C. N. Achilles, Mineralogy of an active eolian sediment from the Namib dune, Gale crater, Mars, Journal of Geophysical Research: Planets, vol.471, issue.7047, pp.10-1002, 2017.
DOI : 10.1016/j.epsl.2017.04.033

C. B. Agee, Unique Meteorite from Early Amazonian Mars: Water-Rich Basaltic Breccia Northwest Africa 7034, Science, vol.96, issue.18, pp.780-785, 2013.
DOI : 10.1023/A:1011997206080

R. C. Anderson, Collecting Samples in Gale Crater, Mars; an Overview of the Mars Science Laboratory Sample Acquisition, Sample Processing and Handling System, Space Science Reviews, vol.108, issue.E12, pp.57-75, 2012.
DOI : 10.1029/2003JE002061

D. M. Applin, M. R. Izawa, E. A. Cloutis, D. Goltz, and J. R. Johnson, Oxalate minerals on Mars?, Oxalate minerals on Mars, pp.127-139, 2015.
DOI : 10.1016/j.epsl.2015.03.034

P. D. Archer and . Jr, Abundances and implications of volatile-bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars, Journal of Geophysical Research: Planets, vol.436, issue.7047, pp.237-25410, 2014.
DOI : 10.1038/nature03637

V. S. Arutyunov, V. Y. Basevich, V. I. Vedeneev, O. V. Sokolov, V. A. Ushakov et al., Kinetics of the reduction of sulfur dioxide. III: Formation of hydrogen-sulfide in the reaction of sulfur-dioxide with hydrogen, Kinet. Catal, vol.32, pp.1112-1115, 1991.

A. Aubrey, H. J. Cleaves, J. H. Chalmers, A. M. Skelley, R. A. Mathies et al., Sulfate minerals and organic compounds on Mars, Sulfate minerals and organic compounds on Mars, pp.357-360, 2006.
DOI : 10.1130/G22316.1

L. A. Aylmore, M. Karim, and J. P. Quirk, ADSORPTION AND DESORPTION OF SULFATE IONS BY SOIL CONSTITUENTS, Soil Science, vol.103, issue.1, pp.10-15, 1967.
DOI : 10.1097/00010694-196701000-00003

S. A. Benner, K. G. Devine, L. N. Matveeva, and D. H. Powell, The missing organic molecules on Mars, Proc. Nat. Acad. Sci. U.S.A, pp.2425-2430, 2000.
DOI : 10.1016/0019-1035(78)90053-2

J. A. Berger, A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater, Geophysical Research Letters, vol.436, issue.7047, pp.67-7510, 2016.
DOI : 10.1038/nature03637

D. Binns and P. Marshall, study of the reaction of atomic hydrogen with sulfur dioxide, The Journal of Chemical Physics, vol.31, issue.7, pp.4940-4947, 1991.
DOI : 10.1063/1.458300

D. L. Bish, X-ray Diffraction Results from Mars Science Laboratory: Mineralogy of Rocknest at Gale Crater, Science, vol.170, issue.E3, 2013.
DOI : 10.1007/s11214-012-9905-1

URL : https://hal.archives-ouvertes.fr/hal-01291799

D. F. Blake, Curiosity at Gale Crater, Mars: Characterization and Analysis of the Rocknest Sand Shadow, Science, vol.332, issue.6031, 2013.
DOI : 10.1126/science.1203091

URL : https://hal.archives-ouvertes.fr/hal-01291798

S. A. Bowden and J. Parnell, Intracrystalline lipids within sulfates from the Haughton Impact Structure???Implications for survival of lipids on Mars, Icarus, vol.187, issue.2, pp.422-429, 2007.
DOI : 10.1016/j.icarus.2006.10.013

T. F. Bristow, The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars, American Mineralogist, vol.100, issue.4, pp.824-836, 2015.
DOI : 10.2138/am-2015-5077CCBYNCND

J. H. Campbell, G. Gallegos, and M. Gregg, Gas evolution during oil shale pyrolysis. 1. Nonisothermal rate measurements, Fuel, vol.59, issue.10, pp.718-726, 1980.
DOI : 10.1016/0016-2361(80)90027-7

J. L. Campbell, G. M. Perrett, R. Gellert, S. M. Andrushenko, N. L. Boyd et al., Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer, Space Science Reviews, vol.320, issue.1-4, pp.319-34010, 2012.
DOI : 10.1126/science.1155429

S. Et, A. Cannon, K. M. , B. Sutter, D. W. Ming et al., Perchlorate induced low temperature carbonate decomposition in the Mars phoenix thermal and evolved gas analyzer (TEGA), Geophys. Res. Lett, p.10, 1029.

D. C. Catling, M. W. Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark et al., Atmospheric origins of perchlorate on Mars and in the Atacama, Journal of Geophysical Research, vol.119, issue.4, pp.0-1110, 1029.
DOI : 10.1016/j.scitotenv.2008.07.010

S. J. Chipera and D. T. Vaniman, Experimental stability of magnesium sulfate hydrates that may be present on Mars, Geochimica et Cosmochimica Acta, vol.71, issue.1, pp.241-250, 2007.
DOI : 10.1016/j.gca.2006.07.044

J. V. Clark, The investigation of chlorate/iron-phase mixtures as a possible source of oxygen and chlorine detected by the sample analysis at Mars (SAM) instrument in Gale Crater, Proc. Lunar Planet. Sci. Conf. 47th, 1537 pp, 2016.

A. Cousin, Compositions of coarse and fine particles in martian soils at gale: A window into the production of soils, Icarus, vol.249, pp.22-42, 2015.
DOI : 10.1016/j.icarus.2014.04.052

URL : https://hal.archives-ouvertes.fr/hal-01009985

Z. R. Dai and J. P. Bradley, Iron-nickel sulfides in anhydrous interplanetary dust particles, Geochimica et Cosmochimica Acta, vol.65, issue.20, pp.3601-3612, 2001.
DOI : 10.1016/S0016-7037(01)00692-5

D. 'hondt, S. , F. Inagaki, and C. A. , South Pacific gyre subseafloor life: Expedition 329 of the riserless drilling platform Papeete, Alvarez Zarikian, and the Expedition 329 Scientists Proceedings of the Integrated Ocean Drilling Program, 2010.

D. 'hondt and S. , Presence of oxygen and aerobic communities from seafloor to basement in deep-sea sediments, Nat. Geosci, vol.8, pp.299-304, 2015.

D. Dollimore, The thermal decomposition of oxalates. A review, Thermochimica Acta, vol.117, pp.331-363, 1987.
DOI : 10.1016/0040-6031(87)88127-3

H. E. Doner and W. C. Lynn, Carbonates, halite, sulfate, and sulfide minerals, Mineral in Soil Environments, p.315, 1989.

R. T. Downs and . Team, Determining Mineralogy on Mars with the CheMin X-Ray Diffractometer, Elements, vol.11, issue.1, pp.45-50, 2015.
DOI : 10.2113/gselements.11.1.45

K. S. Edgett, Curiosity???s Mars Hand Lens Imager (MAHLI) Investigation, Space Science Reviews, vol.106, issue.E4, pp.259-317, 2012.
DOI : 10.1029/1999JE001190

B. L. Ehlmann, Chemistry, mineralogy, and grain properties at Namib and High dunes, Bagnold dune field, Gale crater, Mars: A synthesis of Curiosity rover observations, Journal of Geophysical Research: Planets, vol.471, issue.2, pp.10-1002, 2017.
DOI : 10.1016/j.epsl.2017.04.033

J. L. Eigenbrode, Decarboxylation of carbon compounds as potential source for CO 2 and CO observed by SAM at, Proc. Lunar Planet. Sci. Conf. 45th, 1605 pp, 2014.

J. Espitalié, K. S. Makadi, and J. Trichet, Role of the mineral matrix during kerogen pyrolysis, Organic Geochemistry, vol.6, pp.365-382, 1984.
DOI : 10.1016/0146-6380(84)90059-7

C. Ettarh and A. K. Galwey, A kinetic and mechanistic study of the thermal decomposition of calcium nitrate, Thermochimica Acta, vol.288, issue.1-2, pp.203-219, 1996.
DOI : 10.1016/S0040-6031(96)03052-3

F. P. Fanale and W. A. Cannon, between the regolith and atmosphere of Mars caused by changes in surface insolation, Journal of Geophysical Research, vol.4, issue.4, pp.3397-3402, 1974.
DOI : 10.1016/0019-1035(74)90181-X

J. Filiberto and A. H. Treiman, Martian magmas contained abundant chlorine, but little water, Geology, vol.37, issue.12, pp.1087-1090, 2009.
DOI : 10.1130/G30488A.1

J. Filiberto, A. H. Treiman, P. A. Giesting, C. A. Goodrich, and J. Gross, High-temperature chlorine-rich fluid in the martian crust: A precursor to habitability, Earth and Planetary Science Letters, vol.401, pp.110-115, 2014.
DOI : 10.1016/j.epsl.2014.06.003

G. J. Flynn, The delivery of organic matter from asteroids and comets to the early surface of Mars, Earth, Moon and Planets, vol.26, issue.No. E3, pp.469-474, 1996.
DOI : 10.1007/BF00117551

A. A. Fraeman, B. L. Ehlmann, R. E. Arvidson, C. S. Edwards, J. P. Grotzinger et al., The stratigraphy and evolution of lower Mount Sharp from spectral, morphological, and thermophysical orbital data sets, Journal of Geophysical Research: Planets, vol.112, issue.1, pp.1713-173610, 1002.
DOI : 10.1029/2006JE002882

G. Fraisslera, M. Jöllera, T. Brunnera, and I. Obernbergera, Influence of dry and humid gaseous atmosphere on the thermal decomposition of calcium chloride and its impact on the remove of heavy metals by chlorination, Chemical Engineering and Processing: Process Intensification, vol.48, issue.1, pp.380-388, 2009.
DOI : 10.1016/j.cep.2008.05.003

P. Francois, C. Szopa, A. Buch, P. Coll, A. C. Mcadam et al., Magnesium sulfate as a key mineral for the detection of organic molecules on Mars using pyrolysis, Journal of Geophysical Research: Planets, vol.428, issue.1-2, pp.61-7410, 1002.
DOI : 10.1016/j.tca.2004.09.024

URL : https://hal.archives-ouvertes.fr/insu-01249128

H. B. Franz, Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory, Planetary and Space Science, vol.96, pp.99-114, 2014.
DOI : 10.1016/j.pss.2014.03.005

C. Freissinet, Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars, Journal of Geophysical Research: Planets, vol.343, issue.6169, pp.495-51410, 2015.
DOI : 10.1126/science.1243480

URL : https://hal.archives-ouvertes.fr/insu-01218165

J. Frydenvang, Discovery of silica-rich lacustrine and eolian sedimentary rocks in Gale Crater, Mars, Proc. Lunar Planet. Sci. Conf. 47th, 2349 pp, 2016.

P. K. Gallagher, D. W. Johnson, and F. Schrey, Thermal Decomposition of Iron(II) Sulfates, Journal of the American Ceramic Society, vol.115, issue.10, pp.666-670, 1970.
DOI : 10.1103/PhysRev.128.2207

R. Gellert, Chemical diversity along the traverse of the rover Spirit at Gusev crater, Proc. Lunar Planet. Sci. Conf. 37th, 2176 pp, 2006.

R. Gellert, Chemical evidence for an aqueous history at Pahrump, Gale Crater, Mars, as seen by the APXS, Proc. Lunar Planet. Sci. Conf. 46th, 1855 pp, 2015.

A. Gendrin, Sulfates in Martian Layered Terrains: The OMEGA/Mars Express View, Science, vol.307, issue.5715, pp.1587-1591, 2005.
DOI : 10.1126/science.1109087

URL : https://hal.archives-ouvertes.fr/hal-00112757

D. P. Glavin, Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale Crater, Journal of Geophysical Research: Planets, vol.113, issue.1, pp.1955-1973, 2013.
DOI : 10.1029/2007JE003001

URL : https://hal.archives-ouvertes.fr/hal-00868826

S. Gordon and C. Campbell, Differential Thermal Analysis of Inorganic Compounds, Analytical Chemistry, vol.27, issue.7, pp.1102-1109, 1955.
DOI : 10.1021/ac60103a018

M. M. Grady, A. B. Verchovsky, I. A. Franchi, I. P. Wright, and C. T. Pillinger, Light dement geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites, Meteoritics & Planetary Science, vol.35, issue.Suppl., pp.713-735, 2002.
DOI : 10.1111/j.1945-5100.1995.tb01115.x

M. M. Grady, A. V. Verchovsky, and I. P. Wright, Magmatic carbon in Martian meteorites: attempts to constrain the carbon cycle on Mars, International Journal of Astrobiology, vol.3, issue.2, pp.117-124, 2004.
DOI : 10.1017/S1473550404002071

J. P. Grotzinger, A habitable fluvio-lacustrine environment at, pp.10-1126, 2014.
DOI : 10.1126/science.1242777

URL : https://hal.archives-ouvertes.fr/hal-01293840

J. P. Grotzinger, Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale Crater, Mars, Science, vol.350, 2015.

M. H. Hecht, Detection of Perchlorate and the Soluble Chemistry of Martian Soil at the Phoenix Lander Site, Science, vol.77, issue.5936, pp.64-67, 2009.
DOI : 10.1007/BF01732369

M. N. Heinrich, B. N. Khare, and C. P. Mckay, Prebiotic organic synthesis in early Earth and Mars atmospheres: Laboratory experiments with quantitative determination of products formed in a cold plasma flow reactor, Icarus, vol.191, issue.2, pp.765-778, 2007.
DOI : 10.1016/j.icarus.2007.05.017

G. Hochstrasser and J. F. Antonini, Surface states of pristine silica surfaces, Surface Science, vol.32, issue.3, pp.644-664, 1972.
DOI : 10.1016/0039-6028(72)90192-6

Y. Hoshino, T. Utsunomiya, and O. Abe, The Thermal Decomposition of Sodium Nitrate and the Effects of Several Oxides on the Decomposition, Bulletin of the Chemical Society of Japan, vol.54, issue.5, pp.1385-1391, 1981.
DOI : 10.1246/bcsj.54.1385

J. A. Hurowitz, Redox stratification of an ancient lake in Gale Crater, Mars, Science, 2017.

T. R. Ingraham, H. W. Parsons, and L. J. Cabri, Leaching of pyrrhotite with hydrochloric acid, Canadian Metallurgical Quarterly, vol.245, issue.2, pp.407-411, 1972.
DOI : 10.5636/jgg.22.463

J. L. Jambor, D. K. Nordstrom, and C. N. Alpers, Metal-sulfate salts from sulfide mineral oxidation, in Sulfate Minerals, Rev. Mineral. Geochem, vol.40, pp.305-350, 2000.
DOI : 10.2138/rmg.2000.40.6

J. Jänchen, R. V. Morris, D. L. Bish, M. Janssen, and U. Hellwig, The H 2 O and CO 2 adsorption properties of phyllosilicate-poor palagonitic dust and smectites under Martian environmental conditions, Icarus, pp.463-467, 0200.

A. J. Jull, J. W. Beck, and G. S. Burr, Isotopic evidence for extraterrestrial organic material in the Martian meteorite, Nakhla, Geochimica et Cosmochimica Acta, vol.64, issue.21, pp.3763-3772, 2000.
DOI : 10.1016/S0016-7037(00)00458-0

S. P. Kounaves, B. L. Carrier, G. D. O-'neil, S. T. Stroble, and M. W. Claire, Evidence of martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, vol.229, pp.206-213, 2014.
DOI : 10.1016/j.icarus.2013.11.012

L. A. Leshin, S. Epstein, and E. M. Stolper, Hydrogen isotope geochemistry of SNC meteorites, Geochimica et Cosmochimica Acta, vol.60, issue.14, pp.2635-2650, 1996.
DOI : 10.1016/0016-7037(96)00122-6

L. A. Leshin, Volatile, Isotope, and Organic Analysis of Martian Fines with the Mars Curiosity Rover, Science, vol.19, issue.3, 2013.
DOI : 10.1039/b103775g

URL : https://hal.archives-ouvertes.fr/hal-00922263

J. M. Lewis, J. S. Watson, J. Najorka, D. Luong, and M. A. Sephton, Sulfate Minerals: A Problem for the Detection of Organic Compounds on Mars?, Astrobiology, vol.15, issue.3, pp.247-258, 2015.
DOI : 10.1089/ast.2014.1160

C. G. Macpherson and D. P. Mattey, Carbon isotope variations of CO2 in Central Lau Basin basalts and ferrobasalts, Earth and Planetary Science Letters, vol.121, issue.3-4, pp.263-276, 1994.
DOI : 10.1016/0012-821X(94)90072-8

C. G. Macpherson, D. R. Hilton, S. Newman, and D. P. Mattey, CO 2 , 13 C/ 12 C and H 2 O variability in natural basaltic glasses: a study comparing stepped heating and ftir spectroscopic techniques, Geochimica et Cosmochimica Acta, vol.63, issue.11-12, pp.1805-1813, 1999.
DOI : 10.1016/S0016-7037(99)00124-6

P. R. Mahaffy, The Sample Analysis at Mars Investigation and Instrument Suite, Space Science Reviews, vol.112, issue.3, pp.401-478, 2012.
DOI : 10.1029/2006JE002701

URL : https://hal.archives-ouvertes.fr/hal-00694758

P. R. Mahaffy, P. G. Conrad, and . Team, Volatile and Isotopic Imprints of Ancient Mars, Elements, vol.11, issue.1, pp.51-56, 2015.
DOI : 10.2113/gselements.11.1.51

M. C. Malin and K. S. Edgett, Sedimentary Rocks of Early Mars, Sedimentary rocks of early Mars, pp.1927-1937, 2000.
DOI : 10.1126/science.290.5498.1927

R. L. Mancinelli, The search for nitrogen compounds on the surface of Mars, Advances in Space Research, vol.18, issue.12, pp.241-248, 1996.
DOI : 10.1016/0273-1177(96)00113-5

C. V. Manning, C. P. Mckay, and K. J. Zahnle, The nitrogen cycle on Mars: Impact decomposition of near-surface nitrates as a source for a nitrogen steady state, Icarus, vol.197, issue.1, pp.60-64, 2008.
DOI : 10.1016/j.icarus.2008.04.015

C. E. Manning, E. L. Shock, and D. A. Sverjensky, The Chemistry of Carbon in Aqueous Fluids at Crustal and Upper-Mantle Conditions: Experimental and Theoretical Constraints, Reviews in Mineralogy and Geochemistry, vol.75, issue.1, pp.109-148, 2013.
DOI : 10.2138/rmg.2013.75.5

M. M. Markowitz, A basis for the prediction of the thermal decomposition products of metal perchlorates, Journal of Inorganic and Nuclear Chemistry, vol.25, issue.4, pp.407-414, 1963.
DOI : 10.1016/0022-1902(63)80191-8

J. Maki, D. Thiessen, A. Pourangi, P. Kobzeff, T. Litwin et al., The Mars Science Laboratory Engineering Cameras, Space Science Reviews, vol.7, issue.E12, pp.77-93, 2012.
DOI : 10.1016/0146-664X(78)90112-0

M. C. Malin, The Mars Science Laboratory (MSL) mast-mounted cameras (Mastcams) flight instruments, Proc. Lunar Planet. Sci. Conf. 41st, 1123 pp, 2010.
DOI : 10.1002/2016ea000252

URL : https://doi.org/10.1002/2016ea000252

E. A. Mathez, Sulfur solubility and magmatic sulfides in submarine basalt glass, Journal of Geophysical Research, vol.81, issue.23, pp.4269-4276, 1976.
DOI : 10.1130/0016-7606(1973)84<871:CFCBCE>2.0.CO;2

E. A. Mathez and J. R. Delaney, The nature and distribution of carbon in submarine basalts and peridotite nodules, Earth and Planetary Science Letters, vol.56, pp.217-232, 1981.
DOI : 10.1016/0012-821X(81)90129-1

L. E. Mayhew, E. T. Ellison, T. M. Mccollom, T. P. Trainor, and A. S. Templeton, Hydrogen generation from low-temperature water???rock reactions, Nature Geoscience, vol.2005, issue.6, pp.478-484, 2013.
DOI : 10.1238/Physica.Topical.115a01011

A. C. Mcadam, Sulfur-bearing phases detected by evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars, Journal of Geophysical Research: Planets, vol.32, issue.3, pp.373-39310, 2014.
DOI : 10.1029/2005GL024253

URL : https://hal.archives-ouvertes.fr/hal-01238087

A. C. Mcadam, Reactions involving calcium and magnesium sulfates as potential sources of sulfur dioxide during MSL SAM evolved gas analysis, Proc. Lunar Planet. Sci. Conf. 47th, 2277 pp, 2016.

T. M. Mccollom and W. Bach, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochimica et Cosmochimica Acta, vol.73, issue.3, pp.856-875, 2009.
DOI : 10.1016/j.gca.2008.10.032

A. S. Mcewen, Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment (HiRISE), Journal of Geophysical Research, vol.287, issue.47, pp.10-1029, 2007.
DOI : 10.1117/12.411562

S. M. Mclennan, Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Science, vol.343, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01303021

P. Y. Meslin, Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars, Science, 2013.
DOI : 10.1126/science.1238670

URL : http://michaeleisen.org/docs/Science-2013-Meslin-.pdf

D. W. Ming, Volatile and organic compositions of sedimentary rocks in, pp.10-1126, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01238192

M. E. Minitti, MAHLI at the Rocknest sand shadow: Science and science-enabling activities, Journal of Geophysical Research: Planets, vol.203, issue.6136, pp.2338-236010, 2013.
DOI : 10.1016/j.icarus.2009.03.033

URL : http://onlinelibrary.wiley.com/doi/10.1002/2013JE004426/pdf

I. G. Mitrofanov, Water and chlorine content in the Martian soil along the first 1900 m of the Curiosity rover traverse as estimated by the DAN instrument, Journal of Geophysical Research: Planets, vol.343, issue.6169, pp.1579-159610, 2014.
DOI : 10.1126/science.1243480

R. V. Morris, Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity's journey across sulfate-rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res, vol.111, pp.12-1510, 2006.

R. V. Morris, Silicic volcanism on Mars evidenced by tridymite in high-SiO 2 sedimentary rock at Gale Crater, Proc. Nat. Acad. Sci. U.S.A, pp.7071-7076, 2016.

J. Mu and D. D. Perlmutter, Thermal decomposition of inorganic sulfates and their hydrates, Industrial & Engineering Chemistry Process Design and Development, vol.20, issue.4, pp.640-646, 1981.
DOI : 10.1021/i200015a010

J. Mu and D. D. Perlmutter, Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formates, and hydroxides, Thermochimica Acta, vol.49, issue.2-3, pp.207-218, 1981.
DOI : 10.1016/0040-6031(81)80175-X

J. Mu and D. D. Perlmutter, Thermal decomposition of metal nitrates and their hydrates, Thermal decomposition metal nitrates and their hydrates, pp.253-260, 1982.
DOI : 10.1016/0040-6031(82)87033-0

S. L. Murchie, A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter, Journal of Geophysical Research, vol.89, issue.53, pp.10-1029, 2009.
DOI : 10.1007/978-3-642-85916-8

M. Nachon, Chemistry of diagenetic features analyzed by ChemCam at Pahrump Hills, pp.281-121, 2017.

R. Navarro-gonzález, Possible detection of nitrates on Mars by the sample analysis at Mars instrument, Proc. Lunar Planet. Sci. Conf. 44th, 2648 pp, 2013.

F. Okumura and K. Mimura, Gradual and stepwise pyrolyses of insoluble organic matter from the Murchison meteorite revealing chemical structure and isotopic distribution, Geochimica et Cosmochimica Acta, vol.75, issue.22, pp.7063-7080, 2011.
DOI : 10.1016/j.gca.2011.09.015

L. Ojha, M. B. Wilhelm, S. L. Murchie, A. S. Mcewen, J. J. Wray et al., Spectral evidence for hydrated salts in recurring slope lineae on Mars, Spectral evidence for hydrated salts in recurring slope lineae on Mars, pp.829-832, 2015.
DOI : 10.1029/91JB01714

E. Paris, G. Giulli, and M. R. Carroll, THE VALENCE AND SPECIATION OF SULFUR IN GLASSES BY X-RAY ABSORPTION SPECTROSCOPY, The Canadian Mineralogist, vol.39, issue.2, pp.331-339, 2001.
DOI : 10.2113/gscanmin.39.2.331

R. L. Parfitt and R. S. Smart, The Mechanism of Sulfate Adsorption on Iron Oxides1, Soil Science Society of America Journal, vol.42, issue.1, pp.48-50, 1978.
DOI : 10.2136/sssaj1978.03615995004200010011x

D. L. Pavia, G. M. Lampman, and G. S. Kriz, Introduction to Organic Laboratory Techniques: A Contemporary Approach, 1982.

Y. Pelovski and V. Petkova, Investigation on thermal decomposition of pyrite part I, Journal of Thermal Analysis and Calorimetry, vol.56, issue.1, pp.95-99, 1999.
DOI : 10.1023/A:1010135425009

F. Pineau and M. Javoy, Strong degassing at ridge crests: The behaviour of dissolved carbon and water in basalt glasses at 14??N, Mid-Atlantic Ridge, Earth and Planetary Science Letters, vol.123, issue.1-3, pp.179-198, 1994.
DOI : 10.1016/0012-821X(94)90266-6

R. C. Quinn, H. F. Martucci, S. R. Miller, C. E. Bryson, F. J. Grunthaner et al., Perchlorate Radiolysis on Mars and the Origin of Martian Soil Reactivity, Perchlorate radiolysis on Mars and the origin of Martian soil reactivity, pp.515-520, 2013.
DOI : 10.1089/ast.2013.0999

E. B. Rampe, Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars, Earth and Planetary Science Letters, vol.471, 2017.
DOI : 10.1016/j.epsl.2017.04.021

E. B. Rampe, R. V. Morris, P. D. Archer-jr, D. G. Agresti, and D. W. Ming, Recognizing sulfate and phosphate complexes chemisorbed onto nanophase weathering products on Mars using in-situ and remote observationsk, American Mineralogist, vol.101, issue.3, pp.678-689, 2016.
DOI : 10.2138/am-2016-5408CCBYNCND

W. Rapin, Hydration state of calcium sulfates in Gale crater, Mars: Identification of bassanite veins, Earth and Planetary Science Letters, vol.452, pp.197-205, 2016.
DOI : 10.1016/j.epsl.2016.07.045

D. Rickard, G. W. Luther, and I. , Chemistry of Iron Sulfides, Chemistry of iron sulfides, pp.514-562, 2007.
DOI : 10.1021/cr0503658

A. D. Rogers, J. Gregerson, E. C. Sklute, M. Rucks, H. B. Jensen et al., Sequestration of mixed salts in the amorphous soil fraction on Mars, Proc. Lunar Planet. Sci. Conf. 47th, 1736 pp, 2016.

W. K. Rudloff and E. S. Freeman, Catalytic effect of metal oxides on thermal decomposition reactions. II. Catalytic effect of metal oxides on the thermal decomposition of potassium chlorate and potassium perchlorate as detected by thermal analysis methods, The Journal of Physical Chemistry, vol.74, issue.18, pp.3317-3324, 1970.
DOI : 10.1021/j100712a002

M. N. Scheidema and P. Taskinen, Decomposition Thermodynamics of Magnesium Sulfate, Industrial & Engineering Chemistry Research, vol.50, issue.16, pp.9550-9556, 2011.
DOI : 10.1021/ie102554f

M. E. Schmidt, Geochemical diversity in first rocks examined by the Curiosity Rover in Gale Crater: Evidence for and significance of an alkali and volatile-rich igneous source, Journal of Geophysical Research: Planets, vol.46, issue.E12, pp.64-8110, 2014.
DOI : 10.1126/science.1221094

URL : https://hal.archives-ouvertes.fr/hal-01010023

M. E. Schmidt, APXS classification of lower Mount Sharp bedrock: Silica enrichment and acid alteration, Proc. Lunar Planet. Sci. Conf. 47th, 2043 pp, 2016.

S. P. Schwenzer, Gale Crater: Formation and post-impact hydrous environments, Planetary and Space Science, vol.70, issue.1, pp.84-95, 2012.
DOI : 10.1016/j.pss.2012.05.014

A. Segura and R. Navarro-gonzález, Nitrogen fixation on early Mars by volcanic lightning and other sources, Geophysical Research Letters, vol.91, issue.E9, pp.10-1029, 2005.
DOI : 10.1007/978-94-011-5056-9_36

URL : http://onlinelibrary.wiley.com/doi/10.1029/2004GL021910/pdf

M. A. Sephton, Organic compounds in carbonaceous meteorites, Natural Product Reports, vol.19, issue.3, pp.292-311, 2002.
DOI : 10.1039/b103775g

E. C. Sklute, H. B. Jensen, A. D. Rogers, and R. J. Reeder, Morphological, structural, and spectral characteristics of amorphous iron sulfates, Journal of Geophysical Research: Planets, vol.94, issue.11-12, pp.809-83010, 2015.
DOI : 10.2138/am.2009.3182

N. H. Sleep, A. Meibom, T. Fridriksson, R. G. Coleman, and D. K. Bird, H2-rich fluids from serpentinization: Geochemical and biotic implications, Proc. Nat. Acad. Sci. U.S.A, pp.818-830, 2004.
DOI : 10.2475/ajs.278.1.1

URL : http://www.pnas.org/content/101/35/12818.full.pdf

R. J. Spencer, Sulfate minerals in evaporate deposits, Sulfate Minerals, Rev. Mineral. Geochem, pp.173-192, 2000.
DOI : 10.2138/rmg.2000.40.3

A. Steele, M. D. Fries, H. E. Amundson, B. O. Mysen, M. L. Fogel et al., Comprehensive imaging and Raman spectroscopy of carbonate globules from Martian meteorite ALH 84001 and a terrestrial analogue from Svalbard, Meteoritics & Planetary Science, vol.35, issue.9, pp.1549-1566, 2007.
DOI : 10.2475/ajs.272.8.735

A. Steele, A Reduced Organic Carbon Component in Martian Basalts, Science, vol.45, issue.5, pp.212-215, 2012.
DOI : 10.1111/j.1945-5100.2008.tb01085.x

A. Steele, Hydrothermal organic synthesis on Mars: Evidence from the Tissint meteorite, A376 pp., 77th Annual Meet, pp.8-13, 2014.

A. Steele, F. M. Mccubbin, and M. D. Fries, The provenance, formation, and implications of reduced carbon phases in Martian meteorites, Meteoritics & Planetary Science, vol.105, issue.358, pp.2203-2225, 2016.
DOI : 10.1029/1999JB900369

J. S. Stern, Evidence for indigenous nitrogen in sedimentary and aeolian deposits from the Curiosity rover investigations at Gale Crater, Mars, Proc. Nat. Acad. Sci. U.S.A, pp.4245-4250, 2015.
URL : https://hal.archives-ouvertes.fr/insu-01149378

J. C. Stern, B. Sutter, W. A. Jackson, R. Navarro-gonzález, C. P. Mckay et al., The nitrate/(per)chlorate relationship on Mars, Geophysical Research Letters, vol.121, issue.6169, p.10, 1002.
DOI : 10.1002/2016JE005078

B. Sutter, The detection of carbonate in the martian soil at the Phoenix Landing site: A laboratory investigation and comparison with the Thermal and Evolved Gas Analyzer (TEGA) data, Icarus, vol.218, issue.1, pp.290-296, 2012.
DOI : 10.1016/j.icarus.2011.12.002

S. Et, A. Sam-evolved, . Gas, . Analysis, . Gale et al., The investigation of chlorates as a possible source of oxygen and chlorine detected by the sample analysis at Mars (SAM) instrument in Gale Crater, Mars, Proc. Lunar Planet. Sci. Conf. 45th, 2136 pp, 2014.

B. Sutter, The investigation of perchlorate/iron phase mixtures as a possible source of oxygen detected by the sample analysis at Mars (SAM) instrument in Gale Crater, Mars, Proc. Lunar Planet. Sci. Conf. 46th, 2137 pp, 2015.

B. Sutter, R. C. Quinn, P. D. Archer, D. P. Glavin, T. D. Glotch et al., Abstract, Measurements of oxychlorine species on Mars, pp.203-21710, 2016.
DOI : 10.1007/BF01207641

K. H. Tan, B. F. Hajek, and I. Barshad, Thermal analysis techniques, in Methods of Soil Analysis Part 1: Physical and Mineralogical Methods, pp.151-183, 1986.

B. J. Thomson, Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data, Constraints on the origin and evolution of the layered mound in Gale Crater, pp.413-432, 2011.
DOI : 10.1016/j.icarus.2011.05.002

L. M. Thompson, R. Gellert, J. G. Spray, and L. C. Kah, The composition of the basal Murray formation at Pahrump Hills, Gale Crater, Mars, Proc. Lunar Planet. Sci. Conf. 46th, 1429 pp, 2015.

L. M. Thompson, Potassium-rich sandstones within the Gale impact crater, Mars: The APXS perspective, Journal of Geophysical Research: Planets, vol.3, issue.6169, pp.10-1002, 1981.
DOI : 10.7185/geochempersp.3.1

L. M. Thompson, M. E. Schmidt, R. Gellert, J. G. Spray, and M. Apxs, APXS compositional trends along Curiosity's traverse, Gale Crater, Mars, Proc. Lunar Planet. Sci. Conf. 47th, 2709 pp, 2016.

A. H. Treiman, Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater), Journal of Geophysical Research: Planets, vol.113, issue.5, pp.75-10610, 2016.
DOI : 10.1086/431912

T. Uno, Equilibrium between FeS and mixed gas of H 2 and H 2 O, Mem, Faculty Eng. Hokkaido Univ, vol.937768, pp.84-90, 1951.

S. J. Vanbommel, Deconvolution of distinct lithology chemistry through oversampling with the Mars Science Laboratory Alpha Particle X-ray Spectrometer, X-Ray Spectrom, pp.155-161, 2016.

A. R. Vasavada, Overview of the Mars Science Laboratory mission: Bradbury Landing to Yellowknife Bay and beyond, Journal of Geophysical Research: Planets, vol.40, issue.6169, pp.1134-116110, 2014.
DOI : 10.1002/2013GL057840

A. A. Wang and Y. H. Zhou, Experimental comparison of the pathways and rates of the dehydration of Al-, Fe-, Mg- and Ca-sulfates under Mars relevant conditions, Icarus, vol.234, pp.162-173, 2014.
DOI : 10.1016/j.icarus.2014.02.003

H. R. Westrich, Determination of water in volcanic glasses by Karl-Fischer titration, Chemical Geology, vol.63, issue.3-4, pp.335-340, 1987.
DOI : 10.1016/0009-2541(87)90170-7

E. H. Wilson, S. K. Atreya, R. I. Kaiser, and P. R. Mahaffy, Perchlorate formation on Mars through surface radiolysis-initiated atmospheric chemistry: A potential mechanism, Journal of Geophysical Research: Planets, vol.26, issue.5, pp.1472-148710, 2016.
DOI : 10.1016/0032-0633(78)90066-1

URL : https://doi.org/10.1002/2016je005078

R. M. Williams, Martian Fluvial Conglomerates at Gale Crater, Martian fluvial conglomerates at Gale Crater, pp.1068-1072, 2013.
DOI : 10.1016/j.sab.2013.02.003

URL : https://hal.archives-ouvertes.fr/hal-01315518

J. T. Williams, C. K. Shearer, Z. D. Sharp, P. V. Burger, F. M. Mccubbin et al., The chlorine isotopic composition of Martian meteorites 1: Chlorine isotope composition of Martian mantle and crustal reservoirs and their interactions, Meteoritics & Planetary Science, vol.50, issue.370, pp.2092-2110, 2016.
DOI : 10.1111/maps.12425

J. Yan, L. Xu, and J. Yang, A study on the thermal decomposition of coal-derived pyrite, Journal of Analytical and Applied Pyrolysis, vol.82, issue.2, pp.229-234, 2008.
DOI : 10.1016/j.jaap.2008.03.013

A. S. Yen, Nickel on Mars: Constraints on meteoritic material at the surface, Journal of Geophysical Research: Planets, vol.31, issue.3, pp.10-1029, 2006.
DOI : 10.1038/nature03637

A. S. Yen, Multiple stages of aqueous alteration along fractures in mudstone and sandstone strata in Gale Crater, Mars, Earth and Planetary Science Letters, vol.471, pp.186-198, 2017.
DOI : 10.1016/j.epsl.2017.04.033

A. P. Zent and R. C. Quinn, O under Mars-like conditions and application to the evolution of the Martian climate, Journal of Geophysical Research, vol.71, issue.E3, pp.5341-534910, 1995.
DOI : 10.1016/0019-1035(87)90149-7