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Abstract 23 

 24 

The emergence of antibiotic and anti-inflammatory agents in aquatic and 25 

terrestrial systems is becoming a serious threat to human and animal health worldwide. 26 

Because pharmaceutical compounds rarely exist individually in nature, interactions 27 

between various compounds can have unforeseen effects on their binding to mineral 28 

surfaces. This work demonstrates this important possibility for the case of two typical 29 

antibiotic and anti-inflammatory agents (nalidixic acid (NA) and niflumic acid (NFA)) 30 

bound at goethite (α-FeOOH) used as a model mineral surface. Our multidisciplinary 31 

study, which makes use of batch sorption experiments, vibration spectroscopy and 32 

periodic density functional theory calculations, reveals enhanced binding of the 33 

otherwise weakly bound NFA caused by unforeseen intermolecular interactions with 34 

mineral-bound NA. This enhancement is ascribed to the formation of a NFA-NA dimer 35 

whose energetically favoured formation (-0.5 eV compared to free molecules) is 36 

predominantly driven by van der Waals interactions. A parallel set of efforts also 37 

showed that no co-binding occurred with sulfamethoxazole (SMX) because of the lack 38 

of molecular interactions with co-existing contaminants. As such, this article raises the 39 

importance of recognising drug co-binding, and lack of co-binding, for predicting and 40 

developing policies on the fate of complex mixtures of antibiotics and 41 

anti-inflammatory agents in nature.  42 
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Introduction 43 

 44 

Thousands of different emerging pharmaceutical contaminants occur in soils, 45 

groundwater, surface waters as well as seawater from human and intensive farming 46 

activities.
1,2 

Antibiotics and anti-inflammatory agents in terrestrial and aquatic 47 

environments, in some instances at levels as high as several hundred ng per L 
3–6

 are 48 

posing detrimental ecological and health effects especially because of their growing use 49 

in human and veterinary medicine. Because the fate of these compounds is often tied to 50 

their affinities to surfaces of soil and sediment mineral particles 
7,8

, adsorption through 51 

synergistic drug interactions is likely to become an emerging mechanism in 52 

contaminated environments. 53 

Although contaminants rarely exist in isolation, they often have been studied 54 

individually with respect to sorption and/or complexation with naturally occurring 55 

minerals.
9–12

 Sorption of individual compounds to environmental surfaces involves 56 

different mechanisms including metal bond, hydrogen bond, and van der Waals 57 

interactions 13. In multicomponent systems, co-existing contaminants can compete for 58 

surface binding sites, or cooperatively bind by co-neutralisation of surface charge 59 

and/or by direct molecular interactions. While competitive adsorption has been widely 60 

investigated
14–16

, cooperative effects have been never reported for widely used 61 

antibiotic and anti-inflammatory agents. In addition, because most traditional 62 

environmental models are based on an individual contaminant basis, little is known on 63 

their fate in mixed contaminant systems. 64 
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In this work, we assessed the ability of three typical antibiotic and 65 

anti-inflammatory agents detected in affected environments
6,17

 (nalidixic acid (NA), 66 

niflumic acid (NFA) and sulfamethoxazole (SMX)) to co-bind at minerals surfaces. 67 

Goethite (α-FeOOH) is selected as model mineral because it is one of the most stable 68 

thermodynamically iron oxyhydroxide at ambient temperature and the most abundant 69 

one in natural settings. NA is a quinolone antibiotic that is widely used in humans and 70 

animals and that typically co-occurs with SMX, a sulfonamide antibiotic commonly 71 

used to treat a variety of bacterial infections
18

. Niflumic acid (NFA) is a non-steroidal 72 

anti-inflammatory that is often used for rheumatoid arthritis.
19

 As will be detailed in 73 

this work, investigations are mainly focused on NA and NFA as no co-binding effect are 74 

typically observed with SMX. Vibration spectroscopic and density functional theory 75 

(DFT) calculations of NA/NFA co-binding, as well as batch kinetic, pH-edges and 76 

isotherms, were used to resolve uptake mechanisms of NA and NFA at goethite in 77 

isolated vs. mixed systems. These efforts helped identify conditions under which drug 78 

co-binding is likely to prevail in the environment. 79 

 80 

Experimental Methods 81 

Materials and chemicals. Nalidixic acid (NA), Niflumic acid (NFA), 82 

Sulfamethoxazole (SMX), sodium chloride (NaCl), potassium hydroxide (KOH), 83 

sodium hydroxide (NaOH) and hydrochloric acid (HCl) were obtained from Sigma 84 

Aldrich, and were of analytical grade or better. The preparation and characteristics of 85 

goethite are detailed in the supporting information (SI). 86 
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Binding and co-binding experiments  87 

Kinetic adsorption experiments were conducted in 125 mL Nalgene bottles 88 

containing 0.5 g/L goethite in 10 mM NaCl under an atmosphere of N2(g). NA, NFA 89 

and SMX concentrations were of 20 µM in both isolated (NA; NFA; SMX) and mixed 90 

(NA+NFA; NA+SMX, NFA+SMX) systems. pH was adjusted using dilute NaOH or 91 

HCl solutions to a pre-selected value. Aliquots were sampled during the course of the 92 

experiments and filtered (0.2 µm) for analysis. Preliminary experiments showed that 93 

adding the ligand simultaneously or sequentially after several hours of equilibration 94 

had no significant effects on adsorption results. 95 

Equilibrium adsorption experiments as a function of pH (4 < pH < 9) were 96 

conducted in 15 mL polypropylene tubes under an atmosphere of N2(g) to minimize 97 

interferences with dissolved CO2 at pH > 6.5 (Fig. S1). Adsorption isotherms were, in 98 

turn, recorded at pH = 6 under N2(g) for (i) equimolar concentrations of NA and NFA 99 

(0.1 - 40 µM), (ii) [NA]tot = 20 µM and varying [NFA]tot (0.1 - 40 µM), and (iii) 100 

[NFA]tot = 20 µM and varying [NA]tot (5 - 40 µM). The adsorbed amount was 101 

calculated by depletion method. Desorption tests were also conducted at pH = 11 to 102 

check the mass balance, and an average recovery of 99±2% for the investigated solutes 103 

was obtained (see SI). Sorption and desorption experiments were performed at least 104 

twice, and the reproducibility of the measurements was around 5% for NA and 10% for 105 

NFA. 106 

Aqueous concentrations of organic molecules were determined using a high 107 

performance liquid chromatography (Waters 600 Controller) equipped with a 108 
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reversed-phase C18 column (250 mm×4.6 mm i.d., 5 µm) and a photodiode array 109 

detector (Waters 996). The mobile phase was mixture of acetonitrile/water (60/40v/v) 110 

contained 0.1% formic acid. The flow rate was set at 1 mL/min in isocratic mode. The 111 

detector was set to 258 nm for NA, 283 nm for NFA and 270 nm SMX. All three 112 

molecules could be analyzed with a single injection because they exhibited different 113 

retention times (NA: 4.5 min; NFA: 10.1 min; SMX: 3.2 min). 114 

 115 

ATR-FTIR spectroscopy and MCR analysis  116 

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were 117 

recorded between in the 780-4000 cm
-1

 region on an IS50 Nicolet spectrometer 118 

equipped with a KBr beam splitter and a liquid nitrogen cooled MCT detector. A 119 

nine-reflection diamond ATR accessory (DurasamplIR ™, Sens IR Technologies) was 120 

used for acquiring spectra of wet samples. The resolution of the single beam spectra 121 

was 4 cm
-1

.  122 

Sample preparation for the ATR-FTIR analysis was the same as for batch sorption 123 

experiments and has described in detail in our previous work
20

. Spectra of goethite 124 

suspensions in 10 mM NaCl were also taken in the absence of NA and NFA and then 125 

subtracted from the spectra of sorbed NA and/or NFA in order to represent surface 126 

complexes only. Two series of experiments were conducted at pH=6 in 10 mM NaCl for 127 

0.5 g/L goethite and (i) 0 < [NFA]tot < 100 µM with [NA]tot = 100 µM or (ii) 0 < 128 

[NA]tot <100 µM with [NFA]tot = 100 µM. Due to the relatively low solubility of both 129 

NA and NFA (see SI), 1 M NaOH was used to dissolve NA or NFA to ensure a high 130 
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concentration (10 mM) for ATR-FTIR analysis of NA and NFA aqueous solution. The 131 

solid form of NA and NFA was also analysed using ATR-FTIR by loading powder on 132 

the crystal, and then a drop of water was added to apply it more uniformly. Additionally, 133 

the effect of pH (4-6) on NA and NFA sorption to goethite in 10 mM NaCl was 134 

investigated for [NA]tot or [NFA]tot=100 µM as described in supporting information 135 

(SI). 136 

Selected sets of ATR-FTIR spectra in the 1200-1700 cm
-1

 region were then 137 

analyzed by multivariate curve resolution (MCR) analysis
21

. These efforts extracted 138 

spectral profiles and their relative concentrations (FTIR measurements cannot be used 139 

to obtain absolute concentration values) of end-member components representing an 140 

assemblage of the purest chemical species possible. Spectra sets were expressed in the 141 

matrix A (m rows of wavenumber and n columns of measurements), and offset to zero 142 

absorbance at 1700 cm
-1

, where absorption by the wet mineral pastes is constant. The 143 

spectra were expressed in terms of a linear combination of spectral profiles (εεεε), akin to 144 

molar absorption coefficients, and their concentration profiles (C), and are related by 145 

A= εΧ εΧ εΧ εΧ as in the Beer-Lambert law, such that that εεεε≥0 and C≥0. Calculations of εεεε and 146 

C    were made with the MCR-ALS program
21

 in the computational environment of 147 

MATLAB (The Mathworks, Inc.). No assumptions regarding the spectroscopic 148 

responses of the different species are made through this process. 149 

 150 

 151 

 152 
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DFT Calculations  153 

DFT+D calculations were performed using an ab initio plane-wave pseudopotential 154 

approach as implemented in VASP.
22,23 

The Perdew-Burke-Ernzerhof (PBE) 155 

functional
24

 was chosen to perform the periodic DFT calculations using the projector 156 

augmented-wave method (PAW)
25

 and a cutoff of 400 eV. The dispersion forces were 157 

taken into account using the Grimme D2 approach.
26

 To avoid the heavier 158 

computational treatment of magnetic and electron-correlated iron oxides, we chose to 159 

perform DFT calculations on two Al oxy-hydroxides (non-magnetic compounds): (i) 160 

diaspore (α-AlOOH) which is the Al(III) isomorph of goethite, and (ii) gibbsite (AlOH3) 161 

because the co-binding phenomenon is experimentally shown on this mineral surface 162 

(See SI). This allowed also to perform more extensive calculations. 163 

The bulk gibbsite and bulk diaspore were optimized and a (2x2) and a (4x4) cell was 164 

chosen to build the basal surfaces, respectively. Then the molecules were optimized 165 

separately in the same supercell as that used to model the surface, and the dimer was 166 

also studied. Several protonation states of the NFA were considered. Since the 167 

determination of adsorption free energy from water phase was not the aim of our study, 168 

the solvent water molecules were not included in the calculations. The adsorption 169 

energies computed here inform rather on the molecule-surface interaction strength. The 170 

detailed calculation results are detailed in the SI.  171 

  172 
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Results and Discussion   173 

Macroscopic assessment of NA and NFA binding. Binding kinetics of NA and NFA 174 

in both single and binary systems followed pseudo-second-order kinetic model (Fig. S3) 175 

and displayed comparable behaviours, with NA binding more strongly than NFA. 176 

However, NFA loadings were considerably enhanced in the presence of NA, thus 177 

providing a first line of evidence for synergetic intermolecular interactions at mineral 178 

surfaces (SI). This can also be appreciated by ~4-fold slower adsorption rate of NFA in 179 

the mixed system (pseudo-second order rate constant of 0.16 m
2
/µmol·min) than in the 180 

isolated system (0.60 m
2
/µmol·min). In contrast, mixed systems containing SMX did 181 

not reveal any co-binding effects (Fig. S4). 182 

NA and NFA binding at mineral surfaces in single system (Fig.1 for goethite) 183 

follows the typical pH-dependent behaviour of carboxylic acids.
10,27–29

 NA adsorption 184 

was accordingly greatest under acid to circumneutral pH, where goethite surfaces are 185 

positively charged, and NA carboxylate groups deprotonated (pKa =6.19 for NA at 186 

infinite dilution
30, 

cf. Fig. S5). However, as NFA is a diprotic acid (pKa1=2.28 and 187 

pKa2=5.10 at infinite dilution)
31

, it can exist as cationic, zwitterionic and anionic forms. 188 

Only 23% of NFA was sorbed at acid pH and this percentage decreased with pH 189 

increasing. Interestingly, binding of NA and NFA in mixed systems occurs over the 190 

entire pH 4-9 range considered in this work (Figs. 1). This cooperative effect is more 191 

pronounced for NFA because of its weaker adsorption in the isolated system (e.g. 192 

increase of adsorption from 22% to 54% at pH 5). In addition, the pH-adsorption curve 193 

of NFA (Fig.1b) becomes bell-shaped as in NA (Fig. 1a), suggesting that the NFA 194 
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binding to goethite surfaces in the binary system is closely related to the behavior of 195 

NA binding. 196 

Because this synergetic effect was observed for both molecules, two approaches 197 

were adopted to study NFA and NA co-binding in mixed systems. Firstly, varying the 198 

concentrations of NA and NFA, at ratio of 1:1 ([NFA]tot = [NA]tot), strongly points to 199 

NA/NFA co-binding at goethite surfaces under a wide range of solute concentration 200 

(0.1 to 40 µM), a range that notably partially overlaps with those in aquatic 201 

environments (nM to several dozens of nM)
3–6

 (Fig. 2a). Indeed, NFA and NA loadings 202 

at pH 6 in isolated systems were lower than those measured in equimolar mixtures (Fig. 203 

2a). Interestingly, by plotting the NFA loadings versus NA loadings in equimolar 204 

mixtures, an excellent linear correlation was obtained (Fig. 2b, [NFA]ads = 0.6344 205 

[NA]ads, R² = 0.999, fitted line was not shown). Secondly, varying [NA]tot at constant 206 

[NFA]tot (20 µM) and, conversely, varying [NFA]tot at constant [NA]tot (20 µM) showed 207 

that increasing surface loadings of one ligand increases the other. However, a plateau 208 

was reached for [NFA]ads where [NA]tot varies, which is likely to have arisen from 209 

molecular layers acting as steric or electrostatic barriers preventing additional 210 

binding.
32

 211 

 212 

Molecular investigations of co-binding. Vibration spectroscopy and density 213 

functional theory (DFT) calculations were used to provide clues on the mechanisms 214 

through which NA and NFA bind and co-bind at goethite surfaces. We note that DFT 215 

calculations were performed on diaspore (Fig. 3), which is the Al(III) isomorph of 216 
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goethite, to avoid the otherwise heavier computational treatment of magnetic and 217 

electron-correlated iron oxides. The (110) face was chosen to emulate the dominant 218 

crystallographic face of the goethite particles under study.  219 

 220 

The fingerprint region of these molecules (1200-1800 cm
-1

; Fig. 4, see also band 221 

assignments in SI) showed a 25 cm
-1

 blue shifts in C-O stretching modes (νCOO), while 222 

no obvious shift for the ring modes νring was observed. This suggests direct interactions 223 

of carboxyl groups with goethite but little interaction with the aromatic and pyridine 224 

rings during the sorption of NA and NFA in single system
13,33

. Though vibration 225 

spectroscopy suggests both metal- and hydrogen-bonding for NA, DFT calculations 226 

suggest that hydrogen bonding is the preferred binding mode for NA (-0.34 eV vs. 227 

+0.44 eV for inner sphere complexation) and that it is 0.37 eV more favourable than 228 

NFA (+0.03 eV). Thus while both complexes are stabilised by direct hydrogen bonds 229 

between carboxyl groups and surface hydroxo groups, NA binding is made stronger by 230 

a vicinal carbonyl of the pyridine ring and involves a hydrogen-bond cycle between the 231 

molecule and two surface water molecules (Fig.3). In contrast, this cycle is not only 232 

absent in NFA but when we forcefully hydrogen bonded NFA with an adsorbed water 233 

simulations showed that this water reoriented itself towards a neighboring water 234 

molecule. The weak nature of NFA binding can even be compared to those of 235 

monocarboxylic acids (e.g. acetate or benzoate
13

). 236 

 237 
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Vibration spectra of mixed NA+NFA systems exposed to goethite (Fig. 4) showed 238 

that increasing NFA concentrations (0, 10, 20, 50 and 100 µM) with [NA]tot = 100 µM 239 

systematically increased the intensities of the characteristic bands of NFA 240 

(νCOO,as=1480-1560 cm
-1

), yet the resulting spectra cannot be represented as simple 241 

linear combinations of the isolated goethite-NA and goethite-NFA systems (Fig. S7a). 242 

For instance, the ring mode (νC=C,ring) of NA was shifted from 1578 cm
-1

 to 1522 cm
-1

 243 

and that of NFA was split into two bands (1335 and 1348 cm
-1

) suggesting perturbation 244 

of C-C stretches and/or C-H bends of the aromatic and pyridine rings
34,35

, and thus 245 

formation of dimer involving the aromatic and pyridine rings of NFA and NA. These 246 

observations also hold for the converse experiments where NA concentrations (0, 10, 247 

20, 50 and 100 µM) are increased with [NA]tot = 100 µM (Fig. S7b).  248 

A multivariate curve resolution (MCR) analysis
21

 of these spectral sets provided 249 

further insight into the nature of NFA and NA co-binding. MCR decomposed each 250 

spectral sets into two separate spectral components (Figs. 5 a,b) representing the purest 251 

extractable mineral-bound NFA and NA complexes (MCR I) and those under 252 

competing systems (MCR II). The related concentration profiles (Fig. 5c) revealed that 253 

addition of NA to mineral-bound NFA was more effective at altering the spectral 254 

profile of NFA than the converse addition of NFA to mineral-bound NA. Still, as the 255 

resulting MCR II components are markedly similar, our results suggest that the 256 

resulting surface complexes at equimolar NA and NFA levels are strongly similar 257 

irrespective of the order of addition. Finally, we note that these observations also hold 258 

for lower concentrations (Fig. S8 where [NA]tot = 20 µM and [NFA]tot=10-40 µM).  259 
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In line with the concept that NA enhances NFA binding, DFT calculations reveal 260 

that NFA binding to a hydrogen-bound NA on diaspore is energetically favourable 261 

(-0.21 eV). The resulting dimer formed via favourable hydrogen bonding and van der 262 

Waals interactions by -0.50 eV, and the two COOH moieties of this dimer are parallel 263 

with one another thus increasing the strengths of its interactions with mineral surfaces 264 

(cf. SI for more information and Figures S10-S15). As such, recalling that NA binding 265 

is favourable by -0.34 eV, binding of NFA to a pre-sorbed NA should be favourable by 266 

-0.55 eV. In comparison, NA and NFA binding at different locations on the same 267 

diaspore surface are favourable by only -0.30 eV and the formation an unbound 268 

NA/NFA dimer is favourable by -0.50 eV.  269 

 270 

Because the main mode of attachment for NA is achieved via hydrogen bonding at 271 

circumneutral conditions, this phenomenon is not only limited to strongly reactive 272 

faces of minerals, such as the (110) face of goethite/diaspore or edges of clays, but also 273 

on the basal planes of minerals. The planes are of widespread occurrence in platy metal 274 

(oxy)(hydr)oxides as well as phyllosilicates (e.g. clays) and typically display (hydr)oxo 275 

groups that are strongly resilient to ligand exchange, yet are active hydrogen bonding 276 

sites. To illustrate this point further the SI contains further details on the energetics of 277 

NA/NFA co-binding on the basal plane of gibbsite, an important aluminium hydroxide 278 

in natural but also industrial settings. Gibbsite gives more weight to our demonstration, 279 

since the NA/NFA co-binding is experimentally shown to occur on this mineral surface 280 

(See Fig. S16).  281 
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Those results also fall precisely in line with those obtained for diaspore, and suggests 282 

the possibility in generalizing our finding to an even broader range of minerals and 283 

particles which capable of stabilizing NA-like molecules via hydrogen bonding. Our 284 

calculations consequently lend strong independent support for the concept that NA and 285 

NFA co-bind at mineral surfaces of even contrasting structure, and that a dimer-type 286 

species stabilized by intermolecular hydrogen bonding and van der Waals interactions 287 

could be responsible for this phenomenon.  288 

 289 

Implications for transport of pharmaceutical compounds in nature. Our concerted 290 

macroscopic and molecular efforts both provide evidence that NFA-NA interactions 291 

mutually enhance binding at mineral surfaces such as goethite. This cooperative effect 292 

is more pronounced for NFA because of its intrinsically weaker affinity for mineral 293 

surfaces, and occurs under environmentally relevant conditions of drug concentration 294 

and pH. Vibration spectroscopic data show that addition of NA effectively alters the 295 

nature of mineral-NFA binding but that converse addition of NFA to mineral-bound 296 

NA results in a less dramatic change in the nature of NA binding. In support to these 297 

finding DFT calculations showed that NFA binding on mineral faces of even strongly 298 

contrasting structures is thermodynamically favoured only when NA is pre-adsorbed 299 

either metal-bonded or hydrogen-bonded. This favoured form of binding could be 300 

explained by the formation of a NFA-NA dimer stabilised by hydrogen bonding and 301 

van der Waals interactions. The lack of co-binding seen in SMX also suggests the 302 
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importance of understanding drug interactions in aqueous solutions, a finding that also 303 

calls for new studies along these lines. 304 

This study is the first to show that mineral-bound antibiotic molecules can be 305 

specific adsorption sites for other antibiotic molecules, and that layered-like coatings 306 

involving anti-inflammatory agents may even form at mineral surfaces. As water 307 

resources are exposed to complex mixtures of chemicals
36

, including natural organic 308 

matter and metal ions, additional efforts resolving the underlying principles governing 309 

cooperative sorption should be made to accurately assess the fate of co-existing 310 

contaminants in the environment. This becomes even more so urgent under the growing 311 

number aquatic ecosystems and groundwater systems exposed to emerging 312 

contaminants including non-prescription drugs, antibiotics, hormones and prescription 313 

drugs
36,37

. As a result, recognising the importance of drug co-binding at mineral 314 

surfaces, and the conditions where it does not occur such as in the case of SMX, is key 315 

to the successful development of models for predicting the fate of these contaminants, 316 

and for guiding policies on actions needed to mitigate this growing environmental 317 

problem.  318 
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Figure captions 435 

 436 

Figure1. Left: pH-adsorption edges of a) NA single ([NA]tot = 20 µM) and binary 437 

([NA]tot = [NFA]tot = 20 µM) and b) NFA single ([NFA]tot = 20 µM) and binary 438 

([NFA]tot = 20 µM; [NA]tot = 10 and 20 µM) systems on goethite, with 10 mM NaCl. 439 

Right: molecular structures of NA and NFA. 440 

Figure 2. a) NA and NFA sorption to goethite for single systems (full symbols) and 441 

binary system where [NA]tot = [NFA]tot (empty symbols). NA and NFA concentrations 442 

were varied from 0.1 to 40 µM. For the sake of readability, the behaviour at very low 443 

concentrations was shown in the insert. b) [NFA]ads vs [NA]ads at three experimental 444 

conditions: (i) varying both compounds from 0 to 40 µM (black), (ii)[NFA]tot = 20 µM, 445 

0 < [NA]tot<40 µM (red), and (iii) [NA]tot = 20 µM, 0 < [NFA]tot< 40 µM (blue). 446 

Figure 3. NA and NFA molecules co-adsorbed on the diaspore surface, with NA 447 

adsorbed as (left) inner sphere (Eads (NFA/NA) = 0.07 eV, athermic process) and (right) 448 

outer sphere (Eads (NFA/NA) = -0.21 eV). A negative energy indicates an exothermic 449 

process. 450 

Figure 4. ATR-FTIR spectroscopy on goethite. (a) from top to bottom: NA single 451 

system, dissolved NA (NA(aq) in 1 M NaOH), NA-NFA binary system ([NA]tot = 100 452 

µM, 10 < [NFA]tot< 100 µM; the arrows show increasing [NFA]tot), NFA single system, 453 

dissolved NFA (NFA(aq) in 1 M NaOH). Bold and thin dashed lines show characteristic 454 

bands of NA(aq) and NFA(aq), respectively. Numbers denote [NFA]tot. Spectra were 455 

normalized according to the band at 1448 cm
-1

, since NA is the major component. 456 
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Figure 5. MCR-extracted spectral profiles from FTIR spectra of (a)100 µm NFA + NA , 457 

(b) 100 µm NA + NFA, both including reference spectra, and (c) associated  458 

concentration profiles corresponding to components MCR I and II. These concentration 459 

profiles underscore the larger propensity of NA at displacing bound NFA, than NFA at 460 

displacing NA. 461 
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