T. A. Abrajano, N. C. Sturchio, B. M. Kennedy, G. L. Lyon, K. Muehlenbachs et al., Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines, Applied Geochemistry, vol.5, issue.5-6, pp.625-63010, 1990.
DOI : 10.1016/0883-2927(90)90060-I

W. Bach, H. Paulick, C. J. Garrido, B. Ildefonse, W. P. Meurer et al., Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Geophys. Res. Lett, vol.33, p.1330610, 1029.

M. E. Berndt, D. E. Allen, and W. E. Seyfried, Reduction of CO 2 during serpentinization of olivine at 300°C and 500 bar, 024<0351:ROCDSO>2.3.CO, pp.351-3540091, 1130.

M. M. Bina and B. Henry, Magnetic properties, opaque mineralogy and magnetic anisotropies of serpentinized peridotites from ODP Hole 670A near the Mid-Atlantic Ridge, Physics of the Earth and Planetary Interiors, vol.65, issue.1-2, pp.88-103, 1990.
DOI : 10.1016/0031-9201(90)90078-C

M. Brocher, T. Parsons, A. M. Tréhu, C. M. Snelson, and M. A. Fisher, Seismic evidence for widespread serpentinized forearc upper mantle along the Cascadia margin, 031<0267:SEFWSF>2.0.CO, pp.267-27010, 2003.
DOI : 10.1130/0091-7613(2003)031<0267:SEFWSF>2.0.CO;2

F. Brunet and C. Chopin, Bearthite, Ca2Al(PO4)2OH: stability, thermodynamic properties and phase relations, Bearthite, Ca 2 Al(PO 4 ) 2 OH: Stability, thermodynamic properties and phase relations, pp.258-26610, 1995.
DOI : 10.1080/11035899009453156

G. Cairanne, F. Brunet, J. Pozzi, P. Besson, and C. Aubourg, Magnetic monitoring of hydrothermal magnetite nucleation-and-growth: Record of magnetic reversals, American Mineralogist, vol.88, issue.8-9, pp.1385-1389, 2003.
DOI : 10.2138/am-2003-8-923

URL : https://hal.archives-ouvertes.fr/hal-00068268

M. Cannat, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research: Solid Earth, vol.312, issue.109, pp.4163-417210, 1993.
DOI : 10.1038/312146a0

M. Cannat, B. Bideau, and H. Bougault, Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15??37???N and 16??52???N, Earth and Planetary Science Letters, vol.109, issue.1-2, pp.87-10610, 1992.
DOI : 10.1016/0012-821X(92)90076-8

J. L. Charlou, J. P. Donval, Y. Fouquet, P. Jean-baptiste, and N. Holm, Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36??14???N, MAR), Chemical Geology, vol.191, issue.4, pp.345-35910, 2002.
DOI : 10.1016/S0009-2541(02)00134-1

I. Chou, Permeability of precious metals to hydrogen at 2 kb total pressure and elevated temperatures, American Journal of Science, vol.286, issue.8, pp.638-658, 1986.
DOI : 10.2475/ajs.286.8.638

N. I. Christensen, Elasticity of ultrabasic rocks, Journal of Geophysical Research, vol.65, issue.22, pp.5921-593110, 1966.
DOI : 10.1029/JZ065i002p00757

R. Day, M. D. Fuller, and V. A. Schmidt, Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Physics of the Earth and Planetary Interiors, vol.13, issue.4, pp.260-26710, 1977.
DOI : 10.1016/0031-9201(77)90108-X

M. Delescluse and N. Chamot-rooke, Serpentinization pulse in the actively deforming Central Indian Basin, Earth and Planetary Science Letters, vol.276, issue.1-2, pp.140-151, 2008.
DOI : 10.1016/j.epsl.2008.09.017

D. J. Dunlop, The rock magnetism of fine particles, Physics of the Earth and Planetary Interiors, vol.26, issue.1-2, pp.1-2610, 1981.
DOI : 10.1016/0031-9201(81)90093-5

D. J. Dunlop, Theory and application of the Day plot (M rs /M s versus H cr /H c ) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys . Res, vol.107, issue.B3, pp.205610-1029, 2002.

S. Emmanuel and B. Berkowitz, Suppression and stimulation of seafloor hydrothermal convection by exothermic mineral hydration, Earth and Planetary Science Letters, vol.243, issue.3-4, pp.657-668, 2006.
DOI : 10.1016/j.epsl.2006.01.028

J. Escartín, G. Hirth, and B. Evans, Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges, Earth and Planetary Science Letters, vol.151, issue.3-4, pp.181-189, 1997.
DOI : 10.1016/S0012-821X(97)81847-X

J. Escartín, G. Hirth, and B. Evans, Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, 029<1023:SOSSPI>2.0.CO, pp.1023-10260091, 1130.
DOI : 10.1130/0091-7613(2001)029<1023:SOSSPI>2.0.CO;2

B. W. Evans, Control of the Products of Serpentinization by the Fe2+Mg-1 Exchange Potential of Olivine and Orthopyroxene, Journal of Petrology, vol.49, issue.10, pp.1873-1887, 2008.
DOI : 10.1093/petrology/egn050

W. S. Fyfe, Heats of Chemical Reactions and Submarine Heat Production, Geophysical Journal International, vol.37, issue.1, pp.213-215, 1974.
DOI : 10.1111/j.1365-246X.1974.tb02454.x

F. Heider, D. J. Dunlop, and N. Sugiura, Magnetic Properties of Hydrothermally Recrystallized Magnetite Crystals, Science, vol.236, issue.4806, pp.1287-1290, 1987.
DOI : 10.1126/science.236.4806.1287

F. Heider, A. Zitzelsberger, and K. Fabian, Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 ??m to 6 mm, Physics of the Earth and Planetary Interiors, vol.93, issue.3-4, pp.239-256, 1996.
DOI : 10.1016/0031-9201(95)03071-9

M. Hu, R. Ji, and J. Jiang, Hydrothermal synthesis of magnetite crystals: From sheet to pseudo-octahedron, Materials Research Bulletin, vol.45, issue.12, pp.1811-1815, 2010.
DOI : 10.1016/j.materresbull.2010.09.023

R. D. Hyndman and S. M. Peacock, Serpentinization of the forearc mantle, Earth and Planetary Science Letters, vol.212, issue.3-4, pp.417-43210, 2003.
DOI : 10.1016/S0012-821X(03)00263-2

J. W. Johnson, E. H. Oelkers, and H. C. Helgeson, SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000 bar and 0 to 1000??C, Computers & Geosciences, vol.18, issue.7, pp.899-94710, 1992.
DOI : 10.1016/0098-3004(92)90029-Q

F. Klein, W. Bach, N. Jöns, T. Mccollom, B. Moskowitz et al., Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15??N on the Mid-Atlantic Ridge, Geochimica et Cosmochimica Acta, vol.73, issue.22, pp.6868-6893, 2009.
DOI : 10.1016/j.gca.2009.08.021

K. Krammer, Rock Magnetic Properties and Opaque Mineralogy of Selected Samples from Hole 670A, Proc. Ocean Drill. Program, Sci. Results, pp.269-273, 1990.
DOI : 10.2973/odp.proc.sr.106109.154.1990

Q. Liu, Q. Zeng, J. Zheng, T. Yang, N. Qiu et al., Magnetic properties of serpentinized garnet peridotites from the CCSD main hole in the Sulu ultrahigh-pressure metamorphic belt, eastern China, Journal of Geophysical Research, vol.247, issue.12, p.610410, 1029.
DOI : 10.1111/j.1365-246X.1982.tb02774.x

C. Marcaillou, M. Muñoz, O. Vidal, T. Parra, and M. Harfouche, Mineralogical evidence for H2 degassing during serpentinization at 300??C/300bar, Earth and Planetary Science Letters, vol.303, issue.3-4, pp.281-290, 2011.
DOI : 10.1016/j.epsl.2011.01.006

URL : https://hal.archives-ouvertes.fr/insu-00681011

B. Martin and W. S. Fyfe, Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization, Chemical Geology, vol.6, pp.185-20210, 1970.
DOI : 10.1016/0009-2541(70)90018-5

T. M. Mccollom and W. Bach, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochimica et Cosmochimica Acta, vol.73, issue.3, pp.856-875, 2009.
DOI : 10.1016/j.gca.2008.10.032

J. B. Moody, An experimental study on the serpentinization of ironbearing olivines, Can. Mineral, vol.14, pp.462-478, 1976.

K. A. Nazarova, Serpentinized peridotites as a possible source for oceanic magnetic anomalies, Marine Geophysical Researches, vol.87, issue.6, pp.455-46210, 1994.
DOI : 10.1111/j.1365-246X.1982.tb02774.x

C. Neal and G. Stanger, Hydrogen generation from mantle source rocks in Oman, Earth and Planetary Science Letters, vol.66, issue.83, pp.315-32010, 1983.
DOI : 10.1016/0012-821X(83)90144-9

L. Néel, Thermoremanent Magnetization of Fine Powders, Reviews of Modern Physics, vol.234, issue.1, pp.293-295, 1953.
DOI : 10.1038/169704a0

O. Oufi, M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research, vol.46, issue.14, pp.10-1029, 2002.
DOI : 10.1111/j.1365-246X.1982.tb02774.x

Ö. Özdemir and D. J. Dunlop, Domain structure observations in biotite and hornblendes, Spring Meet, 1992.

M. G. Rasmussen, B. W. Evans, and S. M. Kuehner, Low-temperature fayalite, greenalite, and minnesotaite from the Overlook gold deposit, phase relations in the system FeO-SiO 2 -H 2 O, pp.147-162, 1998.

W. E. Seyfried, D. I. Jr, Q. Foustoukos, and . Fu, Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200??C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochimica et Cosmochimica Acta, vol.71, issue.15, pp.3872-3886, 2007.
DOI : 10.1016/j.gca.2007.05.015

E. C. Stoner and E. P. Wohlfarth, A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.240, issue.826, pp.599-642, 1948.
DOI : 10.1098/rsta.1948.0007

P. B. Toft, J. Arkani-hamed, and S. E. Haggerty, The effects of serpentinization on density and magnetic susceptibility: a petrophysical model, Physics of the Earth and Planetary Interiors, vol.65, issue.1-2, pp.137-157, 1990.
DOI : 10.1016/0031-9201(90)90082-9

J. Carlut, Laboratoire de Géosciences Marines