, Key parameter from the MAVEN database

. Barabash, In this study, data from the ion mass analyzer (IMA) is used. The instrument samples ions across the energy range 10 eV/q-30 keV/q and is able to mass resolve the main ion species within the Martian plasma environment (masses of 1, 2, 4, 16, and 32 amu/q). The energy resolution is 7% and the FOV is 90° (polar) × 360° (azimuth). Sampling across the polar FOV is broken into 16 elevation steps (À45° to +45°), MARS EXPRESS-ASPERA-3 (Figures 6e, 6f, and 12). Analyzer of Space Plasmas and Energetic Neutral Atoms, 2004.

M. Hassler, allows the identification of GCRs and SEPs that contribute to the radiation exposure on the surface of Mars. RAD provides differential fluxes in limited energy ranges, about 10-100 MeV/nuc for protons and helium, and integral fluxes of ions with higher energies in two different detectors. The RAD dynamic range covers the LET (the energy lost in an infinite volume of water) range from 0.2 to approximately 1000 keV/?m. RAD also measures neutrons and ? rays with energies from ?5 to 100 MeV, Figures 6h and 11, top), 2012.

. Boynton, on board the Mars Odyssey spacecraft allows the identification of GCRs and SEPs in orbit around Mars. The HEND instrument is composed of five separate sensors that provide measurements of neutrons in the energy range from 0.4 MeV up to 15 MeV, Mars Odyssey-HEND (Figures 6g and 11, top). The High Energy Neutron Detector (HEND), 2004.

R. Carr, It consists of two ultralight triaxial fluxgate magnetometer sensors which mounted close to the tip of the 1.5 m long spacecraft boom and 15 cm closer to the spacecraft on the same boom, Figures 7a, 7b, and 7d), 2007.

R. Nilsson, is one of the five sensors that constitute the Rosetta Plasma Consortium (RPC) package on board Rosetta spacecraft, and it is identical to the IMA instrument on board Mars Express. It measures the three-dimensional velocity distribution and mass distribution of positive ions, Figures 7f and 12), 2007.

R. Mohammadzadeh, The Standard Radiation Environment Monitor (SREM) on board Rosetta is a solid state detector that measures both electrons with energies from 300 keV to 6 MeV and protons with energies from 10 to 300 MeV, and bins the measurements in overlapping energy channels, Figure 7c, 7e, and 11, top), 2003.

C. Dougherty, The magnetometer on board the Cassini spacecraft at Saturn consists of a fluxgate magnetometer operating at 32 vectors/second, Figures 8a, 8b, and 8e), 2004.

C. Krimigis, on board Cassini is an instrument that detects energetic neutral and charged particles. MIMI consists of three different sensors, and in this study the data set from the LEMMS (Low Energy Magnetospheric Measurement System) sensor is exploited. LEMMS's high-energy telescope channels can respond to instrument penetrating GCR. In this study, we used channel E6 (energies between 1600 and 21000 keV) with data 1 h averaged and with rates nonbackground subtracted, Figures 8c and 8d), 2004.

. Mccomas, Solar Wind Around Pluto (SWAP) instrument on board New Horizons spacecraft. The SWAP instrument is a top-hat electrostatic analyzer (ESA) with a 10° by 276° FOV and two Channel Electron Multiplier (CEM) detectors, New Horizons-SWAP (Figures 9 and 12), 2008.

, Journal of Geophysical Research: Space Physics

W. Ejection,

, The plasma experiment (PLS) consists of four Faraday cups, three of which look in the solar wind direction, from which the plasma density

, The Cosmic Ray Subsystem (CRS) instrument on board Voyager 2 provides GCR data for energies higher than 70 MeV

, Bartol Research Institute currently operates eight neutron monitors placed on the surface of the Earth in order to form a complete picture of cosmic rays in space. The monitors are strategically located to provide precise, real-time, three-dimensional measurements of the cosmic ray angular distribution

M. Anderson, The Magnetometer (MAG) on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission is a low-noise, tri-axial, and fluxgate instrument. For Mercury operation, the resolution is 0.047 nT, 2007.

B. J. References-anderson, The magnetometer instrument on MESSENGER, Space Sci. Rev, vol.131, p.417, 2007.

C. N. Arge and V. J. Pizzo, Improvement in the prediction of solar wind conditions using near-real time solar magnetic field updates, J. Geophys. Res, vol.105, p.479, 2000.

C. N. Arge, J. G. Luhmann, D. Odstr?il, C. J. Schrijver, and Y. Li, Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys, vol.66, p.1295, 2004.

S. Barabash, ASPERA-3) for the Mars Express mission, The Analyzer of Space Plasmas and Energetic Atoms, vol.126, pp.113-164, 2006.
DOI : 10.1016/j.icarus.2006.02.015

J. Blanco, E. Catalán, M. Hidalgo, J. Medina, O. García et al., Observable effects of interplanetary coronal mass ejections on ground level neutron monitor count rates, Sol. Phys, vol.284, pp.167-178, 2013.

V. Bothmer, H. Heber, H. Kunow, R. Müller-mellin, G. Wibberenz et al., The effects of coronal mass ejections on galactic cosmic rays in the high latitude heliosphere: Observations from Ulysses' first orbit, Proc. 25th Int. Cosmic Ray Conf., Durban, vol.1, pp.333-336, 1997.

W. V. Boynton, The Mars Odyssey gamma-ray spectrometer instrument suite, Space Sci. Rev, vol.110, pp.37-83, 2004.

G. E. Brueckner, Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations, J. Geophys. Res, vol.162, issue.A8, pp.6673-6684, 1981.

L. F. Burlaga and K. W. Behannon, Magnetic clouds: Voyager observations between 2 and 4 AU, Sol. Phys, vol.81, pp.181-192, 1982.

L. F. Burlaga, F. B. Mcdonald, M. L. Goldstein, and A. J. Lazarus, Cosmic ray modulation and turbulent interaction regions near 11 AU, J. Geophys. Res, vol.90, p.39, 1985.

L. F. Burlaga, K. W. Behannon, and L. Klein, Compound streams, magnetic clouds and major geomagnetic storms, J. Geophys. Res, vol.92, issue.A6, pp.5725-5734, 1987.

L. F. Burlaga, N. F. Ness, E. C. Stone, F. B. Mcdonald, and J. D. Richardson, Voyager 2 observations related to the, Geophys. Res. Lett, vol.32, pp.3-05, 2003.

L. F. Burlaga, N. F. Ness, and M. H. Acuña, Magnetic fields in the heliosheath and distant heliosphere: Voyager 1 and 2 observations during, Astrophys. J, vol.668, pp.1246-1258, 2005.

J. P. Byrne, S. A. Maloney, R. T. Mcateer, J. M. Refojo, and P. T. Gallagher, Propagation of an Earth-directed coronal mass ejection in three dimensions, Nat. Commun, issue.1, p.74, 2010.

H. V. Cane, Coronal mass ejections and Forbush decreases, Space Sci. Rev, vol.93, pp.55-77, 2000.

H. V. Cane and D. Lario, An introduction to CMEs and energetic particles, Space Sci. Rev, vol.123, pp.45-56, 2006.

H. V. Cane, I. G. Richardson, and T. T. Von-rosenvinge, Cosmic ray decreases and particle acceleration in 1978-1982 and associated solar wind structures, J. Geophys. Res, vol.98, pp.295-308, 1993.

P. Cargill, On the aerodynamic drag force acting on interplanetary coronal mass ejections, Sol. Phys, vol.221, pp.135-149, 2004.

C. Carr, RPC: The Rosetta plasma Consortium, Space Sci. Rev, vol.128, pp.629-647, 2007.

A. Chicarro, P. Martin, and R. Traunter, Mars Express: A European Mission to the Red Planet, pp.3-16, 2004.

J. E. Connerney, J. R. Espley, G. A. Dibraccio, J. R. Gruesbeck, R. J. Oliversen et al., First results of the MAVEN magnetic field investigation, Geophys. Res. Lett, vol.42, pp.8819-8827, 2015.

V. Domingo, B. Fleck, and A. I. Poland, The SOHO mission: An overview, Sol. Phys, vol.162, pp.1-37, 1995.

M. Dominique, J. Hochedez, W. Schmutz, I. E. Dammasch, A. I. Shapiro et al., The LYRA instrument onboard PROBA2: Description and in-Flight performance, Sol. Phys, vol.286, pp.21-42, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00794273

M. K. Dougherty, The Cassini magnetic field investigation, Space Sci. Rev, vol.114, p.331, 2004.

N. J. Edberg, A. I. Eriksson, E. Odelstad, E. Vigren, D. J. Andrews et al., Solar wind interaction with comet 67P: Impacts of corotating interaction regions, J. Geophys. Res. Space Physics, vol.121, pp.949-965, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01316542

H. A. Elliott, D. J. Mccomas, N. A. Schwadron, J. T. Gosling, R. M. Skoug et al., An improved expected temperature formula for identifying interplanetary coronal mass ejections, J. Geophys. Res, vol.110, p.4103, 2005.

H. A. Elliott, C. J. Henney, D. J. Mccomas, C. W. Smith, and B. J. Vasquez, Temporal and radial variation of the solar wind temperaturespeed relationship, J. Geophys. Res, vol.117, p.9102, 2012.

H. A. Elliott, D. J. Mccomas, P. Valek, G. Nicolaou, S. Weidner et al., The new Horizons solar wind around Pluto (SWAP) observations of the solar wind from 11-33 au, Journal of Geophysical Research: Space Physics, vol.223, 2016.

W. Al,

J. R. Espley, A comet engulfs Mars: MAVEN observations of comet Siding Spring's influence on the Martian magnetosphere, Geophys. Res. Lett, vol.42, pp.8810-8818, 2015.

H. D. Evans, P. Bühler, W. Hajdas, E. J. Daly, P. Nieminen et al., Results from the ESA SREM monitors and comparison with existing radiation belt models, Adv. Space Res, vol.42, pp.1527-1537, 2008.

S. E. Forbush, On world-wide changes in cosmic-ray intensity, Phys. Rev, vol.54, pp.975-988, 1938.

J. Fuller, S. E. Gibson, G. De-toma, and Y. Fan, Observing the unobservable? Modeling coronal cavity densities, Astrophys. J, vol.678, pp.515-530, 2008.

A. B. Galvin, The Plasma and Suprathermal Ion Composition (PLASTIC) Investigation on the STEREO observatories, Space Sci. Rev, vol.136, pp.437-486, 2008.

V. Génot, Interplanetary shock detection and impact at planets: A science case for CDPP tools, Eur. Planet. Sci. Congr., EPSC Abstracts, vol.9, pp.2014-684, 2014.

K. H. Glassmeier, RPC-MAG the fluxgate magnetometer in the ROSETTA plasma consortium, Space Sci. Rev, vol.128, pp.649-670, 2007.

K. H. Glassmeier, H. Boehnhardt, D. Koschny, E. Kührt, and I. Richter, The Rosetta mission: Flying towards the origin of the solar system, Space Sci. Rev, vol.128, p.1, 2007.

J. T. Gosling, D. N. Baker, S. J. Bame, W. C. Feldman, and R. D. Zwickl, Bidirectional solar wind heat flux events, J. Geophys. Res, vol.92, p.8519, 1987.
DOI : 10.1029/ja092ia08p08519

J. T. Gosling, Overexpanding coronal mass ejections at high heliographic latitudes: Observations and simulations, J. Geophys. Res, vol.103, 1941.
DOI : 10.1029/97ja01304

URL : http://hdl.handle.net/2060/19980205837

J. Guo, Variations of dose rate observed by MSL/RAD in transit to Mars, Astron. Astrophys, vol.577, p.58, 2015.

J. Guo, Modeling the variations of dose rate measured by RAD during the first MSL Martian year: 2012-2014, Astrophys. J, vol.810, p.24, 2015.

D. A. Gurnett, D. D. Morgan, A. M. Persoon, L. J. Granroth, A. J. Kopf et al., An ionized layer in the upper atmosphere of Mars caused by dust impacts from comet Siding Spring, Geophys. Res. Lett, vol.42, pp.4745-4751, 2015.

J. W. Harvey, The Global Oscillation Network Group (GONG) project, Science, vol.272, pp.1284-1286, 1996.

D. M. Hassler, The Radiation Assessment Detector (RAD) investigation, Space Sci. Rev, vol.170, pp.503-558, 2012.
DOI : 10.1007/978-1-4614-6339-9_15

T. A. Howard and C. E. Deforest, Inner heliospheric flux rope evolution via imaging of coronal mass ejections, Astrophys. J, vol.746, issue.64, p.12, 2012.

M. L. Kaiser, The STEREO mission: An overview, Adv. Space Res, vol.36, pp.1483-1488, 2005.

L. W. Klein and L. F. Burlaga, Interplanetary magnetic clouds at 1 AU, J. Geophys. Res, vol.87, pp.613-624, 1982.

S. Krimigis, Magnetosphere Imaging Instrument (MIMI) on the Cassini mission to Saturn/Titan, Space Sci. Rev, vol.114, pp.233-329, 2004.

L. Lamy, Earth-based detection of Uranus' aurorae, Geophys. Res. Lett, vol.39, p.7105, 2012.

D. J. Lawrence, P. N. Peplowski, W. C. Feldman, N. A. Schwadron, and H. E. Spence, Galactic cosmic ray variations in the inner heliosphere from solar distances less than 0.5 AU: Measurements from the MESSENGER neutron spectrometer, J. Geophys. Res. Space Physics, vol.121, pp.7398-7406, 2016.

J. R. Lemen, The Atmospheric imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys, vol.275, pp.17-40, 2012.

J. A. Le-roux and H. Fichtner, Global merged interaction regions, the Heliospheric termination shock, and time-dependent cosmic ray modulation, J. Geophys. Res, vol.104, pp.4709-4730, 1999.

J. Lilensten, A. J. Coates, V. Dehant, T. Dudok-de-wit, R. B. Horne et al., What characterizes planetary space weather?, Astron. Astrophys. Rev, pp.22-79, 1914.
URL : https://hal.archives-ouvertes.fr/hal-01101853

Y. D. Liu, J. D. Richardson, C. Wang, and J. G. Luhmann, Propagation of the 2012 March coronal mass ejections from the Sun to Heliopause, Space Phys, p.28, 2014.

J. A. Lockwood, Forbush decreases in the cosmic radiation, Space Sci. Rev, vol.12, pp.658-715, 1971.

J. A. Lockwood and W. R. Webber, Comparison of the rigidity dependence of the 11-year cosmic ray variation at the earth in two solar cycles of opposite magnetic polarity, J. Geophys. Res, vol.101, issue.A10, pp.573-594, 1996.

D. Mccomas, The Solar Wind Around Pluto (SWAP) instrument aboard New Horizons, Space Sci. Rev, vol.140, issue.1, pp.261-313, 2008.

J. G. Luhmann, STEREO IMPACT investigation goals, measurements, and data products overview, Space Sci. Rev, vol.136, pp.117-184, 2008.

W. B. Manchester, J. U. Iv, S. T. Kozyra, B. Lepri, and . Lavraud, Simulation of magnetic cloud erosion during propagation, J. Geophys. Res. Space Physics, vol.119, pp.5449-5464, 2014.

C. Moestl, Strong coronal channelling and interplanetary evolution of a solar storm up to Earth and Mars, Nat. Commun, vol.6, p.7135, 2015.

A. Mohammadzadeh, The ESA standard radiation environment monitor program: First results from PROBA-1 and INTEGRAL, IEEE Trans. Nucl. Sci, vol.50, issue.6, pp.2272-2277, 2003.

M. Neugebauer, C. W. Snyder-;-nilsson, and H. , Mariner 2 observations of the solar wind. 1. Average properties, RPC-ICA: The Ion Composition Analyzer of the Rosetta Plasma Consortium, vol.71, pp.671-695, 1966.

D. Odstrcil, Z. Smith, and M. Dryer, Distortion of the heliospheric plasma sheet by interplanetary shocks, Geophys. Res. Lett, vol.23, pp.2521-2524, 1996.

D. Odstrcil and V. J. Pizzo, Three-dimensional propagation of CMEs in a structured solar wind flow: 1. CME launched within the streamer belt, J. Geophys. Res, vol.104, pp.483-492, 1999.

D. Odstrcil and V. J. Pizzo, Three-dimensional propagation of coronal mass ejections in a structured solar wind flow 2. CME launched adjacent to the streamer belt, J. Geophys. Res, vol.104, pp.493-504, 1999.

D. Odstrcil, Modeling 3-D solar wind structure, Adv. Space Res, vol.32, pp.497-506, 2003.

D. Odstrcil, P. Riley, and X. P. Zhao, Numerical simulation of the 12 May 1997 interplanetary CME event, J. Geophys. Res, vol.109, p.2116, 2004.

K. I. Paularena, C. Wang, R. Steiger, and B. Heber, An ICME observed by Voyager 2 at 58 AU and by Ulysses at 5 AU, Geophys. Res. Lett, vol.28, p.2753, 2001.

W. D. Pesnell, B. J. Thompson, and P. C. Chamberlin, The Solar Dynamics Observatory (SDO), Journal of Geophysical Research: Space Physics, vol.275, pp.3-15, 2012.

W. Et, A. L. Interplanetary, and . Mass, , vol.7889

C. Plainaki, Planetary space weather: Scientific aspects and future perspectives, J. Space Weather Space Clim, vol.6, p.31, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01365348

I. Plotnikov, Long-term tracking of corotating density structures using heliospheric imaging, Sol. Phys, vol.291, pp.1853-1875, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01922961

R. Prangé, An interplanetary shock traced by planetary auroral storms from the Sun to Saturn, Nature, vol.432, issue.7013, pp.78-81, 2004.

A. J. Prise, L. K. Harra, S. A. Matthews, C. S. Arridge, and N. Achilleos, Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, J. Geophys. Res. Space Physics, vol.120, pp.1566-1588, 2015.

D. V. Reames, Particle acceleration at the Sun and in the heliosphere, Space Sci. Rev, vol.90, pp.413-491, 1999.

D. B. Reisenfeld, Properties of high-latitude CME-driven disturbances during Ulysses second northern polar passage, Geophys. Res. Lett, vol.30, p.8031, 2003.

I. G. Richardson, Energetic particles and corotating interaction region in the solar wind, Space Sci. Rev, vol.111, pp.267-376, 2004.

I. G. Richardson and H. V. Cane, Regions of abnormally low proton temperature in the solar wind (1965-1991) and their association with ejecta, J. Geophys. Res, vol.100, pp.23397-23412, 1995.

I. G. Richardson and H. V. Cane, Galactic cosmic ray intensity response to interplanetary coronal mass ejections/magnetic clouds in, Sol. Phys, vol.270, pp.609-627, 1995.

J. D. Richardson, K. I. Paularena, C. Wang, and L. F. Burlaga, The life of a CME and the development of a MIR: From the Sun to 58 AU, J. Geophys. Res, vol.107, issue.A4, p.1041, 2002.

J. D. Richardson, Y. Liu, C. Wang, and L. F. Burlaga, ICMES at very large distances, Adv. Space Res, vol.38, pp.528-534, 2006.

J. D. Richardson, Voyager observations of magnetic sectors and heliospheric current sheet crossings in the outer heliosphere, Astrophys. J, vol.831, issue.2, 2016.

A. Rouillard, Deriving the properties of coronal pressure fronts in 3-D: Application to the 17 May 2012 ground level enhancement, Astrophys. J, vol.833, p.23, 2016.

E. Roussos, Long-and short-term variability of Saturn's ionic radiation belts, J. Geophys. Res, vol.116, p.2217, 2011.

C. Salas-matamoros, K. Klein, and A. P. Rouillard, Coronal mass ejection-related particle acceleration regions during a simple eruptive event, Astron. Astrophys, vol.590, p.135, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01358792

E. Sanchez-diaz, A. P. Rouillard, J. A. Davies, B. Lavraud, N. R. Sheeley et al., Observational evidence for the associated formation of blobs and raining inflows in the solar corona, in Revision, Astrophys. J. Lett, vol.835, issue.6258, p.28, 2015.

H. Svedhem, D. V. Titov, F. W. Taylor, and O. Witasse, Venus Express mission, J. Geophys. Res, vol.114, pp.0-33, 2009.
DOI : 10.1029/2008je003290

URL : https://hal.archives-ouvertes.fr/hal-00186339

H. Svedhem, Mars Express observations during comet Siding Spring Mars encounter, AGU, Fall Meeting, pp.42-45, 2014.

J. K. Thalmann, Y. Su, M. Temmer, and A. M. Veronig, The confined X-class flares of solar active region 2192, Astrophys. J. Lett, vol.801, p.23, 2015.

A. F. Thernisien, R. A. Howard, and A. Vourlidas, Modeling of flux rope coronal mass ejections, Astrophys. J, vol.652, pp.763-773, 2006.

A. Thernisien, A. Vourlidas, and R. A. Howard, Forward modeling of coronal mass ejections using STEREO/SECCHI data, Sol. Phys, vol.256, p.111, 2009.
DOI : 10.1007/s11207-009-9346-5

P. Tricarito, Propagation of a large Forbush decrease in cosmic-ray intensity past the Earth, Pioneer 11 at 34 AU, and Pioneer 10 at 153 AU, Astrophys. J. Lett, vol.787, issue.2, p.14, 1992.

B. Vr?nak and T. Zic, Transit times of interplanetary coronal mass ejections and the solar wind speed, Astron. Astrophys, vol.472, pp.937-943, 2007.

B. Vr?nak, T. ?ic, D. Vrbanec, M. Temmer, T. Rollett et al., Propagation of interplanetary coronal mass ejections: The drag-based model, Sol. Phys, vol.285, pp.295-315, 2013.

C. Wang and J. D. Richardson, Voyager 2 observations of helium abundance enhancements from 1-60 AU, J. Geophys. Res, vol.106, p.5683, 2001.

C. Wang and J. D. Richardson, Interplanetary coronal mass ejections observed by Voyager 2 between 1 and 30 AU, J. Geophys. Res, vol.109, p.6104, 2004.
DOI : 10.1029/2004ja010379

URL : https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2004JA010379

Y. Wang, J. G. Luhmann, A. Rahmati, F. Leblanc, R. E. Johnson et al., Cometary sputtering of the Martian atmosphere during the Siding Spring encounter, Icarus, vol.272, pp.301-308, 2016.
URL : https://hal.archives-ouvertes.fr/insu-01286152

D. F. Webb and T. A. Howard, Coronal mass ejections: Observations, Living Rev, Solar Phys, vol.9, issue.3, 2012.
DOI : 10.12942/lrsp-2012-3

URL : https://link.springer.com/content/pdf/10.12942%2Flrsp-2012-3.pdf

M. J. West and D. B. Seaton, SWAP observations of post-flare giant arches in the long-duration, Astrophys. J. Lett, vol.801, p.6, 2014.

G. Wibberenz, J. Le-roux, M. Potgieter, and J. W. Bieber, Transient effects and disturbed conditions, Space Sci. Rev, vol.83, p.309, 1998.
DOI : 10.1007/978-94-017-1189-0_19

S. Yang, J. Zhang, F. Jiang, and Y. Xiang, Oscillating light wall above a sunspot light bridge, Astrophys. J. Lett, vol.804, p.27, 2015.
DOI : 10.1088/2041-8205/804/2/l27

URL : http://iopscience.iop.org/article/10.1088/2041-8205/804/2/L27/pdf

C. Zeitlin, Mars Odyssey measurements of galactic cosmic rays and solar particles in Mars orbit, 2002.

C. Zeitlin, Measurements of energetic particle radiation in transit to Mars on the Mars Science Laboratory, Journal of Geophysical Research: Space Physics, vol.340, pp.1080-1084, 2013.