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SUMMARY

Recent studies of the palaeomagnetic field behaviour over the past 5 Myr rely on
statistical analysis of mainly directional data. However, the data are quite sparse and
ill-distributed, and directional parameters are non-linear functions of the local field,
rendering such statistical analysis non-trivial. Up to now these difficulties have usually
been ignored or removed by relying on simplifications (linearization, neglecting internal
correlations, etc.) that are unfortunately not justified if the field contains some amount
of complexity.

The purpose of the present paper is to present a rigorous statistical forward approach
to palaeomagnetic field modelling. Starting from a statistical model of the field defined
in terms of the statistics of its Gauss coefficients (along the lines pioneered by Constable
& Parker 1988), we show how such a model may be exactly tested against any given data
set, either on a local regional or a global scale. A method to implement this approach is
outlined and examples based on published models are provided.

In particular we focus on the treatment of directional data, for which the method is
most relevant. The corresponding local probability density functions are derived and
shown to be non-Fisherian, which we note may be a significant source of artefacts for
standard mean-field modelling. Although the method we propose is already useful in its
present state, some slight improvements are possible in order to account for noise in the
data better.

Key words: directional data, magnetic fields, modelling, palaeomagnetism, statistical
models.

1 INTRODUCT ION

It is now well established that to first order the geomagnetic

field averaged over palaeomagnetic timescales behaves like a

geocentric axial dipole. However, it is also well known since

the pioneering work of Wilson (1970) that this simple picture

cannot account for the presence of some small persistent offset

in the time-averaged palaeomagnetic field as seen in both

volcanic and sediment data of the past 5 Myr. Much of this

offset, known as the far-sided effect, can be interpreted in terms

of an additional small quadrupole axial g2
0 component in the

time-averaged field [as shown by Wilson (1971) and confirmed

by e.g. Lee (1983) and Schneider & Kent (1990)]. However, it is

still not clear how much additional structure must be present

in the time-averaged field to account for the global set of

palaeomagnetic data. Indeed, whereas Gubbins & Kelly (1993),

Johnson & Constable (1995) and Kelly & Gubbins (1997)

argued for the existence of persistent higher-order features,

more recent studies suggest that many of these features could be

unresolved (e.g. McElhinny et al. 1996; Johnson & Constable

1997; Carlut & Courtillot 1998). This led these authors to

propose much simpler mean-field models.

As well as the average field, a significant multipolar field is

also found that fluctuates on timescales of the order of a couple

of centuries (e.g. Bloxham & Jackson 1992; Hongre et al. 1998).

Volcanic palaeomagnetic samples from various regions are

highly unlikely to be of the same age within that level of pre-

cision. This makes it possible to study the statistical behaviour

of this fluctuating field by considering the volcanic data as

statistical samples. These so-called palaeosecular variation (PSV)

studies have mainly been carried out with the help of volcanic

directional data (declination and inclination) and most often by

transforming the raw data into virtual geomagnetic pole (VGP)

positions (for a recent review see e.g. Merrill et al. 1996).
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Such studies are not as straightforward as one could wish for

a variety of reasons. One is the limited quality of the data, due

to experimental uncertainty. This translates into a within-site

dispersion that is traditionally modelled in terms of a random

Fisherian noise that adds on to the local geomagnetic field

direction. This approach is not free of problems, especially when

it comes to studying the statistics of VGPs rather than those of

field directions (see e.g. Johnson & Constable 1996), and it is

clear that more progress will have to be made with respect to

this matter.

Another intrinsic source of problems is the possibility of

tectonic movements significantly altering the original palaeo-

signal. These effects can be quite large and are not easy to detect,

even though great care is usually taken to avoid inclusion

of suspicious data within the data sets to be analysed. This

problem will not be dealt within this paper, which focuses on

yet another issue (for a recent discussion of tectonic effects,

see e.g. McElhinny et al. 1996).

Even in a situation when the data could be assumed to be free

of such problems (an assumption that is often made in PSV

studies, despite what has just been stated above), one very

critical problem remains: only a limited number of sites can be

found at the Earth’s surface where volcanic data can actually

be sampled. In addition, these sites tend to be clustered. In most

of the databases presently available (corresponding to the past

5 Myr), out of about 100 sites, only 40 to 50 regions at the

Earth’s surface can for instance be considered as independent,

each region being unevenly represented by as few as 20 to as

many as several hundred palaeomagnetic field samples (e.g.

Quidelleur et al. 1994; Johnson & Constable 1996).

This uncomfortable situation has led virtually all authors

(with the noteable exception of the very recent study of

Constable & Johnson 1999) to study PSV by binning the raw

data from all sites within a wider region, such as a band of

latitude, and studying the way these data scatter about some

expected value. Such procedures have a distinct advantage:

they allow one to plot statistical quantities that are based on

a large number of samples and are therefore recovered with

reasonable confidence.However, they suffer two significant draw-

backs. One is that these quantities are statistically meaningful

only to the extent that the field is behaving in a way that is

compatible with the way the data are being binned. The other is

that these quantities are not trivially related to simple field

characteristics (such as the ratio of dipole to non-dipole fields).

These difficulties have been responsible for increasing numbers

of PSV models, each model interpreting the data by relying on

its own set of simplifying assumptions [models A, B, C, D, E, F,

G and H; see Merrill et al. (1996)].

The first paper to recognize the need for a well-defined

and general statistical framework for PSV studies was that

of Constable & Parker (1988). These authors noted that the

best parameter space to describe the palaeomagnetic field in

statistical terms is simply the space of the Gauss coefficients

currently used in geomagnetic field modelling (e.g. Langel 1987).

This approach requires no special assumption and is most

useful. It provides a sound means of comparing the present

geomagnetic field to the palaeomagnetic field. It also provides a

general framework within which the concepts of average and

fluctuating parts of the field, as well as all statistical assump-

tions, can be defined in a straightforward manner. Finally,

it provides a basis for predicting the average and statistical

behaviour of any observable quantity. This, in fact, is what led

Constable & Parker (1988) to propose the first consistent

statistical model for both the average and fluctuating com-

ponents of the field for the past 5 Myr (at periods of stable

polarity)—a model they termed the ‘giant Gaussian process’

(GGP; more details are given in Section 2).

Subsequent papers (e.g. Kono & Tanaka 1995; Hulot

& Gallet 1996; Quidelleur & Courtillot 1996; Kono 1997;

Constable & Johnson 1999) have generalized this approach

by both relaxing the simple axisymmetric assumptions of the

original GGP and producing additional statistical predictions

to be compared with the data. These studies have highlighted

the power of the GGP approach. However, all of them have

always only considered predictions for one field parameter at a

time (inclination, declination, etc.) and almost always for sites

binned in bands of latitude. This fails to take into account

possible correlations between different types of data (such as

inclination and declination, which are necessarily correlated when

recovered from the same sample). It is also largely inadequate

if the field does not have axisymmetrically invariant statistical

properties, which is precisely the property of the field one

would wish to test. Finally, it provides weakly discriminating

results: many different statistical models can indeed map into

similar effects (see e.g. Hulot & Gallet 1996; Constable &

Parker 1988; Constable & Johnson 1999).

The purpose of the present paper is to show that many of

these difficulties can be avoided by slightly altering the way the

data are being compared to the PSV and average field models.

Rather than starting from the data, selecting parameters and

binning the raw data from different sites in order to produce

second-generation data to be compared to the models, we

will show that it is possible to start from a model (that is, a

generalized version of the GGP model), produce the local

statistical behaviour for the field at each site and deduce a local,

regional or global measure of the adequacy of the model for the

data. We will focus on the most common case, that is, when

the data set is mainly, if not entirely, composed of directional

data (such as those of Lee 1983; Quidelleur et al. 1994; Johnson

& Constable 1996; McElhinny & McFadden 1997). This is the

case for which the approach we develop could be most useful.

Indeed, because of the non-linear relation between the local

directional parameters and the magnetic field model (i.e. the

Gauss coefficients), trying to recover the average field without

properly including the statistics of the fluctuating field [as done

by e.g. Gubbins & Kelly (1993) and Johnson & Constable

(1995) and recently Carlut & Courtillot (1998)] or vice versa

(as in Johnson & Constable 1996) can in fact be hazardous

(see Hulot & Gallet 1996; Kono et al. 2000). Unlike these pre-

vious studies, our approach requires no approximation and

makes it possible to address the properties of the two fields

simultaneously.

In what follows, starting from any generalized GGP

model (Section 2), we derive for each site the exact statistical

distribution for the local field (Section 3) and its direction

(Section 4) (inclination and declination not being considered

independently). We describe a uniformization procedure, which

makes it possible to compare the prediction of the model with

any type of data on a local, regional or global basis. This makes

it possible to bin the local statistical information into more

global information without any approximation. This provides

us with a means to test any statistical model (with any assumed

mean and fluctuating field) against the full data set on both a

local and a global scale (Section 5). In this respect our approach
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can be viewed as an exact forward approach. We finally apply

our method to test a number of published PSV and mean-field

models and to illustrate the rather complex nature of the local

statistical behaviour of the direction of the field (Section 6).

As we shall show, this complex nature may indeed lead to

significant artefacts when trying to recover the average field

using current methods of inversion and purely directional data.

2 DESCRIB ING THE
PALAEOMAGNET IC F IELD IN TERMS
OF A ‘GENERAL IZED GIANT GAUSS IAN
PROCESS ’

The concept of GGP was introduced by Constable & Parker

(1988). It consists of taking advantage of the fact that at any

given moment the Earth’s main magnetic field is derived from a

potential V that can always be expanded in terms of a spherical

harmonic model,

Vð<, #, (Þ ¼a
X?
l¼1

Xl

m¼0

a

<
� �lþ1

gml cosm(þ hml sinm(
� �

|Pm
l ðcos#Þ , (1)

where gl
m and hl

m are the so-called Gauss coefficients and

{R, H, Y} are the standard spherical coordinates (the distance

from the Earth’s centre, colatitude and longitude). (We specify

these notations in order to distinguish the several spherical

coordinate systems that we need to use.) Next it is assumed that

the temporal evolution of the field during a given long time

period (say between two reversals) can be described in terms of

statistical fluctuations of the field about a mean field.

From eq. (1), this temporal evolution can be described in terms

of fluctuations of the ‘model’ vector k={g, h} consisting of

Gauss coefficients g={g1
0, g1

1, . . . , gl
m . . . }, h={h1

1, h2
1, . . . , hl

m . . . }

about some average model k̄={ḡ, h̄}. This ‘model’ vector is

therefore assumed to fluctuate within what will be defined as

the (infinite-dimensional) ‘model space’. Assuming that these

fluctuations can be described in terms of a short-term memory

stationary random Gaussian process [which is consistent with

both historical geomagnetic and archaeomagnetic variations;

see e.g. Hulot & Le Mouël (1994) and Hongre et al. (1998)] and

that any two palaeomagnetic observations are always separated

by a period of time larger than the memory of the process

(of the order of a couple of centuries), each palaeomagnetic

datum can then be viewed as a local (both in time and in space)

independent realization of a random Gaussian drawing of k.

Describing the palaeomagnetic field in terms of generalized

GGP simply consists of identifying the first and second moments

of the Gaussian statistics of k best predicting the observed

statistics for such palaeomagnetic data. Themean and fluctuating

fields are then characterized by the means E(gi
j), E(hlk) and

covariances cov(gi
j, glk), cov(hi

j, hlk) and cov(gi
j, hlk), i.e. by E(k)

and Cov(k, k)= [cov(ka, kb)].

This description of the palaeomagnetic field generalizes

the original GGP of Constable & Parker (1988), which was

built upon two additional important simplifying assumptions:

first that the Gauss coefficients could be considered as being

independent of one another, and second that all Gauss

coefficients sharing the same degree n would share the same

variance sn. In other words, the original GGP further assumed

that

covðhji , hlkÞ ¼ covðgji , glkÞ ¼ dikdjlp2k , (2)

covðgji , hlkÞ:0 : (3)

This in fact amounts to assuming that the fluctuating field has

no specific frame of reference [that is, that covariances do not

depend on the geographic frame of reference for {R, H, Y};

see Eckhardt (1984) and Hulot & Le Mouël (1994)]. This sounds

like a sensible first-order approximation, but it is already known

to be in error. Indeed, Hulot & Gallet (1996) have explicitely

shown that no model satisfying eqs (2) and (3) can be found

that can account for the VGP scatter curve corresponding

to the past 5 Myr. In fact, all recent PSV models for that

period include some amount of anisotropy within the degree 2

fluctuating field (e.g. Quidelleur & Courtillot 1996; Johnson &

Constable 1996; Constable & Johnson 1999). This is the reason

why in this paper the most general case will be considered.

3 GENERAL IZED GGP BEHAVIOUR OF
THE LOCAL MAGNET IC F IELD

For any point q with coordinates (R, H, Y), the local field

vector is

BðqÞ ¼ Bð<, #, (Þ ¼ �gradVð<, #, (Þ :

From eq. (1) this expression is linear with respect to Gauss

coefficients gl
m and hl

m, i.e. k. For each point q we therefore

have a linear operator A(q) that maps k onto B(q),

BðqÞ ¼ AðqÞk :

Within the generalized GGP, the probability distribution of k

(or its finite-dimensional approximation) is assumed to be

Gaussian. The probability distribution of the 3-D random

vector B(q) will therefore also be Gaussian. It is defined by nine

real parameters: three corresponding to the local value of the

average field E(B) and six corresponding to a symmetric 3r3

covariance matrix Cov(B, B). These parameters are trivially

related to the mean model k̄=E(k) and the model covariance

matrix Cov(k, k) through

E BðqÞð Þ ¼ AðqÞEðkÞ ¼ AðqÞk , (4)

Cov BðqÞ, BðqÞð Þ ¼ AðqÞCovðk, kÞAðqÞT : (5)

The GGP model therefore entirely and straightforwardly

defines the distribution (and the corresponding probability

density function) for the Gaussian field vector B(q) at any given

point q.

4 GENERAL IZED GGP BEHAVIOUR OF
THE DIRECT ION OF THE LOCAL
MAGNET IC F IELD

To test a given generalized GGP model against a data set com-

posed of directional data, the statistics describing the generalized

GGP behaviour of the direction of the local magnetic field are

needed. These statistics are the B(q) statistics integrated over all
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possible intensity values for |B(q)|. Mathematically speaking,

the problem therefore corresponds to deriving the distribution

of directions of a Gaussian random vector, i.e. to deriving the

pdf (probability density function) for B(q)/|B(q)|, knowing that

the local vector B(q) satisfies a Gaussian distribution charac-

terized by E(B(q)) and Cov(B(q), B(q)). This distribution on the

unit sphere will be referred to as a Gaussian directional distri-

bution (GD distribution). As we show below, a general analytic

expression for the corresponding pdf can in fact be derived.

4.1 Gaussian directional distribution density function

Consider the unit sphere S in R3 centred at the origin O.

Suppose we are given a 3-D Gaussian random vector U. Its

probability density function may then be written as fU(r, s),
where ssS and r denotes the distance from the origin O. The

projection of the random vector U along the rays from the

origin O to the unit sphere S defines the random distribution

we are searching for—the Gaussian directional distribution—

on S. The corresponding probability density function simply

reads

fGDðsÞ ¼
ð?
0

fU ðo, sÞdo : (6)

In a local Cartesian coordinate system (u1, u2, u3) with the

same origin O, the Gaussian vector field U can be charac-

terized by E(U)=(Ū1, Ū2, Ū3) and Cov(U, U)=[cov(Ui, Uj)].

Let L=[Li, j] be the inverse (and hence also symmetric) matrix

of Cov(U, U). With respect to these local Cartesian coordinates,

the pdf of U is

f
U
ðu1, u2, u3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
det¸

ð2nÞ3
s

exp � 1

2

X3
i, j¼1

"ijðui � �UiÞðuj � �UjÞ
" #

:

(7)

With the help of an appropriate choice of the local Cartesian

coordinate system it is always possible to ensure that

Ū1=Ū2=0, Ū3=U, so that E(U)=(0, 0, U). Using the local

spherical coordinate system

u1 ¼ o sin h cosr , u2 ¼ o sin h sinr , u3 ¼ o cos h

in eq. (7), which we then use in eq. (6), finally leads to the

expression of the pdf for the GD distribution,

fGDðh, rÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
det¸

ð2nÞ3
s ðþ?

0

e�
1
2ðao2þboþcÞo2do , (8)

where

a ¼ aðh, rÞ, b ¼ bðh, rÞ

and

a ¼"11 sin2 h cos2 rþ "12 sin2 h sin 2rþ "13 sin 2h cosr

þ "22 sin2 h sin2 rþ "23 sin 2h sinrþ "33 cos2 h ,

b ¼ Uð�2Þð"13 sin h cosrþ "23 sin h sinrþ "33 cos hÞ ,

c ¼ U2"33 :

The integral in eq. (8) may be evaluated (using e.g. the

Mathematica 3.0 software) asðþ?

0

e�
1
2ðao2þboþcÞo2do

¼ e�c=2

2a2

ffiffiffi
n
2

r ð4aþ b2Þ 1� Erf
b

2
ffiffiffiffiffi
2a

p
� 
� �

eb
2=8a

2
ffiffiffi
a

p � b

8>><
>>:

9>>=
>>; , (9)

and eq. (8) becomes

fGDðh, rÞ

¼ e�c=2

2a2

ffiffiffiffiffiffiffiffiffiffiffi
det¸

ð2nÞ3
s ffiffiffi

n
p ð4aþ b2Þ 1� Erf

b

2
ffiffiffiffiffi
2a

p
� 
� �

eb
2=8a

2
ffiffiffiffiffi
2a

p � b

8>><
>>:

9>>=
>>; ,

(10)

where the dependence on (h, Q) is implicit in the functions a and

b. This formula generalizes the result of Bingham (1983), who

derived a series expansion of fGD(h, Q) in the special symmetric

case where [Li, j] is a scalar matrix.

4.2 Application to the local magnetic field

In the case we are currently interested in, the statistical

behaviour of the field over the Earth’s surface is defined by

the generalized GGP parametrized by E(k) and Cov(k, k)

as described in Section 2. For any given site q, the parameters

describing the behaviour of B(q) can then be computed as a

function of E(k) and Cov(k, k) (see eqs 4 and 5). The behaviour

of the local magnetic field and its direction at this site q are thus

entirely described by the pdfs fU(u1, u2, u3) and fGD(h, Q) in

eqs (7) and (10), provided that

(i) we choose the local spherical coordinate system such that

the direction h=0 corresponds to that of the local average field

E(B(q)) (produced by eq. 4);

(ii) we set U=|E(B(q))|;
(iii) we set L equal to the inverse matrix of Cov(B(q), B(q)).

In practice, when a standard north, east and vertical set of local

directions is being used (or any other useful local frame), this

further means that one should first perform a proper frame

rotation before applying eqs (7) and (10). Such a frame rotation

can, however, easily be implemented numerically. For any

generalized GGP the pdfs of the local magnetic field and its

direction at any given location q can thus directly be deduced

once the parameters E(k) and Cov(k, k) have been specified.

The corresponding pdfs are denoted [ fU]q(r, s) and [ fGD]q(h, Q)
hereafter.

5 TEST ING A WORLDWIDE DATA SET
AGAINST A GENERAL IZED GGP

5.1 General considerations

Testing the data set against a generalized GGP model [that is,

given values of E(k) and Cov(k, k)] would be quite straight-

forward if for each site q we had enough data to compare the
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observed density of data to the predicted pdfs [ fU]q(r, s) and
[ fGD]q(h, Q). However, in practice the data are usually unevenly

distributed among various sites and the amount of available

data for a given site may sometimes be quite small. The problem

thus amounts to assessing the simultaneous likelihood of the

data distribution observed at various locations in terms of

the local pdfs predicted by the generalized GGP model against

which the data are to be tested.

This can be done by modifying a standard procedure often

used to test a data set {xi} against a univariate density function

f (x); we refer to this as ‘uniformization’ (as we know of no

conventional name for this procedure). This procedure consists

of transforming the data set {xi} into a new data set {ti} defined

on [0, 1] by

ti ¼
ðxi
�?

f ðxÞdx : (11)

Testing the data set {xi} against f (x) is then equivalent to

testing {ti} against a uniform distribution on [0, 1]. This kind

of procedure is usually used implicitly. It is also often used

in its inverse form (producing {xi} from {ti}) as an algorithm

to produce data sets conforming to the density function

f (x) when a numerical uniform random generator over [0, 1]

is already available (see e.g. Press et al. 1996, and references

therein). Here it needs to be modified to account for the fact

that the density functions are multivariate [ [ fU]q(r, s) and

[ fGD]q(h, Q)].
For [ fGD]q(h, Q) this could be done by modifying the pro-

cedure in such a way that the transformed data set would have

to be tested against a uniform distribution on the unit sphere

rather than on [0, 1]. However, this procedure would be specific

to [ fGD]q(h, Q) and would stop us from possibly combining data

sets composed of both directional and three-component data

[for which [ fU]q(r, s) is relevant].
To avoid this difficulty we decided to keep the original

idea of transforming the data set into a new 1-D data set

on [0, 1] to be tested against a uniform distribution. This ‘1-D

uniformization’ of multidimensional data is described in the

next section. It has one major advantage within the palaeo-

magnetic context that we are dealing with: because each palaeo-

magnetic datum is assumed to be an independent realization of

the generalized GGP, it will indeed be possible to uniformize

each type of data independently for each site using the relevant

[type of data- and site-dependent [ fU]q(r, s) or [ fGD]q(h, Q)]
functional form of the generalized GGP and combine as

many transformed data as we wish. Thus, 1-D uniformization

allows us to carry out tests at all levels: locally, on a site by site

basis; regionally, by combining sites within a region; globally,

by combining all sites.

However, 1-D uniformization has some drawbacks. It maps

a multidimensional distribution into a 1-D distribution. This

has two consequences, first, the procedure is non-unique, and

second, for any chosen procedure there will always be a degree

of freedom for the data set not to be compatible with the

original multivariate density function even if it appears to be

compatible with a uniform distribution after uniformization.

However, if after 1-D uniformization the data set fails to be

compatible with a uniform distribution on [0, 1], then we may

state that it is incompatible with the original multivariate

density function. In this respect we may say that the procedure

is conservative in the usual statistical sense. As we shall see, it

turns out that tests based on this procedure are in fact quite

sensitive if the 1-D uniformization is well chosen.

5.2 1-D uniformization of a multidimensional data set

As stated above, 1-D uniformization of a multidimensional

data set {xi} (xisX) to be tested against a pdf fa(x) aims at

producing a 1-D data set {ti} over [0, 1] such that if {xi} is

compatible with fa(x) then {ti} is compatible with a uniform pdf

over [0, 1]. Such a procedure can be defined in the following

way. First we introduce a one-parameter family {Ut}, ts[0, 1]

of subsets Ut5X such that

P a [Utf g:
ð
Ut

faðxÞdx ¼ t ,

U0 ¼ 1 , U1 ¼ & , (12)

xƒyZ[Ux(Uy ,

where P{asUt} stands for the probability of the random

variable a falling within Ut. Having such a family we can next

transform the data set {xi} into {ti} by applying the following

rule: if xisUt̄ and for all tk<t̄ we have xi in the complement of

Utk, then set ti=t̄. Less formally this means that we seek ti such

that xi belongs to the boundary ofUti
. As can easily be checked,

this rule defines a 1-D uniformization that achieves what we

want. In the case of 1-D data this procedure is exactly the

standard uniformization procedure eq. (11) for testing against

a univariate pdf.

In the multidimensional case, it is clear that many different

families {Ut} satisfying eq. (12) can be found (reflecting the fact

that we map a multidimensional space to a line). This is how

different procedures can in fact be defined. However, only one

family can be defined without needing additional information

[other than the one provided by the fa(x) pdf]. [For more

details explaining the properties of these families {Ut}, see

e.g. Kullback (1968), Chapter 2, who discusses these within the

context of information theory.]

This special family is the one for which eachUt is bounded by

an isovalue of fa. It satisfies

Ut ¼ xjfaðxÞ§CðtÞf g , (13)

where C(t) is a monotonically decreasing positive real function

of ts(0, 1) entirely defined by the equality P{asUt}=t. As

can easily be checked, using the family of eq. (13) leads to a

1-D uniformization defined by a very simple rule: for each

sample xi of {xi}, define

ti ¼ PfxjfaðxÞ§faðxiÞg ¼
ð

xjfaðxÞ§faðxiÞf g
faðxÞdx : (14)

In practice, the right-hand side integral of eq. (14)

is then evaluated numerically. Standard software such as

Mathematica 3.0 allows this to be done. However, the

computation is quite time-consuming and a specific algorithm

had to be developed to achieve the computation in a more

efficient way.

Formula (14) defines the 1-D uniformization that we use in

the following.
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5.3 Application to the palaeomagnetic data set

When dealing with the palaeomagnetic data set, fa(x) may

equally well represent the 3-D statistics [ fU]q of the field at

some location q where we have full-field data (in which case

X=R3) or the 2-D GD-distribution statistics [i.e. [ fGD]q(h, Q)]
at some other location where we only have directional data

available (in which case X is the unit sphere S). However, for

the purpose of the present paper, which aims more at illustrating

the method than at carrying out a systematic study of all

available palaeomagnetic data, only the most common case of

directional data is considered in detail. 1-D uniformization is

then implemented with the help of eq. (14), where fa(s) is taken

to be [ fGD]q(h, Q), as given by eq. (10).

For each site q and after 1-D uniformization, we are left with

a set of uniformized data {ti} to be tested against the uniform

distribution over [0, 1]. Since a variety of tests exist to check

such a uniform distribution (Knuth 1981), testing a generalized

GGP can ultimately be done quite straightforwardly. Binning

uniformized data from as many sites as we wish makes it very

easy to carry out these tests on a local, regional or global scale.

The paragraph below summarizes the whole procedure.

5.3.1 Summary

The practical testing of a given directional datum against a

candidate generalized GGP finally amounts to the following four

steps, given a data set from various sites, E(k) and Cov(k, k)

and defining the generalized GGP.

Step 1. For each site q find the centre and moments of the

Gaussian random vector Bq=(gradV)q=gradV(Rq, Hq, Yq) as

described in Section 3.

Step 2. For each site q compute the probability density

function [ fGD]q(h, Q) according to eq. (10).

Step 3. For each site q carry out the 1-D uniformization of

the {si}q data set and derive the uniformized {ti}q data set as

described in this section.

Step 4. Join as many {ti}q as needed into one local, regional

or global uniformized data set {ti} and apply to it the criterion

of one’s choice in order to test whether this sample represents a

uniform random distribution over [0, 1] or not.

6 D I SCUSS ION

In this section, we wish to provide simple examples of

application of the theoretical considerations developed in

the previous sections. It is not our intention to be exhaustive,

but rather to demonstrate the usefulness of the approach we

suggest. We first point out that if we are ready to believe that

the field can be described in terms of a generalized (or even

classical) GGP—this, we should stress again, remains an

arbitrary assumption—then the pdf of the direction of the field

can have quite complex non-Fisherian properties. We show

that this may lead to significant artefacts when trying to con-

struct mean-field models with the help of averages of pure

directional data in the way palaeomagnetists currently do. To

illustrate the point further and to provide examples of practical

applications of our method, we finally test a number of recently

published PSV and time-averaged field models against a small

but well-controlled data set covering the Bruhnes chron and

corresponding to volcanic directional data acquired at 26 sites

distributed worldwide (see Fig. 1 for details). It is shown that

the method proves sufficiently efficient to warrant further

applications to palaeomagnetic field modelling.

The data set we rely on has been extracted from the Quidelleur

et al. (1994) database and is available on the Web (updated in

1999) at http://www.ipgp.jussieu.fr/obs/data/paleomag/var-secu/.

The various models we test are

(i) the original model of Constable & Parker (1988) (hereafter

CP88);

(ii) model C1 of Quidelleur & Courtillot (1996) (hereafter

QC96);

(iii) model CJ98 recently proposed by Constable & Johnson

(1999).

Additional models, CP88-0, QC96-0 and CJ98-0, derived from

these three models by reducing the average field to its single

axial dipole component, are also considered for illustration

purposes. Table 1 gives an exact description of each of these

models.

6.1 Non-Fisherian properties of the local directional
probability density function

Two models have been considered as starting points to

illustrate the complex non-Fisherian behaviour of the local

directional pdf, QC96 and CJ98. These two models are typical

of the GGP models that have been proposed. The fluctuations

of the field are characterized by covariances of the forms eqs (2)

and (3)—and thus assume no correlation between the Gauss

coefficients and the same variance sk for Gauss coefficients

sharing the same degree k—except for the degree 2 coefficients

Figure 1. Locations of the 26 sites of the Bruhnes data set.

Table 1. Mean field and variances of the GGP models tested in this

study. The parameter a defines the sn
m=sn=[a(c/a)n/[(n+1)(2n+1)]1/2]

for ni3. All tests have been carried out by considering contributions

up to degree n=7 (higher-degree contributions appear to be negligible).

All values in mT.

CP88 QC96 CJ98 CP88-0 QC96-0 CJ98-0

E(g1
0) x30.0 x30.0 x30.0 x30.0 x30.0 x30.0

E(g2
0) x1.8 x1.2 x1.5 0 0 0

s1
0 3.0 3.0 11.72 3.0 3.0 11.72

s1
1 3.0 3.0 1.67 3.0 3.0 1.67

s2
0 2.14 1.3 1.16 2.14 1.3 1.16

s2
1 2.14 4.3 4.06 2.14 4.3 4.06

s2
2 2.14 1.3 1.16 2.14 1.3 1.16

a 27.7 27.7 15.0 27.7 27.7 15.0
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in the case of QC96 and the degree 1 and 2 coefficients in the

case of CJ98, which are also assumed uncorrelated but have

variances sk dependent on the order of the Gauss coefficient.

These dependences were originally introduced as a first-order

attempt to improve the fit to the set of data-derived PSV

indicators (VGP scatter curves for the past 5 Myr), which

models without such dependence, such as CP88, unquestion-

ably fail to account for (see e.g. Hulot & Gallet 1996). Both

models also assume a mean field composed of only an axial

dipole and an axisymmetric quadrupole. This axisymmetric

quadrupole was introduced to account for the fact that the

data tend to show a slight average offset in the inclinations,

known as the far-sided effect (Wilson 1970; see also Constable

& Parker 1988 and Quidelleur et al. 1994), which is widely

thought to be the most reliable feature within the mean field of

the past 5 Myr (e.g. Carlut & Courtillot 1998). Thus, QC96 and

CJ98 may be viewed as two typical GGP models accounting for

what are thought to be the most robust features in the data for

the past 5 Myr.

Figs 2 and 3 show examples of pdfs for the two models

QC96-0 and CJ98-0, derived from the two previous models

QC96 and CJ98 by reducing the average field to only its axial

dipole component [i.e. by setting E(g2
0)=0]. The reason we

chose these two models (rather than the original models) will

soon become clear. In these figures, which are plotted for

theoretical sites in the Northern Hemisphere, the convention is

as follows: for each site, the unit sphere is Lambert-projected,

the centre point (pointing downwards on the page) corresponds

to the direction produced by a pure axial dipole field, and two

axes representing the S–N and E–W directions are also plotted

(north being towards the top of the page, east being towards

the right). The ellipses are pdf isovalues representing the bounds

within which 0 per cent (central point), 10 per cent, . . . , 90 per

cent of the directions are expected to lie.

Because the models are statistically axisymmetric [this follows

from the facts that the variances for the gn
m and hn

m are identical

and the assumed mean field is axisymmetric (Hulot & LeMouël

1994)], the pdfs only depend on the latitudes of the sites and not

Figure 2. Local pdfs for model QC96-0 for theoretical sites at northern latitudes 0u, 10u, 20u, . . . 80u (line by line, left to right, starting from upper left).

The axes are labelled in degrees, the circles indicating a 20u angle with respect to the central (pure axial dipole) direction. The ellipses are pdf isovalues

representing bounds within which 10, 20, . . . , 90 per cent of the directions are expected to lie. The stars mark the theoretical limits of the local average

directions and the black dots mark the directions produced by the mean field of QC96. Note that the angle for the theoretical limit can reach 1.2u in this

case. Figs 2, 3 and 4 may be viewed in colour in the online version of the journal (www.blackwell-synergy.com).
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on their longitudes. This is why longitudes are not specified

in Figs 2 and 3. A similar symmetry holds with respect to the

equator for the two models QC96-0 and CJ98-0. This is because

the second-order moments for these GGPs are invariant with

respect to this symmetry [the effect of this symmetry is only to

change the sign of the Gauss coefficients with (nxm) odd, and

since no correlations are assumed, the second-order moments

remain unchanged under the symmetry] and because the average

field (an axial dipole) is itself antisymmetric with respect to

this symmetry. Only sites with northern latitudes are shown in

Figs 2 and 3. An additional symmetry properties holds locally,

again as a direct consequence of the symmetries assumed within

these two GGPs (which are axisymmetric, as already mentioned,

and invariant under a longitudinal plane symmetry, as the

reader can easily verify): for each site, the pdfs are clearly

symmetric with respect to the local S–N axis (see Figs 2 and 3).

Although we do not intend to discuss this point any further

here, it is important to emphasise the fact that these symmetries

are the direct consequence of the symmetries assumed within

the GGPs. Any departure of the actual data distribution from

these symmetries could thus provide very valuable indications

that the field might behave in a non-symmetric manner [some-

thing which could then possibly be modelled in terms of aniso-

tropy and/or correlations between Gauss coefficients, as first

suggested by Hulot & Gallet (1996) and partially discussed by

Constable & Johnson (1999)].

Figure 3. Same as Fig. 2 but for model CJ98-0 (pdf and stars) and mean field of CJ98 (dots). Note that the theoretical limit of the local average

direction (stars) can now reach 5u (see central diagram).
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Despite the symmetries just mentioned, Figs 2 and 3 show

that the local pdfs produced by the two models QC96-0 and

CJ98-0 are non-Fisherian. They do not display the circular

pattern typical of a Fisherian distribution. They do not even

display a simple enough behaviour for it to possibly be approxi-

mated by more elaborate distributions such as the bivariate

extension of the Fisher statistics (see e.g. Kent 1982; Fisher et al.

1987; Le Goff 1990). In fact, except for special situations

(such as for sites located at or very near to the equator), the

pdfs display a skewed behaviour. Isovalues of the pdfs display

ellipse-like shapes but these ellipses are not centred on a

common point. The effect is quite spectacular for most of the

site latitudes, such as mid-latitudes, that are particularly relevant

in practice (corresponding to latitudes of actual sampling sites).

Not taking this effect into account may thus lead to a mis-

leading assessment of the fit of a given GGP to the actual data

distribution, even for models as simple as those considered

here.

6.2 Consequences for mean-field modelling

The non-Fisherian behaviour of the local directional pdfs

has important consequences for the possibility of recovering

the mean-field model k̄ about which the GGP is assumed to

fluctuate. Such mean-field modelling is usually performed with

the help of averaged directional data, assuming these averages

are unbiased estimators of the local direction of the mean field

k̄ (see e.g. Gubbins & Kelly 1993; Johnson & Constable 1995;

Johnson & Constable 1997; Kelly & Gubbins 1997; Carlut

& Courtillot 1998). This assumption is compatible with the

assumption of a Fisherian local directional pdf, that is, with

the distribution these authors more or less explicitly assume

for the data. Unfortunately, as we shall now explicitly show

with the help of the two previous examples QC96-0 and CJ98-0,

it is not compatible with the non-Fisherian local pdfs that arise

as a consequence of a generalized GGP.

The theoretical limit of the local average direction that

palaeomagnetists rely on (constructed by taking the direction

of the sum of the observed unit vectors) is the direction of the

average of the unit vectors weighted by the pdf. This average

direction can easily be computed for each of the local pdfs

shown in Figs 2 and 3 (stars). As can be seen (especially in

Fig. 3), it usually does not correspond to the direction of the

mean field k̄ (which is that of an axial dipole in the present

instance and thus corresponds to the centre of the Lambert

projection on each figure). The local average direction is thus

a biased estimator of the direction produced by the mean

field. The disagreement can be quite large, sometimes reaching

several degrees. It is a direct consequence of the non-Fisherian

behaviour of the local pdfs. (Note that this behaviour produces

a most likely direction—central ellipse on each part of Figs 2

and 3—that also significantly differs from both the pdf average

direction and the direction of the mean field).

Clearly, not taking this bias into account could lead one

to misinterpret the departure of the reconstructed direction

(with respect to the direction produced by the mean axial

dipole) in terms of some structure within the mean field. This

would not be a problem if the true structure could be expected

to produce a signal significantly larger than the bias we see

here. Unfortunately, this may not be the case. This again can be

illustrated with the help of our examples. Consider the mean

fields of the two original models QC96 and CJ98. As already

mentioned, these mean fields are composed of an axial dipole

and an axial quadrupole, the quadrupole term being considered

as the single most significant non-axial dipole structure within

the mean field of the past 5 Myr. Using just these mean fields

and computing the direction they would produce at each site of

Figs 2 and 3 (black dots) shows that these directions depart

from the direction produced by a pure axial dipole by amounts

that are comparable to the bias produced by the non-Fisherian

pdfs of QC96-0 and especially CJ98-0.

At this point, it may be argued that the mean field and the

bias do not always produce shifts in the same direction (as is

the case for instance for northern latitudes of 20u and 30u in the

case of model CJ98) and that sometimes the bias does not

produce any effect whereas the mean field does (as is the case

for equatorial sites) and vice versa (at high latitude). It may also

correctly be argued that in the Southern Hemisphere the non-

axial dipole mean field would produce an effect in the opposite

direction to that produced in the Southern Hemisphere (because

of the equatorial symmetry of a g2
0 field). In this respect, we

must firmly acknowledge that if sites over the entire Earth’s

surface were being used, it would not be possible to misinterpret

the biases produced by the non-Fisherian pdfs considered here

in terms of a mean g2
0 component. This, in fact, is good news. It

suggests that interpreting the worldwide inclination bias in

terms of a persistent g2
0, as done by most authors when relying

on the best data set currently available, is a reasonable thing to

do. However, if the sites are not so well distributed (as we shall

see, this is the case for the data set considered here, which

is strongly biased towards northern sites) or if one intends to

look for more structure than the axial quadrupole component

in the mean field, the non-Fisherian biases produced by a

generalized GGP could clearly be misinterpreted in terms of

some mean-field structure.

6.3 Examples of global and local statistical tests

That the issues raised in the previous sections should not be

overlooked can also be seen directly in the course of testing

GGP models in the way we advocate. In this last section, we

provide explicit examples of the rigorous statistical testing

method described in Section 5 and test the six GGP models

CP88, QC96, CJ98 and CP88-0, QC96-0, CJ98-0 against the

database previously described.

For each of these models, we followed the four steps

described in Section 5, and tested the final uniformized data set

{ti} over the [0, 1] segment with the help of two standard tools,

the KS (Kolmogorov–Smirnov) test and the x2 test (see e.g.

Press et al. 1996).

The KS test is an objective test that does not require external

parameters. However, it has one well-known drawback: it is

more sensitive to departures of the data {ti} from a uniform

distribution at the middle of the segment [0, 1] than near its

margins, hence we also decided to carry out a x2 test . This

second test is less objective in the sense that some degree of

arbitrariness is left to the user. However, this precisely provides us

with the possibility of having a test more sensitive to departures

near the margins of the distribution. Of course, many other

tests could be carried out. However, as we shall see, these two

‘complementary’ tests already provide us with very useful results.

For the purpose of this illustrative study we used a x2 test

with five degrees of freedom, based on the division of the [0, 1]

segment into six boxes, namely, (0, 0.1), (0.1, 0.25), (0.25, 0.5),
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(0.5, 0.75), (0.75, 0.9), (0.9, 1). This choice puts more emphasis

on the (0, 0.1) and (0.9, 1) boxes, while still ensuring that

enough data values will eventually fall in each box for the test

to be valid.

In practice, for each model to be tested and for each site q

with data available, we computed the local directional pdf on

a numerical grid defined on the local unit sphere S (steps 1

and 2). This then made it possible to define numerically the

isovalues for [ fGD]q(h, Q) on the unite sphere, and to carry out

the numerical integration involved in eq. (14). Thus step 3

(uniformization {si} into {ti}) was fulfilled.

At this stage, a given model could then easily be tested locally

by carrying out both the KS and x2 tests with the corresponding

single set of uniformized data {ti}q. Alternatively, the same

model could also be tested regionally by stacking {ti}q for

various sites q before carrying out the tests. Finally, global tests

could also be carried out by stacking all the {ti}q (step 4).

However, for conciseness and given the illustrative purpose of

the present section, only a few local tests and the global tests for

each of the six models have actually been carried out.

Figs 4 and 5 provide illustrations of the local test carried out

for the six models at the French site. This site has been chosen

because it lies in a band of latitude that is relatively common

within our data set (see Fig. 1) and because the number of

data points is also representative of the available data at a

reasonably good site. As can be seen in Fig. 4, the general

aspect of the local pdfs predicted by the six models is fairly

dependent on the variances that are assumed, but apparently

Figure 4. Local pdfs (together with the data) for the models tested at the French site: CP88 (top left) and CP88-0 (top right), QC96 (middle left) and

QC96-0 (middle right), CJ98 (bottom left) and CJ98-0 (bottom right). Ellipses are pdf isovalues representing bounds within which 10, 25, 50, 75

and 90 per cent of the directions are expected to lie.

166 A. Khokhlov, G. Hulot and J. Carlut

# 2001 RAS, GJI 145, 157–171



insensitive to the weak mean model people assume is required

to explain the data. These figures already give a hint of how

good each model may be with respect to the site considered.

Indeed, isovalues of the local pdf shown in these figures

represent the bounds within which 10, 25, 50, 75 and 90 per cent

of the directions are predicted to lie, given the model under

consideration. As the reader can easily verify, this means that

the x2 test can be implemented in a straightforward manner

by just counting the number of points falling between two

successive ‘ellipses’.

Alternatively, and also to implement the KS test properly,

we may further plot the six empirical cumulative distribution

functions (cdfs) obtained after carrying out 1-D uniformization.

This is shown in Fig. 5, where the theoretical cdf of a uniform

distribution is also plotted. Then, implementing the KS test

simply consists of looking for the maximum vertical discrepancy

between the empirical and theoretical cdfs.

In the present case, both tests (x2 and KS) lead to similar

conclusions. However, it is important to note that this is not

always exactly the case. This, in fact, is a direct illustration of

the complementary nature of the two tests. Take one example

for which the discrepancy is especially striking: CJ98-0. For this

example the probability of rejecting the model is 99 per cent

from the point of view of the x2 test, and only 88 per cent from

the point of view of the KS test. This is because the KS test fails

to see the systematic departure of the empirical cdf with respect

to the linear theoretical cdf. By contrast, the x2 test sees this as a
very strong lack of observed values in the first (0, 0.1) and

(0.1, 0.25) boxes, together with a symmetric strong excess of

values in the last (0.75, 0.9) and (0.9, 1) boxes. In this respect

the model is thus indeed very unlikely to be compatible with the

data. Clearly, this also means that in testing models, one should

always consider the most unfavourable probability.

This being said, we can now state that our results show

that some models are consistent with the data at a good level

of confidence (QC96, QC96-0, CP88-0), while others (CP88,

CJ98, CJ98-0) are clearly not (Figs 4 and 5 and Table 2). It is

particularly striking that removing the axial quadrupole from

the mean field usually leads to a slightly worse fit but not

always. CP88-0, for instance, leads to a better fit than CP88.

This, in fact, is a direct illustration of the fact mentioned in

the previous section that the (slightly, in the present instance)

Figure 5. Empirical distributions of the uniformized data for the various models tested at the French site. Also shown are the relevant values of the

probabilities for the x2 and KS tests (taken from Table 2).
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non-Fisherian properties of the local pdf may be enough to

account for the bias in direction usually interpreted in terms of

a persistent mean-field component. Many other local tests have

been carried out, which we do not describe in detail (see Table 2

for typical results).

The main fact to come out of these additional tests is that the

quality of the fit of each model to the data is strongly site-

dependent. These somewhat contradictory results simply testify

to the fact that none of the six models we considered manages

to account globally for the whole data set in a satisfying way.

There seems always to exist at least a few sites where any given

model fails to account for the data.

Turning to the global test gives us a global statistical measure

of this difficulty. For such a task no figure similar to Fig. 4 can

be shown. However, we may of course draw the equivalent of

Fig. 5, that is, the empirical cdfs obtained after carrying out

1-D uniformization and binning all uniformized data sets into a

single global data set to be tested against the uniform distri-

bution. This is shown in Fig. 6. Both the x2 and KS tests can

then be carried out.

As can be seen in Table 2, it turns out that indeed none of the

six models scores well enough in the tests for it to be compatible

with the full data set. All models are thus strictly incompatible

with this data set, at least within the set of assumptions we

decided to rely on (we will return to this important point). The

best we can say is that some models are apparently not as bad

as others. This can be seen from both Fig. 6 and Table 3,

which, rather than probabilities, shows the observed values x2

and D for the x2 and KS tests (for more technical details see

Press et al. 1996).

Focusing first on the three published models CP88, QC96

and CJ98, we note that these three models obtain very similar

scores. The KS test suggests that QC96 is slightly worse, but

the x2 test seems to give a slightly more discriminating result.

It is interesting to note that the relative x2 scores lead to the

conclusion that authors are progressively coming out with

models better and better corrected for drawbacks identified in

earlier models. That CP88 is the worst of these three models

is no big surprise. As previously mentioned, this model is

among the simplest GGP models one can create but belongs

to a family of models that are well known to be seriously

incompatible with a variety of effects observed in data-derived

indicators (see e.g. Kono & Tanaka 1995; Hulot & Gallet

1996). That model QC96 does ‘slightly better’ is also quite

sensible. This model was indeed specifically designed to correct

for the drawbacks observed in CP88 (Quidelleur & Courtillot

1996). The same of course also applies to the CJ98 model

(Constable & Johnson 1999), which is the best with respect to

both tests.

Far less expected in view of earlier studies is the fact that

CJ98-0 does so well. It is actually the best model we tested

(i.e. the ‘least bad’). This result shows that a model with a pure

axial dipole mean field can provide a better fit then a model

with more mean-field features. Note that this also questions the

need for a persistent axial quadrupole field, within the context

of the data set and assumptions considered here. Non-Fisherian

behaviour of the local pdfs for this model appears to account

for the present data set at a level that is not good (remember

that none of the models is ‘satisfactory’), but which is never-

theless better than any of the models considered here. This

is because the sites we considered are unevenly distributed and

often lie at latitudes such that the non-Fisherian behaviour

actually produces biases in a favourable direction (in the way

described in the previous section). Models CP88-0 and QC96-0

do not lead to a similar improvement with respect to the CP88

and QC96 models. Setting the axial quadrupole mean field to

zero in that case in fact leads to a dramatic deterioration of

the models (Fig. 6 and Table 3). This is the perfect complement

of the previous result. Indeed, for these models the assumed

variances are such that the non-Fisherian pdfs produce much

weaker biases (see Fig. 2). In that case the g2
0 is needed to

account better for the data. These results again illustrate the

need to take the non-Fisherian behaviour of local pdfs into

account properly before making claims concerning the mean

field. They also show that mean-field and PSV modelling

cannot be carried out independently.

Finally, it should be stressed that comparing models that so

poorly account for the data is anyway not satisfactory. This

finally brings us back to what seems to be the main conclusion

of this set of rigorous local and global statistical tests: none

of the considered models appears to be compatible with the

full data set we considered within the set of assumptions made.

This last point is important because two strong assumptions

concerning the data set have also been made: first, each data

Table 2. Local and global results of the x2 and Kolmogorov–Smirnov tests. We show the pairs of associated probabilities

using the x2 (left value) and Kolmogorov–Smirnov tests (right value) for the model to be incompatible with the data.

N CP88 QC96 CJ98 CP88-0 QC96-0 CJ98-0

France 38 0.98, 0.72 0.44, 0.46 0.97, 0.82 0.79, 0.30 0.60, 0.64 0.99, 0.88

Hawaii 112 0.98, 1.00 0.79, 0.76 1.00, 1.00 1.00, 1.00 0.42, 0.66 1.00, 1.00

Reunion 44 0.26, 0.50 0.03, 0.00 0.80, 0.28 0.71, 0.90 0.13, 0.10 0.85, 0.71

All 26 944 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00 1.00, 1.00

Table 3. Global results of the x2 and Kolmogorov–Smirnov tests. We show the pairs of input statistics for the x2

test (left value) and the Kolmogorov–Smirnov test (right value).

CP88 QC96 CJ98 CP88-0 QC96-0 CJ98-0

All 26 39.0, 0.06 25.4, 0.08 19.5, 0.06 841.5, 0.29 1658., 0.40 18.5, 0.06
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point is statistically independent of any other data point

(because of the time elapsed between the setting of the corres-

ponding lava flows), and second, the data are infinitely accurate.

Three reasons might thus explain the failure of the models: the

models are inadequate, or the data are sometimes correlated,

or the errors in the data are so large that we need to take them

into account. All three reasons are likely to combine to pro-

duce the overall negative result found. The problem of data

correlation could be addressed within the framework of our

method. Indeed, such a correlation would a priori be the result

of lava samples taken from different flows (on a common site)

that are erroneously thought to be non-contemporaneous. The

problem would then be specific to this site and could be

detected by the failure of the local test for virtually all models.

The problem of noise in the data is less obvious. It would

require that the rigorous statistical approach presented here

be slightly generalized to deal with imperfect data. Such a

generalization, which is beyond the scope of the present paper,

would improve the scores of all models in the tests, but would

be unlikely to modify the general ordering of the models from

best to worst (unless, as in the case of CJ98 and CJ98-0, the

models obtain very close scores). The best models considered

here (or better models) would then hopefully pass the tests in a

truly satisfactory way.

7 CONCLUS IONS

The purpose of the present paper was to provide a fully

consistent way of addressing the problem of modelling the

palaeomagnetic field in terms of the now quite well accepted

(and here slightly generalized) concept of GGP. We showed

that for any given generalized GGP model, it was possible

to compute the exact pdf not only for the full field, but also for

the direction of the field at any given site at the Earth’s surface.

We explained how by forwarding in such a way the statistical

information of a model to the local sites, it was possible to

Figure 6. Empirical distributions of the uniformized global data for the various models. Also shown are the input values for the x2 and KS tests

(taken from Table 3).
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make local assessments of the validity of any given model. We

also explained how such local statistical information could be

binned together to test the regional or worldwide validity of

such a GGP model.

The approach we propose has several advantages over those

that have been used in the recent literature. First, it is fully

consistent with the conceptual framework used to define a

GGP model. Second, it only involves a statistically rigorous

transformation of the data, and the data may thus be tested in

their raw form (avoiding uncontrolled propagation of errors

in the data-derived indicators most authors rely on). Third, it

requires no approximation of any kind. Fourth, it may be used

with any kind of ‘instantaneous’ palaeomagnetic data.

In the process of explaining our method, one particularly

important result was derived that we again wish to stress:

local directional pdfs produced by generalized GGP models

are usually significantly non-Fisherian. As a consequence, even

very simple models only involving a pure axial dipole mean

field can produce local directions whose average (defined by

taking the direction of the average of the unit vectors, as is

common practice for mean-field modelling) may differ from

the direction of the true mean field. The bias introduced has

been shown to be possibly comparable to the observed shift

in average direction, which is usually interpreted in terms of

some mean-field structure. This means that the standard pro-

cedure most palaeomagnetists rely on to produce mean-field

models from directional data (especially when starting from

instantaneous lava samples) is inconsistent with the generalized

GGP concept. Models produced in this way may not reflect the

true mean field of the best generalized GGP model describing

the data. In fact, these models are likely to be seriously affected

by the non-Fisherian biases of the local directional pdfs, the

amplitude of which is governed by the secular variation of

the field (that is, the variances of the GGP model) and not

by the true mean field. As has been shown, this would be the

case if, for instance, the best generalized GGP model describing

the data had variances similar to those involved in the CJ98

model. Great caution should therefore be taken in interpreting

such mean-field models.

Unfortunately, what our results also show is that no good

(i.e. fully consistent) procedure to recover or test a mean-field

model starting from pure directional data without simul-

taneously considering the variances describing the GGP model

seems to be readily available. Some progress might be possible,

but this would require introducing some justified approxi-

mation. This is a possibility that is worth pursuing and that we

intend to consider in detail in future work.

In the mean time, the best we can do is to test the full

GGP model against a (partly or fully) directional data set by

relying on the method we propose here, possibly using this

forward method as a tool for a trial-and-error approach or a

Monte Carlo approach to recover both the mean field and the

variances characterizing the GGP model. The very complete

and carefully checked database of McElhinny & McFadden

(1997) could, for instance, be used to carry out a much more

systematic study than the one presented here for illustrative

purposes. Alternatively, one could also decide to focus mainly

on the much smaller data set composed of full magnetic data

(direction and intensity), in the spirit of the recent study of

Kono et al. (2000). In that case, one can take advantage of the

fact that the statistics of the local field produced by a GGP

model are those of a pure 3-D Gaussian distribution (see

Section 3). The observed mean local field then being an

unbiased estimate of the signal the mean field would produce at

the site (see eq. 4), these observed means could be used in a

consistent way to recover the mean-field model independently

of the variances involved in the GGP model [the modelling

procedure is then essentially the same as the one used for

producing modern geomagnetic field models; see e.g. Langel

(1987)]. As noted by Kono et al. (2000), such a data set could

also provide some useful information concerning the variances

of the GGP model, independently of the value of the mean

model. This is because of eq. (5), which linearly relates observed

local covariances to the model covariances. Unfortunately,

as described by Kono et al. (2000), the inverse problem defined

by eq. (5) is far less stable then the classic inverse problem

defined by eq. (4). It thus eventually turns out that little more

than a modest (but consistent) mean-field model can safely be

recovered through mathematical inversion. Such a mean field

should, however, be considered as the best starting point for

constructing consistent generalized GGP models of the real

palaeomagnetic field.
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