>
<td>21.9</td>
<td>21.3</td>
<td>21.9</td>
<td>0.0</td>
<td>0.1</td>
<td>0.2</td>
<td>12.6</td>
<td>29.7</td>
<td>11.8</td>
</tr>
<tr>
<td>CaO</td>
<td>22.0</td>
<td>22.3</td>
<td>22.0</td>
<td>41.8</td>
<td>39.8</td>
<td>36.0</td>
<td>17.8</td>
<td>9.6</td>
<td>14.2</td>
</tr>
<tr>
<td>Na₂O</td>
<td>4.5</td>
<td>4.5</td>
<td>3.5</td>
<td>5.7</td>
<td>4.8</td>
<td>5.0</td>
<td>4.8</td>
<td>0.1</td>
<td>4.3</td>
</tr>
</tbody>
</table>
| CO₂
* | 7.1 | 2.9 | 13.2 | 6.5 | 12.6 | 7.7 | 4.2 | 6.40 | 0.52 |
| H₂O
† | 0.8 | 1.0 | 1.3 | 0.7 | 1.5 | 1.3 | 1.0 | 7.10 | 1.06 |
| NBO/T from stoichiometry‡ | 2.6 | 2.5 | 3.2 | 2.1 | 2.2 | 1.9 | 1.2 | 3.60 | 1.66 |

NMR parameters

<table>
<thead>
<tr>
<th>Free Ca²⁺..CO₃²⁻</th>
</tr>
</thead>
<tbody>
<tr>
<td>δiso</td>
</tr>
<tr>
<td>FWHM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BO-Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>δiso</td>
</tr>
<tr>
<td>FWHM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BO-Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>δiso</td>
</tr>
<tr>
<td>FWHM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NBO-Si</th>
</tr>
</thead>
<tbody>
<tr>
<td>δiso</td>
</tr>
<tr>
<td>FWHM</td>
</tr>
</tbody>
</table>

* The glass CO₂ content has been determined using Raman spectroscopy and the method described in Morizet et al. (2013). With the derived CO₃/HF ratio obtained from the deconvolution of the Raman spectra (see Supplementary material), it is possible to determine the CO₂ content using the linear relationship wt.% CO₂ = 13.5 x CO₃/HF. The typical error on the CO₂ content using Raman method is 10% in relative to the value.
† The H₂O content was determined by FTIR spectroscopy on a doubly polished glass plate. Contribution for OH⁻ and H₂O²⁻ vibrational peaks at 4500 and 5200 cm⁻¹ were summed to obtain the H₂Otot. The error does not exceed ±0.2 wt.% H₂O and corresponds to the standard deviation obtained on the replicated measurements.
‡ The NBO/T describing the average polymerization was calculated on a stoichiometric basis using the chemical composition measured by EPMA.
§ An average typical natural composition of kimberlite and melilitite were obtained from Kjarsgaard et al. (2009) and Keller et al. (2006), respectively. Additional oxides (TiO₂, FeO and K₂O for the most important) have not been reported but are nominally present: ~0-4 wt.% for TiO₂, ~10.0 wt.% FeO and ~2.0 for K₂O.
Figure 1

A

17O Echo MAS

29Si-17O J-HMQC

27Al-17O

13C-17O

17O Chemical shift in ppm

XE-2 NBO/T = 1.1
4.2 wt.% CO$_2$

B

17O Chemical shift in ppm

HK-1 NBO/T = 2.4
7.1 wt.% CO$_2$

C

17O Chemical shift in ppm

HK-M NBO/T = 3.1
13.2 wt.% CO$_2$

D

17O Chemical shift in ppm

RB8E-12 NBO/T = 2.0
12.6 wt.% CO$_2$

Ca$^{2+}$ NBO-(Si)

BO-(Si,Al)

FIC Ca$^{2+}$...CO$_3$2-
Figure 2

[Graphs showing 17O chemical shift in ppm for RB8E-12, XE-2, and HK-1]