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A precipiton method to calculate river hydrodynamics,
with applications to � ood prediction, landscape
evolution models, and braiding instabilities
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Abstract The“precipiton” method is a particle-based approach that consists of routing elementary water
volumes on top of topography with erosive and depositional actions. Here we present an original way to
calculate both river depth and velocity from a method that remains embedded in the precipiton framework.
The method solves the governing equations for water depth, where the water depth is increased by a
constant quantity at each precipiton passage and decreased by a value based on a� ow resistance equation.
The precipitons are then routed downstream on top of the resulting water surface. The method is applicable
even if the precipitons are routed one by one (i.e., independent of each other), which makes it simple to
implement and computationally fast. Compared to grid-based methods, this particle method is not subject to
the classic drying-wetting issue, and allows for a straightforward implementation of sediment transfer
functions between the river bed and running water. We have applied the method to different cases (channel
� ow, � ow over topographic barriers, and� ood prediction on high-resolution lidar topography). In all cases,
the method is capable of solving the shallow water equations, neglecting inertia. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided patterns with
geometries independent of grid size. Application of the model in the context of multithread rivers gives new
insight into the development of braiding instability.

Plain Language Summary The“precipiton” method is a numerical method that consists in routing
elementary water volumes on top of topography with erosive and deposition actions. Here we present an
original way to calculate both river depth and velocity. The method consists in solving water depth from a
differential equation, where the water depth is increased by a constant quantity at each precipiton passage
and decreased by a value based on a� ow resistance equation. The precipitons are then routed downstream
on top of the resulting water surface. The method is applicable even if the precipitons are routed one by one,
i.e., independently of each other, which makes it simple to implement and quite fast. Compared to grid-based
methods, this particle method is versatile, fast, and allows for a straightforward implementation of sediment
transfer functions between river bed and running water. We have applied the method to different cases
(channel� ow, � ow over topographic bumps, or real cases with high-resolution lidar topography). In all cases,
the method does very well in predicting the distribution of� ood on landscapes. When coupled with erosion
and sediment transport equations, the model is able to reproduce both straight and braided river patterns.

1. Introduction and State of the Art

The precipiton method is a particle-based approach, which mimics the role of precipitation (precipiton =
elementary rainfall volume) on shaping topography [Chase, 1992;Crave and Davy, 2001;Davy and Crave,
2000;Davy and Lague, 2009;De Boer, 2001;Favis-Mortlock, 1998]. Together with cellular methods [Coulthard
and Van De Wiel, 2006;Fonstad, 2006;Murray and Paola, 1994;Nicholas, 2005;Thomas and Nicholas, 2002], they
have been popular for mimicking self-organized emerging properties of geomorphological systems, from
high-resolution braided patterns to drainage network organization. Such high-resolution, high-frequency,� u-
vial geomorphic patterns and dynamics are beyond the scope of simple landscape evolution models, whose
hydrodynamic description is much too rudimentary (see the state-of-the-art review byTucker and Hancock
[2010, and references therein]). Similarly, such conditions are rarely modeled over large spatial and temporal
scales with sophisticated computational� uid dynamic models because of computational time, although recent
progress is worth noting [Jang and Shimizu, 2005;Nicholas et al., 2013;Schuurman et al., 2013;Wang et al., 2010].

Solving hydrodynamics constitutes a major dif� culty for cellular automata and precipiton methods, and for
some models a clear weakness that casts doubt on the relevance of results. The dependency of channel
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geometry on grid size that was observed in the seminal model ofMurray and Paola[1994], as well as in
subsequent work [e.g.,Doeschl-Wilson and Ashmore, 2005;Nicholas and Quine, 2007;Ziliani et al., 2013],
emphasizes the limit of these reduced complexity models to obtain a realistic description of channel width
dynamics. This issue re� ects that the classic kinematic wave assumption used in these models neglects the
water pressure depth gradient, although this force is critical to enable water to spread laterally over
submerged banks, and for the channel to maintain a nonvanishing width (i.e., larger than the grid pixel)
[e.g.,Coulthard et al., 2013;Izumi and Parker, 1995;Tucker and Hancock, 2010]. Without this pressure gradient
term, landscape evolution models are unable to predict channel width from erosion dynamics; they must
specify it as an external relationship and basically consider channels to be 1-D“wires” surrounded by 3-D hill-
slopes. As this external relationship imposes a� xed relationship between channel width and mean discharge,
these models cannot capture, for instance, the tendency for alluvial channel width to vary with sediment
supply and/or incision rates [e.g.,Duvall et al., 2004;Lague, 2010;Lague, 2014;Lave and Avouac, 2001;
Simon and Thorne, 1996;Whittaker et al., 2007].

The concept of precipitons was originally introduced byChase[1992] as a discrete representation of water
volumes that are stochastically generated by rainfall, which then run over and erode topographic surfaces
[Chase, 1992;Crave and Davy, 2001;Davy and Crave, 2000]. It is a Lagrangian method (equations are written
in the � uid reference frame) that offers substantial advantages compared to the classic Eulerian methods:

1. Since particles are elementary� ow elements, the largest density of particles is naturally encountered in large
� ows. Wetting (where� ow spreads over dry areas) or drying (where� ow no longer takes place) of the land-
scape is thus inherently solved by the displacement of precipitons, while it may remain a dif� culty for
Eulerian methods (see the discussion inBradford and Sanders[2002] and inJang and Shimizu[2005]).

2. The coupling between hydrodynamics and erosion/transport/deposition is straightforward since particles
are � ow elements eroding topography and transporting sediments, whereas implementation of these
processes raises dif� culties in classic numerical schemes for managing time scales of both� ow depth
and bed deformation [Cao, 2007].

3. The boundary conditions are easily managed: particles are introduced to each grid cell at a rate corre-
sponding to the in� ow, which can be either a rainfall rate or an upstream river discharge. The outlets
are prede� ned; they are stop conditions for the particle walks.

4. Implementing nonlocal transfer, which results from sediment transfers between bed topography and run-
ning water over a wide range of spatial scales [Foufoula-Georgiou et al., 2010;Stark et al., 2009], is straightfor-
ward since erosion and deposition are different processes that occur during the precipiton path (seeDavy
and Lague[2009] and the concept of sediment transfer length, which is a way to model nonlocal transfers).

Up to now, the main drawback of the precipiton method is its very crude approximation of river hydrody-
namics since the original method assumes that precipitons move down the steepest topographic slope inde-
pendent of hydraulic gradients.

In this paper, we resolve this limitation by calculating both river depth and velocity from a method embedded
in the precipiton framework, thus maintaining its computing ef� ciency. To our knowledge, this approach is the
� rst attempt to solve the shallow water equations with precipiton methods in landscape evolution models.
There are other particle-based methods available for solving hydrodynamics, such as smooth particle hydro-
dynamics [Lee and Han, 2010;Solenthaler et al., 2011], or particle-in-cell approaches [Brackbill et al., 1988;
Tetzlaff and Harbaugh, 1989] that share most of the above-cited advantages. However, managing boundaries
in more complex in these approaches [Li and Liu, 2002;Liu and Liu, 2003] and, unlike the precipiton method,
they require calculating the interactions between particles, which is more computationally expensive.

The paper is organized as follows:� rst, the basic hydraulic equations and their implementation in the fra-
mework of precipitons are presented. Second we verify performance for several different cases using both
idealized and natural topography, examining (i)� ood propagation in an inclined rectangular channel, (ii)
� ow over a topographic barrier to evaluate the ability of the model to deal with lakes and dams, and (iii)
� ood inundation in a natural river valley using high-resolution LiDAR topography. In this step, we also
compare our method to the storage cell inundation modelLis� ood-FP[Bates et al., 2010] that has been
recently coupled with the cellular automata modelCAESARto fully solve the shallow water equations
in landscape evolution models [Coulthard et al., 2013]. Lastly, we apply the new model to a high-
resolution topography obtained with lidar. Lastly, we show how the model can be coupled with
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erosion and deposition rules to model channel morphodynamics, and we discuss application of our
approach for modeling landscape evolution. We present two types of morphodynamic experiments: (i)
the incision of a straight channel that demonstrates the robustness of the numerical method and the role
of lateral erosion and (ii) the development of multithread braiding patterns that demonstrates the ability
of the model to simulate different hydromorphic regimes, providing new insights on braiding instability
(a generic term which indicates the occurrence of a dynamic braided morphology).

2. A Particle Method for Solving Hydrodynamics

The precipiton method routes elementary water volumes (precipitons) that interact with topography. The
precipitons move according to hydrodynamic equations, and modify topography by erosion and deposition
laws dependent on both hydraulic conditions (i.e., shear stress, discharge calculated at each grid cell from the
frequency of precipiton passages over the cell, or slope) and sediment volume carried by the precipiton. A
more complete description of the method, and of the€ros code, is available inCrave and Davy[2001], as well
as in Davy and Crave[2000] andDavy and Lague[2009]. An intrinsic geometric aspect of the precipiton
method is that particles move independently on a� xed rectangular grid, where the elementary displace-
ments are restricted to the eight nearby neighbors (D8 method [Tarboton, 1997]), as in cellular automaton
methods. The hydraulic� ux is de� ned statistically as the average over a large number of particles, whose
direction is de� ned from a probabilistic distribution function that depends on local slope. It is thus not
restricted to one of the eight neighbor directions.

In the initial version, hydrodynamics merely consists of moving precipitons downward in the direction of
topographic slope. We show in the next paragraphs how the 2-D shallow water equations (without the inertia
terms) can be implemented in the precipiton framework.

2.1. Basic Equations of Hydrodynamics

The 2-D shallow water equations are a widely used approximation of the 3-D Navier-Stokes equation for
applications such as the evaluation of� ooded areas, erosion and sediment transport predictions, and land-
scape evolution models (see review inHorritt and Bates[2002]). The basic equations are the conservation
of mass and the conservation of momentum equations integrated over the� ow depth, where the basic
forces are gravity and friction drag. The water balance is written (with Einstein notation) as

� h
� t

þ � iqi ¼ 0 (1)

whereh is the water depth,t is the time, andqi is the� ow discharge vector, whereqi = hui with ui as the mean
� ow velocity vector. The momentum equation is

� h
� ui

� t
þ uj

� ui

� xj

� �
¼ � gh

� h
dxi

þ
� Z
dxi

� �
� � i (2)

whereZ is the bed elevation,� i is the shear stress acting on the river bed,� is the water density,xi and xj are
the horizontal coordinates,ui and uj are the horizontal velocity coordinates, andg is the gravitational con-
stant. The shear stress� i is assumed to be maximum along the� ow path and zero perpendicular to� ow.

The left-side terms represent inertia. The� rst term is the local acceleration (� h � ui
� t ), which vanishes at steady

state, but has been found to capture a large part of the nonstationary� ooding characteristics [de Almeida and
Bates, 2013]. The second left-side term represents the convective acceleration; it is important with large spa-
tial variations of discharge intensity or direction, and often negligible where the� ow varies gradually.

The right-side terms represent both driving (gravity) and resisting forces. The� rst, (� gh � h
dxi

), is the� uid pres-

sure term. The second is the resistance of the channel bed and banks to� ow, which is collinear with the� ow
velocity such as

� i ¼ K hð Þuj jui (3)

where |u| is the velocity modulus andK(h) is a function which is found to be slightly dependent onh in experi-
ments (Manning[1891] model) or modeled as a constant (Darcy-Weisbach).Kis dependent on the rugosity of
the river bed. Equation (3) implicitly assumes that the basal friction on the river bed is much larger than any of
the other frictional terms, such as lateral bank friction and viscous drag in the water column.
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If we assume that the inertial terms are negligible, the momentum equation (2) provides two cri-
tical pieces of information: the� ow velocity ui is parallel to the water surface slopesi, and both
quantities are related by the following relationship (also called the“friction” equation in the
following):

ui ¼ Ch� si��
s

p H sið Þ (4)

where � is an exponent equal to1
2 for the Darcy-Weisbach model and23 for the Manning equation;Cis a con-

stant de� ned byC ¼ � gh
1
2� �

K hð Þ2
;si is the hydraulic slope in the directioni;His the Heaviside function (1 if positive, 0

if negative), which indicates that no displacement is expected with negative (i.e., upward) slope; andsis the
steepest slope (largest positive slope value).

The minimum requirement to take into account the pressure gradients is to considersi in equation (4) as
the slope of the water surface rather than of topography. This implies that one must solve equations (1)
and (2) (or equation (4)) in 2-D to derive both water depthh and velocityui as is classically done in� ood
inundation models (see review inHorritt and Bates[2002]). The computational cost of doing so is prohibi-
tive for landscape evolution models, although signi� cant improvements have been obtained in modeling
the long-term evolution of braided and meandering patterns [Jang and Shimizu, 2005;Nicholas et al., 2013;
Ruther and Olsen, 2007]. Recent advances with cellular automata techniques are also worth noting
[Coulthard et al., 2013], which couple the erosion/deposition codeCAESARwith Lis� ood-FP[Bates and De
Roo, 2000].

2.2. A Stochastic Particle-Based Method for Solving Hydrodynamics

We propose to improve hydrodynamics by solving equations (1) and (4) (i.e., by neglecting the inertia terms
in equation (2)). The basic requirement to take into account hydrodynamics is that the particle velocity (and
thus direction) is de� ned according to equation (4), which routes the precipiton based upon the water sur-
face slope rather than on topography. A stochastic algorithm is implemented where the particle direction
is chosen probabilistically as a function of velocity and of water surface slope:

Pi� ui�
�������������
H sið Þsi

p
(5)

wherePi is the probability for the particle to follow the directioni. The probability term ensures that all pos-
sible directions de� ned in equation (4) are actually sampled probabilistically, which minimized the occur-
rence of long-range preferential� ow along the eight primary orientations, although each precipiton runs
along discrete directions (D8) of the grid. Equation (5) represents the stochastic equivalent of the directional
component of the friction equation (4).

The stochastic walk results in a series of precipitons that pass through each grid cell at a frequency propor-
tional to the local discharge [Crave and Davy, 2001]. The in� ow of precipiton in a cell de� nes the total water
dischargeQ:

Q ¼ � pVp
in� tpð Þ (6)

p numbers the list of precipitons that pass through the cell at timetp.Vp
in is the volume of water carried by the

precipiton p when entering the cell, and� is the Dirac delta function. The integral ofQ over time is the total
volume of water entering the cell. Because of the stochasticity introduced in the precipiton creation and rout-
ing (equation (5)), the passage of particles through a cell is a Poisson process, where the arrival time of a par-
ticle tp is independent of the others (Markov hypothesis). Thus, the time interval between successive
precipitons (� tp = tp � tp � 1) is exponentially distributed with a characteristic time equal to the ratioV/Q,
where V is the average volume of a precipiton [Crave and Davy, 2001].

The basic idea of the method is to calculate the water depthh resulting from a stochastic differential equation
that expresses a water mass balance equation for each grid cell:

A
dh
dt

¼ � � h; sð Þ þQ ¼ � � h; sð Þ þ� p� pVp
in� tpð Þ (7)

whereAis the cell area. In equation (7), the cell is� lled up by precipitons (last hand-right term), which run out
at a rate given by the� ow rate function � (h,s) (� rst right-hand term) whose direction is given by the
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precipiton displacement (equation (5)).
The choice of the function� is the key
point of the method; we de� ne it as
the � ow rate given by the friction equa-
tion (4), which is either the Manning or
Darcy-Weisbach relationship:

� h; sð Þ ¼dw uh ¼ dw C
��
s

p
h� þ 1 (8)

wheredw is the � ow width equal to the
cell areaAdivided by the channel length
dlandsis the slope at timet. The way the
� ux � leaks out of the cell with precipi-
tons is explained in a next paragraph.

Since the in� ow occurs at discrete times, equation (7) solves a� rst-order differential equation between two
successive precipitons:

dh
dt

¼ �
� h; sð Þ

A
(9)

where the� ow length dl is the grid cell dimension parallel to the� ow direction. Because of the D8 directions,
dl can be either the grid cell side size or the diagonal size, but the product length by width (dl .dw) is always
equal to the cell areaA. The equation becomes

dh
dt

¼ �
C
dl

��
s

p
h� þ 1 (10)

This� rst-order differential equation indicates that the cell is emptying with an apparent time scale ofdl
u h;sð Þ. It

can be solved analytically if the slopes is assumed constant. Combined with equation (7), this gives the
following expressions:

if t < tp : h tð Þ ¼hp� 1 1 þ �
C
dl

��
s

p
hp� 1� � �

t � tp� 1� �
� � � 1=�

(11)

for t ¼ tp : hp ¼ hp� 1 1 þ �
C
dl

��
s

p
hp� 1� � �

t � tp� 1� �
� � � 1

�

þ
Vp

A
(12)

where the series {hp} refers to the water depth at timetp, just after the volume increase (i.e., the relative max-
ima observed in Figure 1, which shows an example of such evolution).

The series {hp} constitutes the solution of the stochastic equation (7). An example of a typical evolution is

given in Figure 1. If the� uctuations are small enough, the average water depthh ¼ hph i is the value

predicted by the friction equation (4):q ¼
Q

dw
¼ C

��
s

p
h

� þ 1
(see the demonstration given in Appendix A

for small � uctuations). The discrete arrivals of precipitons are implicit to the method and cause� uctuations
that are not necessarily physically relevant (although Figure 1 is typical of natural systems with a rapid
increase of discharge and water depth following rainfall, and then a slow decrease). The validity and accu-
racy of the method is then directly related to the� uctuation amplitude around the average, which
increases with volume sizeVp

in and thus time step, as for any numerical method. Thus, equation (12)
constitutes the stochastic equivalent of the friction equation (4).

Equation (12) also de� nes the precipiton volumeVp
out when leaving out the cell. To maintain a global mass

balance for water, it must be equal to the total volume of water lost by the cell since the latest precipiton
p � 1, just before being� lled up by the precipitonP:

Vp
out ¼ �t

p

tp� 1 � h; sð Þdt ¼ Vp
in þ A hp� 1 � hp� �

(13)

Vp
out becomes the in� ow precipiton volume for the next cell visited by the precipiton. Note thatVp

out ¼ Vp
in if

hp = hp � 1, which happens when the solution is stationary. Equation (13) is the actual equivalent of the mass
balance equation (1).

Figure 1. Schematic graph showing the evolution of (top) water depth
and (bottom) precipiton arrival with time in a cell. The water depth
increases abruptly at each precipiton passage and then decreases gra-
dually according to equation (10). The solid symbol indicates the series of
water depth {hp} de� ned at each precipiton arrival.

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004156

DAVY ET AL. A PRECIPITON METHOD FOR RIVER DYNAMICS 5



The numerical simulations consist of a� ve-stage process (in bracket, we give the continuous equivalent):

1. (“rainfall” in� ow) Precipitons are stochastically created according to an in� ow map, which describes all the
processes that contribute to� ow on topography (rainfall, channel discharge, or groundwater seepage).
The initial volume of precipiton isVp

o ¼ Q:dt, whereQ is the local in� ow or discharge and dt is the time
increment between two successive precipitons“launched” on the grid, wherever they land on.

2. (friction equation) The friction equation results in several steps:

2.1 Water depths are� rst calculated at the timet = tp from equation (12) for the current cell or
equation (11) for neighbors, which are the approximate solutions of equation (7), valid for constant
slope. The parameters of both equations (slope, direction) are those prevailing the last time cells were
updated (t = tp � 1 for the current cell).

2.2 Water surface slopes are calculated from the updated water depths.
2.3 The parameters (slope,dl) of equations (11) and (12) are updated.

3. (advection) Precipitons are routed toward a neighboring cell according to equation (5). If the hydrody-
namic model is coupled with erosion and sediment transport processes, this is done at this stage during
the displacement of the precipiton.

4. (mass balance equation) The precipiton volume is updated by applying equation (13).
5. (boundary conditions) The precipiton path stops when it reaches grid points prescribed as“absorbing”

boundary elements. Since the downward slope cannot be calculated for these points, the water depth must
be � xed by a relationship, or calculated in the same manner as others by using a surrogate value of water
slope: that of the upstream cell or the topographic slope. The latter is used in the presented simulations.

It is also possible to use a“stationary” variant of the preceding scheme, where the precipiton volume is not
updated in stage 4.

4b. The precipiton keeps its initial volume all along its path. The transient stages are not described correctly,
but the solution goes quickly to the stationary solution (h independent of t) since the precipiton“� lls” all
downstream points with a constant volumeVp

o. Since the stationary stage is de� ned asVp
out ¼ Vp

in, the solution
is similar to the� nal stage of the full equation. With this variant, the water mass balance is not ensured for
each precipiton, but is achieved on average. The stationary solution is much faster than the transient one
(i.e., more than 10 times) because it reduces the water depth� uctuations inherent in this stochastic method,
and thus allows for larger time steps.

Hereafter, we discuss a few important points of the model.
2.2.1. Why This Is a Stochastic Equation
The basic equations (5) and (7) contain stochastic terms both in the direction probabilityPi and in thetp series,
with a Poisson distribution of interevent time lapsestp � tp � 1 used in equations (11) and (12). The spatial
derivatives that are intrinsic to the basic equations (1) and (2) are ensured by the variations of the precipiton
paths. The speed of the method is largely due to the fact that precipitons are independent of each other, i.e.,
launched one by one. The relationships between adjacent cells are mainly provided by the time seriestp and
hp that are recorded for each cell of the grid.
2.2.2. Stability Criteria
We propose here an attempt to formalize a stability criterion for the method. The results will be checked with
numerical examples in the following sections.

As shown in Figure 1, the method induces time� uctuations of the water surface, which in turn modi� es the
slope distributionsi. If the� uctuations are larger than the general“expected” slopes, the precipiton walk will
be considerably perturbed and the numerical solution will not converge to the expected one.

The water surface� uctuations have two sources: (1) the increase
Vp

� x� y
at each precipiton passage (see

equations (11) and (12) and Figures 1 and 2) and (2) the� uctuations of the time series� tp = tp � tp � 1.
Both affect the considered cell but also for its neighbors, and thus contribute to modifying slopessi. To quan-
tify these effects, we start from the linearized form of equation (12), valid for small values of� tp = tp � tp � 1:

� hp ¼ hp � hp� 1� �
C
dl

��
s

p
hp� 1� � � þ 1

� tp þ
Vp

� x:� y
(14)
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For stationary solutions,� hp is null on average (� hp ¼ 0Þ, so the� rst and second right-hand terms of equa-
tion (14) are on average identical. SinceVp is constant, the� uctuations� � hp of � hp are due both to the� uc-
tuation of � tp, � � tp , and to the � uctuations � hp of hp � 1. The series of precipiton arrival times in a cell is a
Poisson process, which has two consequences for this calculation: the time lapse between two successive

events is exponentially distributed, with� � tp ¼ � tp , and the � uctuations of � tp are much larger than ofhp

if Vp is small enough (indeed,
� hp

hp
�

� � tp

� tp
¼ 1). The� uctuation of � hp is thus mostly due to� � tp such as

� � hp ¼
C
� x

��
s

p
hp� þ 1

� � tp ¼
C
� x

��
s

p
hp� þ 1

� tp ¼
Vp

� x:� y
(15)

This demonstrates that the accuracy in predicting water depth is directly proportional to the precipiton
volume, which is con� rmed by numerical simulations.

A stability condition for the numerical scheme is that the� uctuation of water surface does not affect signi� -
cantly the downward routing of precipitons, in other words, that the amplitude of� uctuations must remain
smaller than the variations due to water slopes:

Vp

� x·� y
� s� x (16)

This prediction will be tested in the following simulations:
2.2.3. Can We Avoid Calculating the Transfer Timetp?
To speed up simulations, we assume that, in any cell of the precipiton path, the difference in time
between two successive precipitons,� tp = tp � tp � 1 (see equations (7) and (12)), is well predicted by
the average of the initial difference� tp

o ¼ tp
o � tp� 1

o , where tp
o is the creation time of the precipitonP.

This assumption is valid if the transfer time is short compared to the time between two successive pre-
cipitons or if the transfer time to a given cell is equivalent for all the precipitons. This is thus a reasonable
assumption if a precipiton is an erosive rain event that occurs only a few times a year, as it was assumed
in Chase[1992] and Crave and Davy[2001]. For hydrodynamic issues, such as� ood prediction, this
assumption is no longer valid, and a transfer time should be calculated for evaluating� tp. However,

the method does not require to know precisely all� tp values in all cells, but only the average� tp over

a certain time scaletavg, which can be much longer than each� tp. It is easy to demonstrate that� tp~

� tp
o if the averaging time tavg is longer than the transfer time of precipitons. Indeed, the total number

of precipitons passing through the cell duringtavg will not be very different if we take account of the
transfer time or not.
2.2.4. Lakes
“Lakes” are local minima of topography (and thus of the associated gravity� eld), where the de� nition
of � ow directions from particle motions poses a challenge [Martz and Garbrecht, 1998;Turcotte et al.,
2001]. Since the water surfaceh(x,y) is expected to be� at on average in lakes, the precipiton displa-
cement is mainly controlled by the“rugosity” of h (see section 2.2.2). This induces a diffusion-like dis-
placement of precipitons, which achieve the lake� lling. The tests that we present below demonstrate
the ability of the precipiton method to ef� ciently resolve this issue with no signi� cant additional
computational time.

Figure 2. (a) Straight rectangular channel used to compute water depth. (b) Predicted water depth at different time steps
for the two models. Predictions of Floodos are in good agreement with Lis� ood-FP.
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2.2.5. Numerical Implementation
The precipiton model has been implemented in C++ according to the
description given in the previous paragraph. The code is calledFloodos
hereafter and is available under the GNU/GPL license.

3. Hydraulic Simulations and Comparison With
Other Methods

All the simulations described below have been performed by considering
a Manning relationship for� ow resistance with a Manning coef� cient of
0.04. The coef� cients of equation (4) are thus� ¼ 2

3 and C ¼ 1
n ¼ 25.

3.1. Transient Experiments

The objective of the� rst test is to check the ability ofFloodosto model the
transientbehaviorof� oodpropagation.Weassess theaccuracyof thewater
depth prediction for a simple rectangular channel with constant upstream
� ow conditions (Figure 2a). The model parameters are given in the Table 1.
Calculations have been performed in the nonstationary mode as described
above, similar to a dam-break� ood event, with no bank friction.

Predicted water depths were compared withLis� ood-FP, one of the most
used numerical model in� ood prediction [Bates et al., 2010;Coulthard
et al., 2013] whose predictions have been benchmarked [Bates et al.,
2010;Hunter et al., 2005]. We used the implementation ofLis� ood-FPin
CAESAR:CAESAR–Lis� ood 1.6a [Coulthard et al., 2013].

Figure 2b shows a comparison of water depth as a function of distance for
different time steps betweenLis� ood-FPand our model.LisFlood-FPuses
the same concept of storage area asFloodos(i.e., water is stored in the grid
and � ows into and out of each cell) [Bates et al., 2010], but it solves
equations from a� nite difference discretization of time and space, while
Floodossolves equations along the particle paths.LisFlood-FPalso solves
inertia terms of the shallow water equations, whileFloodosdoes not solve
them yet; these terms are negligible in the presented test.

Results show thatFloodosperfectly matches the predictions ofLis� ood-FP
for each time step of the simulation, demonstrating the ability of our model
to reproduce the transientbehaviorof� oodpropagation.Except for the� rst
four lines close to the boundary, for whichFloodosshows boundary
effects, the difference between both models is about 0.5% on average.

3.2. Stationary Mode and Convergence Conditions

In this second test, we check the numerical conditions for which the sta-
tionary mode (point 4b in the code description; section 2.2) is stable. In
the stationary mode, the precipiton keeps its initial volume all along its
path (i.e.,Vp = constant), entailing a faster� lling of the water volume and
thus a much shorter time to reach the stationary regime. To test the accu-
racy and the increased ef� ciency of our approach, we use the same para-
meters as in the previous case. Given the rectangular shape of the channel
and the fact that only the basal friction is considered in this example (see
the discussion after equation (3)), this experiment can be easily compared
to a 1-D Manning analytical solution, although the calculation is actually
performed in 2-D. Figure 3a shows the calculated water depth as a func-
tion of time, for different calculation time stepsdt (and thus precipiton
volume Vp = Q.dt, with Q as the in� ow). The� rst stage of water depth
increase corresponds to the in� lling of the rectangular channel, whoseT

ab
le

1.
M

od
el

P
ar

am
et

er
s

fo
r

th
e

S
im

ul
at

io
ns

P
re

se
nt

ed
in

F
ig

ur
es

2
–9

W
id

th
(p

ix
el

)
Le

ng
th

(p
ix

el
)

W
et

P
ix

el
s

(p
ix

el
)

�
x

(m
)

In
�o

w
(m

3
s�

1
)

S
lo

pe
n

(s
m

�
1

/3
)

C
P

U
T

im
e

(m
in

)
F

ig
ur

es

R
ec

ta
ng

ul
ar

ch
an

ne
l

10
0

2,
00

0
20

0,
00

0
1

12
0

0.
00

2
0.

04
12

.4
8

3b
an

d
9

50
1,

00
0

50
,0

00
2

12
0

0.
00

2
0.

04
2.

1
2a

,3
a,

3b
,a

nd
9

25
50

0
12

,5
00

4
12

0
0.

00
2

0.
04

0.
57

3b
an

d
9

B
um

p
20

25
0

50
,0

00
0.

1
0.

02–0
.2

0.
00

1
0.

04
-

4
C

ru
z

lid
ar

D
E

M
(r

ea
ch

m
od

e)
2,

05
3

1,
35

2
28

6,
00

0
2.

5
50

0
-

0.
04

34
5c

,7
a,

7c
,a

nd
9

68
5

45
1

36
,5

00
7.

5
50

0
-

0.
04

1.
4

6
an

d
9

22
9

15
1

4,
19

0
22

.5
50

0
-

0.
04

0.
05

7b
,7

c,
an

d
9

C
ru

z
lid

ar
D

E
M

(c
at

ch
m

en
tm

od
e)

33
1

39
6

13
1,

07
6

7.
5

60
-

0.
04

4
8

Journal of Geophysical Research: Earth Surface 10.1002/2016JF004156

DAVY ET AL. A PRECIPITON METHOD FOR RIVER DYNAMICS 8



time scale depends on the grid size but not on the elementary precipiton volumeVp (see the discussion
below). The number of precipitons required to reach stationary is thus inversely proportional toVp.

Although each run converges at some point to a stationary solution, the obtained value is correct only for
small precipiton volumeVp (full lines in Figure 3a). The stability criterion corresponds to a critical precipiton
volumeVp

c about equals to 2 × 10� 2 m3. We verify the conjecture formulated in the previous paragraph that
the precipiton volume should remain smaller than water height difference between adjacent cells along

stream (equation (16)). We found here that, given the water surface slopeso, the ratioSt ¼ Vp

so� x2� y must remain

smaller than 0.75.

The effect of the grid size,� x, on the water depth calculation is shown in the Figure 3b. In order to compare
results from the different tests, the time step valuedt (or precipiton volumeVp) was chosen as the largest that
respects the stability criteriaSt = 0.75. The time to stationary solution increases with� x. This result is the direct
consequence of the method. Indeed, each precipiton� lls the downstream grid cells by a volumeVp = Qdt.

Thus, the total amount of water brought by precipiton in the system isVp Lx
� x, and the number of precipiton

to reach a given water depthhc is the ratio between the total volume, and the volume brought by precipiton

np ¼ hcLy � x
Vp . ReplacingVp by its value given by the stability criterion leads tonp ¼ hcLy

St so� x� y ¼ hc
St soLx

Nt, whereNt is

the number of grid cells. This result shows that the number of precipiton necessary to bring the required
amount of water basically increases as the number of grid cells for a given stability criterionSt. As observed

in Figure 3b, the corresponding timet ¼ npVp

Qo
¼ hcLy � x

Qo
increases linearly with� x.

The dependency of the computational time with resolution will be discussed in section 1.

3.3. Dam

This test was designed to evaluate the effectiveness of the method to� ll up lakes and dams. The initial topo-
graphy is a straight channel with a hump in the middle that acts as barrier for the precipiton walk toward the
downstream boundary (Figure 4a). Two discharges were tested (Figure 4b):Q= 0.2 (top), for which the water
depth h without hump is larger than the hump height, andQ= 0.02 (bottom), for whichh without hump is
smaller. The test characteristics are given in the Table 1; it was performed in the stationary mode.

Precipitons successfully� ll the volume upstream of the hump, forming a lake, with the average hydraulic
slope and depth dependent on both the hump height and in� ow. The lake eventually overtops the dam
to � ow downstream. With the stationary mode, one precipiton can� ll up the volume upstream of the hump,
since it brings its water volume to each cell it goes through. The water thus continues to be routed as long as
it runs above the hump and can reach the downstream boundary. The water depth downstream of the hump
is consistent with the expected theoretical value, calculated by assuming that the water slope is similar to
topographic slope (Figure 4b). Upstream of the hump, the water depth is slightly larger than the top of the
hump with a water slope slightly lower than the topographic slope. As expected, smaller discharges have less
steep slopes. We check that the friction equation (4)) is veri� ed for each section of the canal.

Figure 3. (a) Water depth evolution through time for different time stepsdt, precipiton volumesVp, and for a stability cri-
terion St. Values are indicated in the framed box. (b) Water depth evolution through time for different grid cell resolutions
for St = 0.75.
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The hump problem addresses the
subcritical versus supercritical nature
of the � ow, which was initially posed
for frictionless � ow. Since the
momentum terms are neglected in
this version of the code (equation (3)
compared to equation (2)), the� ow is
subcritical and affected by down-
stream controls. However, precipi-
tons are moving on top of the water
surface, which precludes the forma-
tion of local minima in the water sur-
face, as would occur in the theoretical
solution of the hump problem for
some subcritical conditions, and� at-
water surfaces form instead.

3.4. Real-Case Applications With
Lidar DEM

A potential application of the model
is the prediction of � ood levels from
high-resolution digital elevation
models (DEMs) that are now regularly
acquired from airborne lidar. The test
was applied on the Cruz River near
Cruz Rock (CA, USA), whose lidar
DEM acquired in the projectPG&E
Diablo Canyon Power Plantat an origi-
nal resolution of 1 m is available on
the web platform OpenTopography
(http://www.opentopography.org/).
The DEM has been degraded to 2.5 m
for our study (Figure 5a). The model-
ing challenge is to deal with a com-

plex � oodplain containing geomorphological features such as multiple channels, terraces, bars, and a
partial dam at the outlet (an actual bridge treated as a dam after the rasterization of the lidar 3-D data).
The high-resolution DEM contains pits (i.e., local topographic minima), especially in the� oodplain, which like
lakes are a challenge for traditional� ow routing models [Zhu et al., 2013]. To evaluate the robustness of our
method to pits, we use the topography as is, i.e., without erasing pits with a depression� lling algorithm.

We use the model under the stationary mode with simpli� ed boundary conditions consisting of water input
localized on pixels at the upstream river boundary. With these conditions, the water depth is computed only
on pixels where the river actually� ows. The river discharge has been� xed at ~500 m3 s� 1 to ensure an over-
bank � ow in the � oodplain.

Since the friction equation (4) is not an a priori constraint, but rather emerges from the model rules, we check
if it is valid at every point by comparing the water depth derived from the simulation with the one expected
from equation (4) givenq and s. Figure 5c shows that there the friction equation is veri� ed with a very good
accuracy for all pixels (average standard deviation of 0.004 m between calculated and predicted values).

The model also manages to calculate� ow around the arti� cial dam (Figures 5a and, 5b) with local holes in the
river bed (see for instance the downstream part of the bridge/dam in Figure 5c). This demonstrates its ability to
deal with high-resolution DEMs, even with high-frequency variations in topography, whether it is real or not.

Note that, in the stationary regime,Floodoscan calculate the� ood extent for a particular discharge (Figure 6),
but the � ood spreading from inlet must be calculated with the nonstationary version.

Figure 4. (a) Straight channel with a bump of maximum height 0.2 in the
middle. (b) Water depth for both discharges (top) 0.2 and (bottom) 0.02.h*
is the stationary river depth without bump calculated for the dischargeQand
channel geometry according to equation (4).
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We compare results obtained fromFloodoswith Lis� ood-FP. The calculations were performed on both high-
and low-resolution DEMs (2.5 m and 22.5 m, respectively) in order to appraise the grid resolution effects
(Figure 7). AlthoughLis� ood-FPunderpredicts the water depth in a few places compared to what the friction
equation would predict, both models give about consistent results for the 2.5 m grid (Figure 7a). For the
low-resolution grid,Lis� ood-FPsystematically overpredicts water depth compared toFloodos(Figure 7b).
With such a large resolution, a large part of the channels are made of one or two pixels, so that there are a large
number of “wet” pixels that are surrounded by“dry” ones, as illustrated in Figure 7b (red areas). This is not a
favorable con� guration for the four-neighborLis� ood-FPalgorithm. On the contrary,Floodosuses an eight-
neighbor algorithm and is insensitive to the wetting/drying issue. The results obtained from the low-resolution
DEM are thus consistent with those from the high-resolution DEM (Figure 7c); the main discrepancies between
both predictions re� ect mostly pixels that are wet for the 2.5 m grid and dry pixels for 22.5 m grid.

Figure 5. (a) Lidar DEM near Cruz Rock (USA) derived from airborne lidar data acquisition (� x = 2.5 m) with a zoom of the
� oodplain area close to outlet. The blue scale colors represent the water depth;� ow direction vectors weighted by dis-
charge are shown in black. (b) Longitudinal pro� le through the downstream dam showing water surface on top of the
topography. (c) Density plot of the water depthhcalculated byFloodos(horizontal axis) versushpredicted from the Manning
friction equation given discharge and water slope. The red line indicates a perfect agreement between both values.

Figure 6. Picture of the predicted � ood extent for different discharges in the Cruz DEM. (a)Qin = 40 m3 s� 1.
(b) Qin = 150 m3 s� 1. (c)Qin = 500 m3 s� 1. q is the speci� c discharge.
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4. Morphodynamic Modeling

The precipiton method was originally developed as a particle-based geomorphic model capable of resolving
the stream power erosion equation, assuming that the hydraulic slope is similar to topographic slope and
that the river width is a known function of� ow (mainly discharge) and topographic parameters. In that respect,
it is equivalent to most of the current landscape evolution models (see the review byTucker and Hancock
[2010]). It is also a reduced complexity model capable of mimicking the emerging properties of geomorpholo-
gical systems such as braided patterns [Castelltort et al., 2004;Davy and Lague, 2009]. The capacity of the preci-
piton method to resolve the shallow water equations, thus calculating hydraulic slopes, and to be easily coupled
with erosion/deposition processes make it an ef� cient numerical method to explore complex river dynamics.

In the following, we will brie� y describe the method and demonstrate its capacity to model the emergence of
river width and braided patterns. These examples are presented as an illustration of the model ability to effec-
tively couple hydrodynamic and erosion laws and to generate elementary� uvial instabilities.

4.1. Implementation of the Erosion Model

We use the implementation described in prior work [Crave and Davy, 2001;Davy and Crave, 2000;Davy and
Lague, 2009], where each precipiton is eroding, transporting, and releasing sediments with given erosion and
deposition laws. The erosion function_eis controlled by the hydraulic shear stress� and critical shear stress� c,
where� = � ghs: _e ¼ ke � � � cð Þa. Other erosion functions could have been used such as the stream-power law,
which relates erosion to dischargeq and hydraulic slopes [Howard, 1994;Lague, 2014;Whipple and Tucker,

1999]. Deposition rate_d is proportional to the sediment� ux qs, _d ¼
qs

�
, where � is a characteristic length,

which controls the transport length of sediments and is assumed to be a function of discharge [Davy and
Lague, 2009]. If� is much larger than� ow distances, the system is detachment-limited, and is only controlled
by local erosion rate_e; if � is small, the erosion/deposition equation is similar to a transport capacity equation
where the sediment� ux qsis exactly equal to the product of the sediment transfer length� with local erosion
rate _e: qs ¼ � _e.

Sediment� uxes in transverse direction to the main� ow are also very important components in the geomor-
phodynamic process [Schuurman et al., 2013]. Both lateral erosion (_el) and deposition (qsl) � uxes are given by

_el ¼ ke� lH _e (17)

qsl ¼ kd� lH qs (18)

where � lH is the topographic gradient orthogonal to the stream direction (referred to as the lateral topo-
graphic gradient) andke and kd are the dimensionless coef� cients for lateral erosion and lateral deposition,
respectively. The main difference between equations (17) and (18) is that the former is expressed as the ratio
of lateral versus basal erosion rates, while the latter is expressed as the ratio of lateral versus total, in stream,
sediment� ux.

Figure 7. Density plot of the comparisons betweenFloodosandLis� ood-FPwater depth predictions for different grid resolutions (red line ishFloodos= hLis� ood) along
with a raster map of the difference of water depth predictions ((a)� x = 2.5 m and (b)� x = 22.5 m). (c) Density plot comparingFloodoswater depth predictions for
the same DEM with two resolutions of 2.5 m and 22.5 m, respectively.
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The lateral erosion rate_el models “bank-like” erosion processes. The lateral topographic gradient is also the
geometrical ratio between basal and lateral surfaces, and the coef� cientkere� ects both changes in erodibility
or erosion processes between basal and lateral erosion. Lateral erosion/deposition� uxes induce a transfer of
matter between precipiton paths (i.e.,� ow streamlines) which is central to the emergence of channel forms.

The lateral deposition� ux qsl models lateral mass transfer due to either� ow processes (transverse compo-
nent of the bed shear stress induced by secondary� ow) or gravity forces acting on the bed [Ikeda, 1982;
Ottevanger et al., 2013;Parker, 1984]. The coef� cient kd re� ects the ef� ciency of the lateral� ow; it is likely
dependent on the shear stress� such as

kd ¼
1

�
���
	

p (19)

where	 is the Shields parameter, i.e., the shear stress normalized by the buoyant particle weight per unit area
	 ¼ �

� s� �ð ÞgD, with � sas the grain density,� as the water density,D as the average grain size, and� as a dimen-
sionless parameter that varies between 0.35 and 1.5 [Ikeda, 1982;Parker, 1984;Sekine and Parker, 1992;
Talmon et al., 1995]. The details of the equations, and of their implementation in the numerical code, are
given in the supporting information.

4.2. Emergence of Straight Channels

As a basic test of the method, we simulate the emergence of a stream on a sloping plane. The model dimen-
sions are 200 × 500 m and the initial slope is 1%. Water depths are computed according to the Manning equa-
tion with a friction coef� cient of 0.025. Sediment� uxes are calculated by assuming that bed load transport
dominates (i.e., the sediment transport distance� is small compared to system dimensions), and the sedi-
ment � ux is given by the Meyer-Peter and Muller[1948] (MPM) equationqs= E(� � � c)

a, with a= 1.5,
E= 0.0002 kg� 1.5 m� 3.5 s� 2, and � c= 4 Pa (corresponding to a grain diameter of 8 mm). These conditions

are obtained with � = 2 m, and the vertical erosion term_e ¼
qs

�
¼

E
�

� � � cð Þa . An in� ow is applied at the

upstream boundary along a line of width 40 m, with a constant input dischargeQ= 15 m3 s� 1, and a� xed
sediment volumetric concentration of 10%. The downstream conditions are described in the supporting
information. The simulations have been computed in less than an hour on a standard PC.

The results of this experiment are given in Figure 8 with a grid size� x= 2 m. The incision propagates down-
stream and forms a channel, whose slope is decreasing down to a stationary state where sediment in� ow
equal out� ow. The channel width establishes rapidly in the upstream part of the model and slightly later
downstream (Figure 8a). At the stationary stage, it is about constant all along the pro� le, except near the
downstream boundary where the boundary conditions (no erosion and backwater effects) induce a widening
of the channel, and near the inlet where the equilibrium channel is narrower than the width over which water
is injected. The time evolution of the channel width is much faster than of channel slope and sediment
� ux (Figures 8b–8d).

Simulations have been performed with three different grid res