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Abstract The“precipiton” method is a particle-based approach that consists of routing elementary water
volumes on top of topography with erosive and depositional actions. Here we present an original way to
calculate both river depth and velocity from a method that remains embedded in the precipiton framework.
The method solves the governing equations for water depth, where the water depth is increased by a
constant quantity at each precipiton passage and decreased by a value based oa resistance equation.
The precipitons are then routed downstream on top of the resulting water surface. The method is applicable
even if the precipitons are routed one by one (i.e., independent of each other), which makes it simple to
implement and computationally fast. Compared to grid-based methods, this particle method is not subject to
the classic drying-wetting issue, and allows for a straightforward implementation of sediment transfer
functions between the river bed and running water. We have applied the method to different cases (channel

ow, ow over topographic barriers, and ood prediction on high-resolution lidar topography). In all cases,
the method is capable of solving the shallow water equations, neglecting inertia. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided patterns with
geometries independent of grid size. Application of the model in the context of multithread rivers gives new
insight into the development of braiding instability.

Plain Language Summary The“precipiton” method is a numerical method that consists in routing
elementary water volumes on top of topography with erosive and deposition actions. Here we present an
original way to calculate both river depth and velocity. The method consists in solving water depth from a
differential equation, where the water depth is increased by a constant quantity at each precipiton passage
and decreased by a value based on @w resistance equation. The precipitons are then routed downstream
on top of the resulting water surface. The method is applicable even if the precipitons are routed one by one,
i.e., independently of each other, which makes it simple to implement and quite fast. Compared to grid-based
methods, this particle method is versatile, fast, and allows for a straightforward implementation of sediment
transfer functions between river bed and running water. We have applied the method to different cases
(channel ow, ow over topographic bumps, or real cases with high-resolution lidar topography). In all cases,
the method does very well in predicting the distribution of ood on landscapes. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided river patterns.

1. Introduction and State of the Art

The precipiton method is a particle-based approach, which mimics the role of precipitation (precipiton =
elementary rainfall volume) on shaping topographyChase 1992;Crave and Davy2001;Davy and Crave
2000;Davy and Lague2009;De Boer2001;Favis-Mortlock1998]. Together with cellular method<oulthard
and Van De WigR006;Fonstad 2006;Murray and Paolal1994 Nicholas2005;Thomas and Nicholag002], they
have been popular for mimicking self-organized emerging properties of geomorphological systems, from
high-resolution braided patterns to drainage network organization. Such high-resolution, high-frequenay,

vial geomorphic patterns and dynamics are beyond the scope of simple landscape evolution models, whose
hydrodynamic description is much too rudimentary (see the state-of-the-art review Bycker and Hancock
[2010, and references therein]). Similarly, such conditions are rarely modeled over large spatial and temporal
scales with sophisticated computationaluid dynamic models because of computational time, although recent
progress is worth noting Jang and Shimizt2005Nicholas et a] 2013Schuurman et a] 2013Wang et al, 2010].

Solving hydrodynamics constitutes a major di€ulty for cellular automata and precipiton methods, and for
some models a clear weakness that casts doubt on the relevance of results. The dependency of channel
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geometry on grid size that was observed in the seminal model dMurray and Paold1994], as well as in
subsequent work [e.g.Doeschl-Wilson and Ashmor2005;Nicholas and Quine2007;Ziliani et al, 2013],
emphasizes the limit of these reduced complexity models to obtain a realistic description of channel width
dynamics. This issue rects that the classic kinematic wave assumption used in these models neglects the
water pressure depth gradient, although this force is critical to enable water to spread laterally over
submerged banks, and for the channel to maintain a nonvanishing width (i.e., larger than the grid pixel)
[e.g.,Coulthard et al 2013jzumi and Parkerl995;Tucker and Hanco¢R010]. Without this pressure gradient
term, landscape evolution models are unable to predict channel width from erosion dynamics; they must
specify it as an external relationship and basically consider channels to be ‘Wides’ surrounded by 3-D hill-
slopes. As this external relationship imposes ged relationship between channel width and mean discharge,
these models cannot capture, for instance, the tendency for alluvial channel width to vary with sediment
supply and/or incision rates [e.gDuvall et al, 2004;Lague 2010;Lague 2014;Lave and Avouac2001;
Simon and Thornel996;Whittaker et al, 2007].

The concept of precipitons was originally introduced bghasg1992] as a discrete representation of water
volumes that are stochastically generated by rainfall, which then run over and erode topographic surfaces
[Chase1992;Crave and Dawy2001;Davy and Crave2000]. It is a Lagrangian method (equations are written
in the uid reference frame) that offers substantial advantages compared to the classic Eulerian methods:

1. Since particles are elementarpw elements, the largest density of particles is naturally encountered in large
ows. Wetting (where ow spreads over dry areas) or drying (wher@w no longer takes place) of the land-
scape is thus inherently solved by the displacement of precipitons, while it may remain a difity for
Eulerian methods (see the discussion Bradford and Sandef2002] and inJang and Shimiz{2005]).

2. The coupling between hydrodynamics and erosion/transport/deposition is straightforward since particles
are ow elements eroding topography and transporting sediments, whereas implementation of these
processes raises ditulties in classic numerical schemes for managing time scales of botiw depth
and bed deformation Caq 2007].

3. The boundary conditions are easily managed: particles are introduced to each grid cell at a rate corre-
sponding to the in ow, which can be either a rainfall rate or an upstream river discharge. The outlets
are prede ned; they are stop conditions for the particle walks.

4. Implementing nonlocal transfer, which results from sediment transfers between bed topography and run-
ning water over a wide range of spatial scaleB¢ufoula-Georgiou et.aR010Stark et al, 2009, is straightfor-
ward since erosion and deposition are different processes that occur during the precipiton path (Beey
and Lagug2009] and the concept of sediment transfer length, which is a way to model nonlocal transfers).

Up to now, the main drawback of the precipiton method is its very crude approximation of river hydrody-
namics since the original method assumes that precipitons move down the steepest topographic slope inde-
pendent of hydraulic gradients.

In this paper, we resolve this limitation by calculating both river depth and velocity from a method embedded
in the precipiton framework, thus maintaining its computing efciency. To our knowledge, this approach is the

rst attempt to solve the shallow water equations with precipiton methods in landscape evolution models.
There are other particle-based methods available for solving hydrodynamics, such as smooth particle hydro-
dynamics [Lee and Han2010;Solenthaler et al 2011], or particle-in-cell approache8fackbill et a| 1988;
Tetzlaff and Harbaugh 989] that share most of the above-cited advantages. However, managing boundaries
in more complex in these approached j and Liy2002;Liu and Liy2003] and, unlike the precipiton method,
they require calculating the interactions between particles, which is more computationally expensive.

The paper is organized as followsrst, the basic hydraulic equations and their implementation in the fra-
mework of precipitons are presented. Second we verify performance for several different cases using both
idealized and natural topography, examining (i)ood propagation in an inclined rectangular channel, (ii)
ow over a topographic barrier to evaluate the ability of the model to deal with lakes and dams, and (iii)
ood inundation in a natural river valley using high-resolution LIiDAR topography. In this step, we also
compare our method to the storage cell inundation modeLis ood-FP[Bates et a| 2010] that has been
recently coupled with the cellular automata modelCAESARb fully solve the shallow water equations
in landscape evolution models Qoulthard et al 2013]. Lastly, we apply the new model to a high-
resolution topography obtained with lidar. Lastly, we show how the model can be coupled with
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erosion and deposition rules to model channel morphodynamics, and we discuss application of our
approach for modeling landscape evolution. We present two types of morphodynamic experiments: (i)
the incision of a straight channel that demonstrates the robustness of the numerical method and the role
of lateral erosion and (ii) the development of multithread braiding patterns that demonstrates the ability
of the model to simulate different hydromorphic regimes, providing new insights on braiding instability
(a generic term which indicates the occurrence of a dynamic braided morphology).

2. A Particle Method for Solving Hydrodynamics

The precipiton method routes elementary water volumes (precipitons) that interact with topography. The
precipitons move according to hydrodynamic equations, and modify topography by erosion and deposition
laws dependent on both hydraulic conditions (i.e., shear stress, discharge calculated at each grid cell from the
frequency of precipiton passages over the cell, or slope) and sediment volume carried by the precipiton. A
more complete description of the method, and of th€ros code, is available i€rave and Davj2001], as well

as in Davy and Cravg2000] andDavy and Lagud2009]. An intrinsic geometric aspect of the precipiton
method is that particles move independently on axed rectangular grid, where the elementary displace-
ments are restricted to the eight nearby neighbors (D8 method §rboton 1997]), as in cellular automaton
methods. The hydraulic ux is de ned statistically as the average over a large number of particles, whose
direction is de ned from a probabilistic distribution function that depends on local slope. It is thus not
restricted to one of the eight neighbor directions.

In the initial version, hydrodynamics merely consists of moving precipitons downward in the direction of
topographic slope. We show in the next paragraphs how the 2-D shallow water equations (without the inertia
terms) can be implemented in the precipiton framework.

2.1. Basic Equations of Hydrodynamics

The 2-D shallow water equations are a widely used approximation of the 3-D Navier-Stokes equation for
applications such as the evaluation ofooded areas, erosion and sediment transport predictions, and land-
scape evolution models (see review iHlorritt and Bateg2002]). The basic equations are the conservation
of mass and the conservation of momentum equations integrated over theow depth, where the basic
forces are gravity and friction drag. The water balance is written (with Einstein notation) as

_ft1 b ig %0 (1)

whereh is the water depth t is the time, andg; is the ow discharge vector, whergj; = hy; with u; as the mean
ow velocity vector. The momentum equation is

U; Uj h Z
h —puy— Y gh —p — i 2
hu~ Yoh gbo )
where Z is the bed elevation, ; is the shear stress acting on the river bed,is the water densityx; and x; are
the horizontal coordinatesy; and u; are the horizontal velocity coordinates, and is the gravitational con-
stant. The shear stressis assumed to be maximum along theow path and zero perpendicular to ow.

The left-side terms represent inertia. Thest term is the local acceleration h—), which vanishes at steady
state, but has been found to capture a large part of the nonstationargoding characteristicsde Almeida and
Bates2013]. The second left-side term represents the convective acceleration; it is important with large spa-
tial variations of discharge intensity or direction, and often negligible where thew varies gradually.

The right-side terms represent both driving (gravity) and resisting forces. Thst, ( gh d—xfl‘), is the uid pres-
sure term. The second is the resistance of the channel bed and banks o, which is collinear with the ow
velocity such as

i Ya Kéhl]l,lj Ui 3)

where | is the velocity modulus and{(h) is a function which is found to be slightly dependent oh in experi-
ments Manning[1891] model) or modeled as a constant (Darcy-Weisbadfis dependent on the rugosity of
the river bed. Equation (3) implicitly assumes that the basal friction on the river bed is much larger than any of
the other frictional terms, such as lateral bank friction and viscous drag in the water column.
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If we assume that the inertial terms are negligible, the momentum equation (2) provides two cri-
tical pieces of information: the ow velocity u; is parallel to the water surface slopes, and both
quantities are related by the following relationship (also called théfriction” equation in the
following):

U ¥4 Ch psg Hos b 4)

where is an exponent equal td for the Darcy-Weisbach model anifor the Manning equation;Cis a con-

1
stantde ned byC ¥ Egﬁs :5 is the hydraulic slope in the direction; His the Heaviside function (1 if positive, O

if negative), which indicates that no displacement is expected with negative (i.e., upward) slope; gisdhe
steepest slope (largest positive slope value).

The minimum requirement to take into account the pressure gradients is to considgin equation (4) as
the slope of the water surface rather than of topography. This implies that one must solve equations (1)
and (2) (or equation (4)) in 2-D to derive both water depth and velocity u; as is classically done inood
inundation models (see review iHorritt and Bateg2002]). The computational cost of doing so is prohibi-
tive for landscape evolution models, although signtant improvements have been obtained in modeling
the long-term evolution of braided and meandering patternsJang and Shimizw2005;Nicholas et al 2013;
Ruther and Olsen2007]. Recent advances with cellular automata techniques are also worth noting
[Coulthard et al 2013], which couple the erosion/deposition codEAESARith Lis ood-FP[Bates and De
Roq 2000].

2.2. A Stochastic Particle-Based Method for Solving Hydrodynamics

We propose to improve hydrodynamics by solving equations (1) and (4) (i.e., by neglecting the inertia terms
in equation (2)). The basic requirement to take into account hydrodynamics is that the particle velocity (and
thus direction) is de ned according to equation (4), which routes the precipiton based upon the water sur-
face slope rather than on topography. A stochastic algorithm is implemented where the particle direction
is chosen probabilistically as a function of velocity and of water surface slope:

Rou " Hes 5)

where R is the probability for the particle to follow the directioni. The probability term ensures that all pos-
sible directions de ned in equation (4) are actually sampled probabilistically, which minimized the occur-
rence of long-range preferential ow along the eight primary orientations, although each precipiton runs
along discrete directions (D8) of the grid. Equation (5) represents the stochastic equivalent of the directional
component of the friction equation (4).

The stochastic walk results in a series of precipitons that pass through each grid cell at a frequency propor-
tional to the local discharge Crave and Davy2001]. The inow of precipiton in a cell de nes the total water
dischargeQ:

Q¥ pVh &Pp (6)

p numbers the list of precipitons that pass through the cell at timé. Vi, is the volume of water carried by the
precipiton p when entering the cell, and is the Dirac delta function. The integral d@ over time is the total
volume of water entering the cell. Because of the stochasticity introduced in the precipiton creation and rout-
ing (equation (5)), the passage of particles through a cell is a Poisson process, where the arrival time of a par-
ticle t, is independent of the others (Markov hypothesis). Thus, the time interval between successive
precipitons ( tP=t° t* %) is exponentially distributed with a characteristic time equal to the ratQ,
where Vis the average volume of a precipitongrave and Davy2001].

The basic idea of the method is to calculate the water depthresulting from a stochastic differential equation
that expresses a water mass balance equation for each grid cell:

dh
dt
whereAis the cell area. In equation (7), the cell iled up by precipitons (last hand-right term), which run out
at a rate given by the ow rate function (h,s) ( rst right-hand term) whose direction is given by the

A=Y &;shpQ¥s &isbp , VW &P @)
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water depth

. The choice of the function is the key
\P point of the method; we de ne it as
. the ow rate given by the friction equa-
tion (4), which is either the Manning or
Darcy-Weisbach relationship:

LN precipiton displacement (equation (5)).

precipitons’

" " d:sb Vaw uhvadw @ sh P (8)

! . . ) wheredw is the ow width equal to the
Figure 1. Schematic graph showing the evolution of (top) water depth L
and (bottom) precipiton arrival with time in a cell. The water depth cell areaAdivided by the channel length
increases abruptly at each precipiton passage and then decreases gra- dlandsis the slope attimet. The way the
dually according to equation (10). The solid symbol indicates the series of ux leaks out of the cell with precipi-
water depth $i"} de ned at each precipiton arrival. tons is explained in a next paragraph.

Since the in ow occurs at discrete times, equation (7) solves est-order differential equation between two
successive precipitons:
dh ch;sh

_l/
da” T A

9)

where the ow length dlis the grid cell dimension parallel to the ow direction. Because of the D8 directions,
dl can be either the grid cell side size or the diagonal size, but the product length by widdli (dw) is always
equal to the cell areaA. The equation becomes

@ Y, cp ch PL

dt 'l (10)

This rst-order differential equation indicates that the cell is emptying with an apparent time scaleﬁgp It
can be solved analytically if the slopsis assumed constant. Combined with equation (7), this gives the
following expressions:

cp

ift<t’:hdbvhP ! 1p gl shPt t tP1 (11)

C
fort vatP - P 4hP 1 1p apshpl t Pt p (12)
where the seriesiP} refers to the water depth at timeP, just after the volume increase (i.e., the relative max-
ima observed in Figure 1, which shows an example of such evolution).

The series} constitutes the solution of the stochastic equation (7). An example of a typical evolution is
given in Figure 1. If the uctuations are small enough, the average water depth ¥4HhPi is the value

predicted by the friction equation (4):.q 1/4dgwl/4cp & Pt (see the demonstration given in Appendix A

for small uctuations). The discrete arrivals of precipitons are implicit to the method and causgtuations

that are not necessarily physically relevant (although Figure 1 is typical of natural systems with a rapid
increase of discharge and water depth following rainfall, and then a slow decrease). The validity and accu-
racy of the method is then directly related to the uctuation amplitude around the average, which
increases with volume sizeVP and thus time step, as for any numerical method. Thus, equation (12)
constitutes the stochastic equivalent of the friction equation (4).

Equation (12) also denes the precipiton volumeV?,,, when leaving out the cell. To maintain a global mass
balance for water, it must be equal to the total volume of water lost by the cell since the latest precipiton
p 1, just before being lled up by the precipitonP:

VBV by Shisht%\VPp AR L BP (13)
VP« becomes the in ow precipiton volume for the next cell visited by the precipiton. Note that?, ¥ VE if

hP=hP I which happens when the solution is stationary. Equation (13) is the actual equivalent of the mass
balance equation (1).
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The numerical simulations consist of ave-stage process (in bracket, we give the continuous equivalent):

1. (rainfall’in ow) Precipitons are stochastically created according to an aw map, which describes all the
processes that contribute to ow on topography (rainfall, channel discharge, or groundwater seepage).
The initial volume of precipiton isv® ¥ Q.dt, whereQ s the local in ow or discharge and d is the time
increment between two successive precipitorftaunched’ on the grid, wherever they land on.

2. (riction equation The friction equation results in several steps:

2.1 Water depths are rst calculated at the timet=tP from equation (12) for the current cell or
equation (11) for neighbors, which are the approximate solutions of equation (7), valid for constant
slope. The parameters of both equations (slope, direction) are those prevailing the last time cells were
updated ¢=t° *for the current cell).

2.2 Water surface slopes are calculated from the updated water depths.

2.3 The parameters (slopél) of equations (11) and (12) are updated.

3. (advection Precipitons are routed toward a neighboring cell according to equation (5). If the hydrody-
namic model is coupled with erosion and sediment transport processes, this is done at this stage during
the displacement of the precipiton.

4. (mass balance equatigrThe precipiton volume is updated by applying equation (13).

5. (oundary conditionsThe precipiton path stops when it reaches grid points prescribed &sbsorbing
boundary elements. Since the downward slope cannot be calculated for these points, the water depth must
be xed by arelationship, or calculated in the same manner as others by using a surrogate value of water
slope: that of the upstream cell or the topographic slope. The latter is used in the presented simulations.

It is also possible to use &stationary’ variant of the preceding scheme, where the precipiton volume is not
updated in stage 4.

4h. The precipiton keeps its initial volume all along its path. The transient stages are not described correctly,
but the solution goes quickly to the stationary solutionh(independent of t) since the precipiton“ lIs” all
downstream points with a constant volum&®. Since the stationary stage is deed asV®, ¥4 VP, the solution

is similar to the nal stage of the full equation. With this variant, the water mass balance is not ensured for
each precipiton, but is achieved on average. The stationary solution is much faster than the transient one
(i.e., more than 10 times) because it reduces the water deptictuations inherent in this stochastic method,
and thus allows for larger time steps.

Hereafter, we discuss a few important points of the model.

2.2.1. Why This Is a Stochastic Equation

The basic equations (5) and (7) contain stochastic terms both in the direction probabHjtgnd in the tP series,
with a Poisson distribution of interevent time lapse® t° * used in equations (11) and (12). The spatial
derivatives that are intrinsic to the basic equations (1) and (2) are ensured by the variations of the precipiton
paths. The speed of the method is largely due to the fact that precipitons are independent of each other, i.e.,
launched one by one. The relationships between adjacent cells are mainly provided by the time sé¢gasd

h,, that are recorded for each cell of the grid.

2.2.2. Stability Criteria

We propose here an attempt to formalize a stability criterion for the method. The results will be checked with
numerical examples in the following sections.

As shown in Figure 1, the method induces timeuctuations of the water surface, which in turn modes the
slope distributions. If the uctuations are larger than the generdkexpected' slopes, the precipiton walk will
be considerably perturbed and the numerical solution will not converge to the expected one.

. . P -
The water surface uctuations have two sources: (1) the |ncreaseﬂ at each precipiton passage (see
equations (11) and (12) and Figures 1 and 2) and (2) thectuations of the time series t°=tP t* L.
Both affect the considered cell but also for its neighbors, and thus contribute to modifying slomed o quan-

tify these effects, we start from the linearized form of equation (12), valid for small values th=t° t*

CP_ip1 bl o W
dISh tpx:y

hP Y4hP  hP ! (14)
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Figure 2. (a) Straight rectangular channel used to compute water depth. (b) Predicted water depth at different time steps
for the two models. Predictions of Floodos are in good agreement with Laod-FP.

For stationary solutions, hP is null on average (h° ¥ OR so the rst and second right-hand terms of equa-

tion (14) are on average identical. Sind# is constant, the uctuations » of hP are due both to the uc-
tuation of t°, , and to the uctuations p of hP 1 The series of precipiton arrival times in a cell is a
Poisson process, which has two consequences for this calculation: the time lapse between two successive
events is exponentially distributed, with » ¥4~ tP, and the uctuations of t° are much larger than ofP

if W is small enough (indeedh:*;p :tt; Y 1). The uctuation of hP is thus mostly due to  such as

e CPgp Pty CPgp Pt ey, W (15)
X X Xy

This demonstrates that the accuracy in predicting water depth is directly proportional to the precipiton
volume, which is conrmed by numerical simulations.

A stability condition for the numerical scheme is that theuctuation of water surface does not affect signi
cantly the downward routing of precipitons, in other words, that the amplitude ofuctuations must remain
smaller than the variations due to water slops

Ve

Xy

S X (16)

This prediction will be tested in the following simulations:

2.2.3. Can We Avoid Calculating the Transfer Timet,?

To speed up simulations, we assume that, in any cell of the precipiton path, the difference in time
between two successive precipitons, t’=t° t° ! (see equations (7) and (12)), is well predicted by
the average of the initial difference t8%tP tP 1, where t? is the creation time of the precipitonP.
This assumption is valid if the transfer time is short compared to the time between two successive pre-
cipitons or if the transfer time to a given cell is equivalent for all the precipitons. This is thus a reasonable
assumption if a precipiton is an erosive rain event that occurs only a few times a year, as it was assumed
in Chase[1992] and Crave and Davy[2001]. For hydrodynamic issues, such asod prediction, this
assumption is no longer valid, and a transfer time should be calculated for evaluating’. However,
the method does not require to know precisely all tP values in all cells, but only the averagetP over

a certain time scalet,,g, Which can be much longer than each t,. It is easy to demonstrate that tP~

B if the averaging timet,g is longer than the transfer time of precipitons. Indeed, the total number
of precipitons passing through the cell during,.g will not be very different if we take account of the
transfer time or not.

2.2.4. Lakes

“Lake$ are local minima of topography (and thus of the associated gravityeld), where the de nition
of ow directions from particle motions poses a challengeMartz and Garbrecht1998; Turcotte et al
2001]. Since the water surfach(x,y) is expected to be at on average in lakes, the precipiton displa-
cement is mainly controlled by the“rugosity’ of h (see section 2.2.2). This induces a diffusion-like dis-
placement of precipitons, which achieve the lakelling. The tests that we present below demonstrate
the ability of the precipiton method to ef ciently resolve this issue with no signcant additional
computational time.
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Table 1. Model Parameters for the Simulations Presented in Figure®?2

Figures

CPU Time (min)

nism 3

Wet Pixels (pixel)  x(m) In ow (m3s 1) Slope

Length (pixel)

Width (pixel)

3band9
2a, 3a, 3b, and 9

12.48
21
0.57

0.04

0.04

0.002
0.002
0.002

0.001

120
120
120

0.60.2

200,000

50,000
12,500
50,000

2,000
1,000

100

50
25

Rectangular channel

3band 9

0.04
0.04

500

0.1

250

20

Bump

5¢, 7a, 7c, and 9

6 and 9
7b, 7c, and 9

34

0.04

0.04
0.04

500

500
500

2.5
7.5

286,000

36,500
4,190

1,352

451
151

2,053

685
229

Cruz lidar DEM (reach mode)

14
0.05

22.5

8

0.04

60

7.5

131,076

396

331

Cruz lidar DEM (catchment mode)

2.2.5. Numerical Implementation

The precipiton model has been implemented in C++ according to the
description given in the previous paragraph. The code is call&bodos
hereafter and is available under the GNU/GPL license.

3. Hydraulic Simulations and Comparison With
Other Methods

All the simulations described below have been performed by considering
a Manning relationship for ow resistance with a Manning coefient of
0.04. The coefcients of equation (4) are thus 2% and C ¥4 ¥, 25.

3.1. Transient Experiments

The objective of the rsttestis to check the ability oFloodogo model the
transientbehavior of ood propagation. We assessthe accuracy of the water
depth prediction for a simple rectangular channel with constant upstream

ow conditions (Figure 2a). The model parameters are given in the Table 1.
Calculations have been performed in the nonstationary mode as described
above, similar to a dam-breakood event, with no bank friction.

Predicted water depths were compared with.is ood-FR, one of the most
used numerical model in ood prediction [Bates et al] 2010;Coulthard
et al, 2013] whose predictions have been benchmarke@&dtes et al
2010;Hunter et al, 2005]. We used the implementation dfis ood-FPin
CAESARAESARIs ood 1.6a Coulthard et al 2013].

Figure 2b shows a comparison of water depth as a function of distance for
different time steps betweenLis ood-FPand our model.LisFlood-FBses
the same concept of storage area &doodoqi.e., water is stored in the grid
and ows into and out of each cell) Bates et al 2010], but it solves
equations from a nite difference discretization of time and space, while
Floodossolves equations along the particle path&.isFlood-FRIso solves
inertia terms of the shallow water equations, whilEloodosloes not solve
them yet; these terms are negligible in the presented test.

Results show thaFloodosperfectly matches the predictions oLis ood-FP
for each time step of the simulation, demonstrating the ability of our model
toreproduce the transient behavior of ood propagation. Exceptfortherst
four lines close to the boundary, for whichFloodosshows boundary
effects, the difference between both models is about 0.5% on average.

3.2. Stationary Mode and Convergence Conditions

In this second test, we check the numerical conditions for which the sta-
tionary mode (point 4b in the code description; section 2.2) is stable. In
the stationary mode, the precipiton keeps its initial volume all along its
path (i.e.\P = constant), entailing a faster lling of the water volume and
thus a much shorter time to reach the stationary regime. To test the accu-
racy and the increased efciency of our approach, we use the same para-
meters as in the previous case. Given the rectangular shape of the channel
and the fact that only the basal friction is considered in this example (see
the discussion after equation (3)), this experiment can be easily compared
to a 1-D Manning analytical solution, although the calculation is actually
performed in 2-D. Figure 3a shows the calculated water depth as a func-
tion of time, for different calculation time stepgdt (and thus precipiton
volume VW =Q.dt, with Q as the in ow). The rst stage of water depth
increase corresponds to the irlling of the rectangular channel, whose
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Figure 3. (a) Water depth evolution through time for different time stepsit, precipiton volumes\P, and for a stability cri-
terion §. Values are indicated in the framed box. (b) Water depth evolution through time for different grid cell resolutions
for §=0.75.

time scale depends on the grid size but not on the elementary precipiton volumé (see the discussion
below). The number of precipitons required to reach stationary is thus inversely proportionavfo

Although each run converges at some point to a stationary solution, the obtained value is correct only for
small precipiton volumeVP (full lines in Figure 3a). The stability criterion corresponds to a critical precipiton
volume \V? about equals to 2 x 10 2m?3. We verify the conjecture formulated in the previous paragraph that
the precipiton volume should remain smaller than water height difference between adjacent cells along
stream (equation (16)). We found here that, given the water surface slagehe ratio§ 1/Ltsn—\)’(";—),must remain
smaller than 0.75.

The effect of the grid size, x, on the water depth calculation is shown in the Figure 3b. In order to compare
results from the different tests, the time step valudt (or precipiton volume\P) was chosen as the largest that
respects the stability criteri& = 0.75. The time to stationary solution increases withx. This result is the direct
consequence of the method. Indeed, each precipitorils the downstream grid cells by a volum&P = Qdt
Thus, the total amount of water brought by precipiton in the system kzp%, and the number of precipiton
to reach a given water depthh. is the ratio between the total volume, and the volume brought by precipiton

nP Y, %. Replacing/® by its value given by the stability criterion leads toP ¥4 S;“L; v Ya srs]fo N, whereN; is

the number of grid cells. This result shows that the number of precipiton necessary to bring the required
amount of water basically increases as the number of grid cells for a given stability criteifrAs observed

in Figure 3D, the corresponding time 1/4% 1/4% increases linearly with x.
The dependency of the computational time with resolution will be discussed in section 1.
3.3. Dam

This test was designed to evaluate the effectiveness of the method tibup lakes and dams. The initial topo-
graphy is a straight channel with a hump in the middle that acts as barrier for the precipiton walk toward the
downstream boundary (Figure 4a). Two discharges were tested (Figure @)0.2 (top), for which the water
depth h without hump is larger than the hump height, andQ=0.02 (bottom), for whichh without hump is
smaller. The test characteristics are given in the Table 1; it was performed in the stationary mode.

Precipitons successfullyll the volume upstream of the hump, forming a lake, with the average hydraulic
slope and depth dependent on both the hump height and inow. The lake eventually overtops the dam

to ow downstream. With the stationary mode, one precipiton carl up the volume upstream of the hump,
since it brings its water volume to each cell it goes through. The water thus continues to be routed as long as
it runs above the hump and can reach the downstream boundary. The water depth downstream of the hump
is consistent with the expected theoretical value, calculated by assuming that the water slope is similar to
topographic slope (Figure 4b). Upstream of the hump, the water depth is slightly larger than the top of the
hump with a water slope slightly lower than the topographic slope. As expected, smaller discharges have less
steep slopes. We check that the friction equation (4)) is vesd for each section of the canal.
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a. The hump problem addresses the
subcritical versus supercritical nature
of the ow, which was initially posed
for frictionless ow. Since the
momentum terms are neglected in
this version of the code (equation (3)
compared to equation (2)), the ow is
subcritical and affected by down-
stream controls. However, precipi-

Q 0.2 tons are moving on top of the water

0.5 - B surface, which precludes the forma-

] water surface 0.28 tion of local minima in the water sur-

—_ face, as would occur in the theoretical

solution of the hump problem for

1 some subcritical conditions, and at-

1 topography water surfaces form instead.

T I

0 10 20

distance

o

height

0.0

3.4. Real-Case Applications With
Lidar DEM

Q 0.02 A potential application of the model
0.5 - h* 0.07 is the prediction of ood levels from
high-resolution  digital elevation
models (DEMs) that are now regularly
acquired from airborne lidar. The test
was applied on the Cruz River near
1 topography - Cruz Rock (CA, USA), whose lidar
0.0 T T DEM acquired in the projectPG&E
0 10 20 Diablo Canyon Power Plaatan origi-
distance nal resolution of 1 m is available on

! ) ) . ) . the web platform OpenTopography
Figure 4. (a) Straight channel with a bump of maximum height 0.2 in the (http://www.opentopography.org/)
middle. (b) Water depth for both discharges (top) 0.2 and (bottom) 0.02. ’ ) ’ )
is the stationary river depth without bump calculated for the discharg@and 1 he DEM has been degraded to 2.5 m
channel geometry according to equation (4). for our study (Figure 5a). The model-

ing challenge is to deal with a com-
plex oodplain containing geomorphological features such as multiple channels, terraces, bars, and a
partial dam at the outlet (an actual bridge treated as a dam after the rasterization of the lidar 3-D data).
The high-resolution DEM contains pits (i.e., local topographic minima), especially in thaplain, which like
lakes are a challenge for traditionalow routing models [Zhu et al, 2013]. To evaluate the robustness of our
method to pits, we use the topography as is, i.e., without erasing pits with a depressidimg algorithm.

{ water surface

height

We use the model under the stationary mode with simpléd boundary conditions consisting of water input
localized on pixels at the upstream river boundary. With these conditions, the water depth is computed only
on pixels where the river actually ows. The river discharge has beerxed at ~500 nt' s to ensure an over-
bank ow in the oodplain.

Since the friction equation (4) is not an a priori constraint, but rather emerges from the model rules, we check
if it is valid at every point by comparing the water depth derived from the simulation with the one expected
from equation (4) giveng and s. Figure 5¢ shows that there the friction equation is vegd with a very good
accuracy for all pixels (average standard deviation of 0.004 m between calculated and predicted values).

The model also manages to calculateow around the arti cial dam (Figures 5a and, 5b) with local holes in the
river bed (see for instance the downstream part of the bridge/dam in Figure 5c¢). This demonstrates its ability to
deal with high-resolution DEMs, even with high-frequency variations in topography, whether it is real or not.

Note that, in the stationary regimel-loodoscan calculate the ood extent for a particular discharge (Figure 6),
but the ood spreading from inlet must be calculated with the nonstationary version.
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Figure 5. (a) Lidar DEM near Cruz Rock (USA) derived from airborne lidar data acquisitios 2.5 m) with a zoom of the
oodplain area close to outlet. The blue scale colors represent the water deptbwv direction vectors weighted by dis-
charge are shown in black. (b) Longitudinal prée through the downstream dam showing water surface on top of the
topography. (c) Density plot of the water depth calculated byFloodoghorizontal axis) versus predicted from the Manning
friction equation given discharge and water slope. The red line indicates a perfect agreement between both values.

We compare results obtained fronfFloodoswith Lis ood-FP. The calculations were performed on both high-
and low-resolution DEMs (2.5 m and 22.5 m, respectively) in order to appraise the grid resolution effects
(Figure 7). Although.is ood-FPunderpredicts the water depth in a few places compared to what the friction
equation would predict, both models give about consistent results for the 2.5 m grid (Figure 7a). For the
low-resolution grid, Lis ood-FPsystematically overpredicts water depth compared tBloodos(Figure 7b).
With such a large resolution, a large part of the channels are made of one or two pixels, so that there are alarge
number of “wet” pixels that are surrounded bydry” ones, as illustrated in Figure 7b (red areas). This is not a
favorable con guration for the four-neighborLis ood-FPalgorithm. On the contraryFloodosuses an eight-
neighbor algorithm and is insensitive to the wetting/drying issue. The results obtained from the low-resolution
DEM are thus consistent with those from the high-resolution DEM (Figure 7c); the main discrepancies between
both predictions re ect mostly pixels that are wet for the 2.5 m grid and dry pixels for 22.5 m grid.

a. b. c.
q (m?/s)
4

Figure 6. Picture of the predicted ood extent for different discharges in the Cruz DEM. (&, = 40 m s L

(b) Qn = 150 ms L (c)Qn =500 ms L g is the specic discharge.
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Figure 7. Density plot of the comparisons betweefloodosand Lis ood-FPwater depth predictions for different grid resolutions (red line isg100d0s= hLis 0od) @long
with a raster map of the difference of water depth predictions ((ax = 2.5 m and (b) x=22.5 m). (c) Density plot comparingloodoswvater depth predictions for
the same DEM with two resolutions of 2.5 m and 22.5 m, respectively.

4. Morphodynamic Modeling

The precipiton method was originally developed as a particle-based geomorphic model capable of resolving
the stream power erosion equation, assuming that the hydraulic slope is similar to topographic slope and
that the river width is a known function of ow (mainly discharge) and topographic parameters. In that respect,
it is equivalent to most of the current landscape evolution models (see the review Bycker and Hancock
[2010]). Itis also a reduced complexity model capable of mimicking the emerging properties of geomorpholo-
gical systems such as braided pattern€dstelltort et a) 2004 Davy and Lagug2009]. The capacity of the preci-
piton method to resolve the shallow water equations, thus calculating hydraulic slopes, and to be easily coupled
with erosion/deposition processes make it an efient numerical method to explore complex river dynamics.

In the following, we will brie y describe the method and demonstrate its capacity to model the emergence of
river width and braided patterns. These examples are presented as an illustration of the model ability to effec-
tively couple hydrodynamic and erosion laws and to generate elementaryvial instabilities.

4.1. Implementation of the Erosion Model

We use the implementation described in prior worl(rave and Davy2001;Davy and Crave2000;Davy and
Lague 2009], where each precipiton is eroding, transporting, and releasing sediments with given erosion and
deposition laws. The erosion functioais controlled by the hydraulic shear stressand critical shear stress,
where = ghseVik.0 < B. Other erosion functions could have been used such as the stream-power law,
which relates erosion to dischargg and hydraulic slopes [Howard 1994;Lague 2014;Whipple and Tucker

1999]. Deposition rated is proportional to the sediment ux gs, d-% q—s, where is a characteristic length,

which controls the transport length of sediments and is assumed to be a function of dischar@afry and
Lague 2009]. If is much larger than ow distances, the system is detachment-limited, and is only controlled
by local erosion rateg, if is small, the erosion/deposition equation is similar to a transport capacity equation
where the sediment ux gsis exactly equal to the product of the sediment transfer lengthwith local erosion
rateegs ¥ e

Sediment uxes in transverse direction to the mainow are also very important components in the geomor-
phodynamic process$chuurman et a] 2013]. Both lateral erosiomj and deposition €s) uxes are given by

aVike He a7
Os Yaky 1H 0 (18)

where |H is the topographic gradient orthogonal to the stream direction (referred to as the lateral topo-
graphic gradient) andke and k4 are the dimensi