Skip to Main content Skip to Navigation
Journal articles

The mantle rotation pole position. A solar component

Abstract : The direction of the Earth's rotation axis with respect to the mantle has been studied for more than a century. The time variation of this direction is generally considered to be the sum of three components: the annual wobble, forced by the atmosphere, the Chandler wobble, a free oscillation with a period of 435 days, and the so-called drift of the mean pole. In the present paper, applying the singular spectrum analysis (SSA) technique, we uncover two more components, with smaller amplitude than the three first ones, but well identified, periodic with periods of 11 and 5.5 years, respectively, undoubtedly linked to solar activity. We interpret them tentatively as the result of an exchange of kinetic angular momentum between the atmosphere, in which a flow would be generated by solar activity, and the mantle. The order of magnitude of the required mean winds in the atmosphere computed in the frame of a schematic model is 1 ms−1, compatible with the observed values of the meridional mean circulation
Document type :
Journal articles
Complete list of metadata

Cited literature [30 references]  Display  Hide  Download
Contributor : Isabelle Dubigeon <>
Submitted on : Wednesday, August 16, 2017 - 10:55:26 AM
Last modification on : Wednesday, March 31, 2021 - 1:12:54 PM


Publication funded by an institution



Fernando Lopes, Jean-Louis Le Mouël, Dominique Gibert. The mantle rotation pole position. A solar component. Comptes Rendus Géoscience, Elsevier Masson, 2017, 349 (4), pp.159-164. ⟨10.1016/j.crte.2017.06.001⟩. ⟨insu-01574681⟩



Record views


Files downloads