R. M. Garrels and F. T. Mackenzie, Evolution of sedimentary rocks, 1971.

L. Cary, H. Pauwels, P. Ollivier, G. Picot, P. Leroy et al., Evidence for TiO2 nanoparticle transfer in a hard-rock aquifer, Journal of Contaminant Hydrology, vol.179, pp.148-159, 2015.
DOI : 10.1016/j.jconhyd.2015.06.007

URL : https://hal.archives-ouvertes.fr/hal-01169974

P. Leroy and A. , A triple-layer model of the surface electrochemical properties of clay minerals, Journal of Colloid and Interface Science, vol.270, issue.2, pp.371-380, 2004.
DOI : 10.1016/j.jcis.2003.08.007

. Genter, Significance of the depth-related transition montmorillonite-beidellite in the Bouillante geothermal field (Guadeloupe, Lesser Antilles), Am Mineral, vol.92, pp.11-12, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00768537

B. Rotenberg, V. Marry, J. F. Dufreche, N. Malikova, E. Giffaut et al., Modelling water and ion diffusion in clays: A multiscale approach, Comptes Rendus Chimie, vol.10, issue.10-11, pp.10-11, 2007.
DOI : 10.1016/j.crci.2007.02.009

M. Heuser, G. Spagnoli, P. Leroy, N. Klitzsch, and H. Stanjek, Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving, Bulletin of Engineering Geology and the Environment, vol.2, issue.1, pp.721-733, 2012.
DOI : 10.1111/j.1745-6592.1986.tb01034.x

URL : https://hal.archives-ouvertes.fr/hal-00847364

M. Nouveau, G. Grandjean, P. Leroy, M. Philippe, E. Hedri et al., Electrical and thermal behavior of unsaturated soils: experimental results, Journal of Applied Geophysics, vol.128, pp.115-122, 2016.
DOI : 10.1016/j.jappgeo.2016.03.019

R. E. Grim, Applied Clay Mineralogy, Geologiska Foereningan i Stockholm. Foerhandlingar, vol.84, issue.4, 1962.
DOI : 10.1080/11035896209447314

M. Brigatti, E. Galán, and B. Theng, Chapter 2 Structures and Mineralogy of Clay Minerals, Handbook of Clay Science, pp.21-81
DOI : 10.1016/S1572-4352(05)01002-0

C. Tournassat, M. Bizi, G. Braibant, and C. Crouzet, Influence of montmorillonite tactoid size on Na?Ca cation exchange reactions, Journal of Colloid and Interface Science, vol.364, issue.2, pp.443-454, 2011.
DOI : 10.1016/j.jcis.2011.07.039

URL : https://hal.archives-ouvertes.fr/hal-00664233

M. B. Mcbride and P. Baveye, Diffuse Double-Layer Models, Long-Range Forces, and Ordering in Clay Colloids, Soil Science Society of America Journal, vol.66, issue.4, pp.1207-1217, 2002.
DOI : 10.2136/sssaj2002.1207

E. Tombacz and M. Szekeres, Colloidal behavior of aqueous montmorillonite suspensions: the specific role of pH in the presence of indifferent electrolytes, Applied Clay Science, vol.27, issue.1-2, pp.75-94, 2004.
DOI : 10.1016/j.clay.2004.01.001

I. C. Bourg, G. Sposito, and A. C. Bourg, Modeling the acid?base surface chemistry of montmorillonite, Journal of Colloid and Interface Science, vol.312, issue.2, pp.297-310, 2007.
DOI : 10.1016/j.jcis.2007.03.062

C. Tournassat and C. A. Appelo, Modelling approaches for anion-exclusion in compacted Na-bentonite, Geochimica et Cosmochimica Acta, vol.75, issue.13, pp.3698-3710, 2011.
DOI : 10.1016/j.gca.2011.04.001

URL : https://hal.archives-ouvertes.fr/hal-00597084

P. Leroy, A. Revil, S. Altmann, and C. Tournassat, Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France), Geochimica et Cosmochimica Acta, vol.71, issue.5, pp.1087-1097, 2007.
DOI : 10.1016/j.gca.2006.11.009

URL : https://hal.archives-ouvertes.fr/insu-00404284

P. Leroy, C. Tournassat, O. Bernard, N. Devau, and M. , The electrophoretic mobility of montmorillonite. Zeta potential and surface conductivity effects, Journal of Colloid and Interface Science, vol.451, pp.21-39, 2015.
DOI : 10.1016/j.jcis.2015.03.047

URL : https://hal.archives-ouvertes.fr/hal-01269931

C. Tournassat, Y. Chapron, P. Leroy, M. Bizi, and F. Boulahya, Comparison of molecular dynamics simulations with triple layer and modified Gouy?Chapman models in a 0.1M NaCl?montmorillonite system, Journal of Colloid and Interface Science, vol.339, issue.2, pp.533-541, 2009.
DOI : 10.1016/j.jcis.2009.06.051

URL : https://hal.archives-ouvertes.fr/hal-00514041

I. C. Bourg and G. Sposito, Molecular dynamics simulations of the electrical double layer on smectite surfaces contacting concentrated mixed electrolyte (NaCl?CaCl2) solutions, Journal of Colloid and Interface Science, vol.360, issue.2, pp.701-715, 2011.
DOI : 10.1016/j.jcis.2011.04.063

C. Tournassat, J. A. Davis, C. Chiaberge, S. Grangeon, and I. C. Bourg, Modeling the Acid?Base Properties of Montmorillonite Edge Surfaces, Modeling the Acid?Base Properties of Montmorillonite Edge Surfaces, pp.13436-13445, 2016.
DOI : 10.1021/acs.est.6b04677

URL : https://hal.archives-ouvertes.fr/hal-01522406

M. Wu and Y. Adachi, Effects of electrolyte concentration and pH on the sedimentation rate of coagulated suspension of sodium montmorillonite, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.506, pp.686-693, 2016.
DOI : 10.1016/j.colsurfa.2016.07.027

J. Labille, C. Harns, J. Bottero, and J. Brant, Heteroaggregation of Titanium Dioxide Nanoparticles with Natural Clay Colloids, Environmental Science & Technology, vol.49, issue.11, pp.6608-6616, 2015.
DOI : 10.1021/acs.est.5b00357

URL : https://hal.archives-ouvertes.fr/hal-01426109

F. J. Arroyo, F. Carrique, M. L. Jimenez-olivares, and A. V. Delgado, Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions, Journal of Colloid and Interface Science, vol.229, issue.1, pp.118-122, 2000.
DOI : 10.1006/jcis.2000.6957

C. Grosse and A. V. Delgado, Dielectric dispersion in aqueous colloidal systems, Current Opinion in Colloid & Interface Science, vol.15, issue.3, pp.145-159, 2010.
DOI : 10.1016/j.cocis.2009.11.004

N. C. Lockhart, Electrical properties and the surface characteristics and structure of clays. I. Swelling clays, Journal of Colloid and Interface Science, vol.74, issue.2, pp.509-519, 1980.
DOI : 10.1016/0021-9797(80)90220-9

R. Raythatha and P. N. Sen, Dielectric properties of clay suspensions in MHz to GHz range, Journal of Colloid and Interface Science, vol.109, issue.2, pp.301-309, 1986.
DOI : 10.1016/0021-9797(86)90308-5

M. Rasmusson, W. Rowlands, R. W. Obrien, and R. J. Hunter, The Dynamic Mobility and Dielectric Response of Sodium Bentonite, Journal of Colloid and Interface Science, vol.189, issue.1, pp.92-100, 1997.
DOI : 10.1006/jcis.1997.4793

A. Delgado, F. Gonzalezcaballero, and J. M. Bruque, On the zeta potential and surface charge density of montmorillonite in aqueous electrolyte solutions, Journal of Colloid and Interface Science, vol.113, issue.1, pp.203-211, 1986.
DOI : 10.1016/0021-9797(86)90220-1

G. Roy, M. Pelletier, F. Thomas, C. Despas, and J. Bessiere, Aggregation in Na-, K-, and Ca-montmorillonite dispersions, characterized by impedance spectroscopy, Clay Minerals, vol.35, issue.2, pp.335-343, 2000.
DOI : 10.1180/000985500546800

L. M. Dudley, S. Bialkowski, D. Or, and C. Junkermeier, Low Frequency Impedance Behavior of Montmorillonite Suspensions, Soil Science Society of America Journal, vol.67, issue.2, pp.518-526, 2003.
DOI : 10.2136/sssaj2003.5180

M. Jiménez, A. Delgado, and U. Kaatze, Surface characterization of clay particles via dielectric spectroscopy, Annales UMCS, Chemistry, vol.63, issue.-1, 2008.
DOI : 10.2478/v10063-008-0030-7

Y. Tsujimoto, C. Chassagne, and Y. Adachi, Dielectric and electrophoretic response of montmorillonite particles as function of ionic strength, Journal of Colloid and Interface Science, vol.404, pp.72-79, 2013.
DOI : 10.1016/j.jcis.2013.03.033

Y. Tsujimoto, C. Chassagne, and Y. Adachi, Comparison between the electrokinetic properties of kaolinite and montmorillonite suspensions at different volume fractions, Journal of Colloid and Interface Science, vol.407, pp.109-115, 2013.
DOI : 10.1016/j.jcis.2013.05.080

M. C. Tirado, F. J. Arroyo, A. V. Delgado, and C. Grosse, Measurement of the Low-Frequency Dielectric Properties of Colloidal Suspensions: Comparison between Different Methods, Journal of Colloid and Interface Science, vol.227, issue.1, pp.141-146, 2000.
DOI : 10.1006/jcis.2000.6825

L. S. Collet, J. B. Fink, E. O. Mcalister, B. K. Sternberg, W. G. Widuwilt et al., 1. History of the Induced-Polarization Method, Induced polarization: Applications and Case Histories, Society of Exploration Geophysics, 1990.
DOI : 10.1190/1.9781560802594.ch1

URL : https://hal.archives-ouvertes.fr/hal-00750128

A. Weller and F. D. Borner, Measurements of spectral induced polarization for environmental purposes, Environmental Geology, vol.27, issue.4, pp.329-334, 1996.
DOI : 10.1007/BF00766702

Y. Luo and G. Zhang, Theory and application of spectral induced polarization, Society of Exploration Geophysicists Tulsa, 1998.

E. Zimmermann, A. Kemna, J. Berwix, W. Glaas, H. M. Munch et al., A highaccuracy impedance spectrometer for measuring sediments with low polarizability, Meas Sci Technol, vol.19, issue.10, 2008.

P. Funari and . Levitz, Coagulation of Na-Montmorillonite by Inorganic Cations at Neutral pH. A Combined Transmission X-ray Microscopy, Small Angle and Wide Angle X-ray Scattering Study, Langmuir, vol.29, issue.10, pp.3500-3510, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01119381

C. Tournassat, A. Neaman, F. Villieras, D. Bosbach, and L. Charlet, Nanomorphology of montmorillonite particles: Estimation of the clay edge sorption site density by low-pressure gas adsorption and AFM observations, American Mineralogist, vol.88, issue.11-12, pp.11-12, 2003.
DOI : 10.2138/am-2003-11-1243

URL : https://hal.archives-ouvertes.fr/hal-00109234

L. , L. Forestier, F. Muller, F. Villieras, and M. Pelletier, Textural and hydration properties of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue, Appl Clay Sci, vol.48, pp.18-25, 2010.
URL : https://hal.archives-ouvertes.fr/insu-00433524

L. L. Schramm and J. C. Kwak, Influence of Exchangeable Cation Composition on the Size and Shape of Montmorillonite Particles in Dilute Suspension, Clays and Clay Minerals, vol.30, issue.1, pp.40-48, 1982.
DOI : 10.1346/CCMN.1982.0300105

G. Sposito, K. M. Holtzclaw, C. Jouany, and L. Charlet, Cation Selectivity in Sodium-Calcium, Sodium-Magnesium, and Calcium-Magnesium Exchange on Wyoming Bentonite at 298 K1, Soil Science Society of America Journal, vol.47, issue.5, pp.917-921, 1983.
DOI : 10.2136/sssaj1983.03615995004700050015x

J. Lyklema, Fundamentals of Interface and Colloid Science, 1995.

A. V. Delgado, F. Gonzalez-caballero, R. J. Hunter, L. K. Koopal, and J. Lyklema, Measurement and interpretation of electrokinetic phenomena, Journal of Colloid and Interface Science, vol.309, issue.2, pp.194-224, 2007.
DOI : 10.1016/j.jcis.2006.12.075

R. J. Hunter, Zeta Potential in Colloid Science: Principles and Applications, 1981.

G. Lagaly and S. Ziesmer, Colloid chemistry of clay minerals: the coagulation of montmorillonite dispersions, Advances in Colloid and Interface Science, vol.100, issue.102, pp.105-128, 2003.
DOI : 10.1016/S0001-8686(02)00064-7

J. D. Duran, M. M. Ramos-tejada, F. J. Arroyo, and F. Gonzalez-caballero, Rheological and Electrokinetic Properties of Sodium Montmorillonite Suspensions, Journal of Colloid and Interface Science, vol.229, issue.1, pp.107-117, 2000.
DOI : 10.1006/jcis.2000.6956

K. Norrish, The swelling of montmorillonite, Discussions of the Faraday Society, vol.18, pp.120-134, 1954.
DOI : 10.1039/df9541800120

E. Ferrage, C. Tournassat, E. Rinnert, and B. Lanson, Influence of pH on the interlayer cationic composition and hydration state of Ca-montmorillonite: Analytical chemistry, chemical modelling and XRD profile modelling study, Geochimica et Cosmochimica Acta, vol.69, issue.11, pp.2797-2812, 2005.
DOI : 10.1016/j.gca.2004.12.008

URL : https://hal.archives-ouvertes.fr/hal-00106998

P. Leroy and A. , A mechanistic model for the spectral induced polarization of clay materials, Journal of Geophysical Research, vol.27, issue.1, pp.1-21, 2009.
DOI : 10.2138/am-2003-11-1243

URL : https://hal.archives-ouvertes.fr/insu-00498792

. Revil, Spectral induced polarization of clay-sand mixtures: Experiments and modeling, Geophysics, vol.79, issue.6, pp.353-375, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01176633

A. Revil, J. D. Eppehimer, M. Skold, M. Karaoulis, L. Godinez et al., Low-frequency complex conductivity of sandy and clayey materials, Journal of Colloid and Interface Science, vol.398, pp.193-209, 2013.
DOI : 10.1016/j.jcis.2013.01.015

A. Revil, M. Skold, S. S. Wu, Y. X. Wu, D. B. Watson et al., Petrophysical properties of saprolites from the Oak Ridge Integrated Field Research Challenge site, Tennessee, GEOPHYSICS, vol.78, issue.1, pp.21-40, 2013.
DOI : 10.1190/geo2012-0176.1

M. H. Waxman and L. J. Smits, Electrical Conductivities in Oil-Bearing Shaly Sands, Society of Petroleum Engineers Journal, vol.8, issue.02, pp.107-122, 1968.
DOI : 10.2118/1863-A

H. J. Vinegar and M. H. Waxman, Induced polarization of shaly sands, GEOPHYSICS, vol.49, issue.8, pp.1267-1287, 1984.
DOI : 10.1190/1.1441755

P. Leroy, A. Revil, A. Kemna, P. Cosenza, and A. Ghorbani, Complex conductivity of water-saturated packs of glass beads, Journal of Colloid and Interface Science, vol.321, issue.1, pp.103-117, 2008.
DOI : 10.1016/j.jcis.2007.12.031

URL : https://hal.archives-ouvertes.fr/insu-00334551

D. R. Lide, CRC Handbook of Chemistry and Physics, 1990.

C. Clavier, G. Coates, and J. Dumanoir, Theoretical and Experimental Bases for the Dual-Water Model for Interpretation of Shaly Sands, Society of Petroleum Engineers Journal, vol.24, issue.02, pp.153-168, 1984.
DOI : 10.2118/6859-PA

P. Debye and E. Hückel, The theory of electrolytes. I. Lowering of freezing point and related phenomena, Physikalische Zeitschrift, vol.24, pp.185-206, 1923.

A. Revil, L. M. Cathles, S. Losh, and J. A. Nunn, Electrical conductivity in shaly sands with geophysical applications, Journal of Geophysical Research: Solid Earth, vol.114, issue.7, pp.23925-23936, 1998.
DOI : 10.1016/0021-9797(86)90238-9

D. L. Parkhurst and C. A. Appelo, Description of Input and Examples for PHREEQC Version 3- -a Computer Program for Speciation, Batch-reaction, One-dimensional Transport, and Inverse Geochemical Calculations, U.S. Geological Survey Techniques and Methods, Book 6, Modeling Techniques, p.497

P. W. Atkins and J. De-paula, Atkin's physical chemistry 8th Edition, 2006.

J. J. Bikerman, Electrokinetic equations and surface conductance. A survey of the diffuse double layer theory of colloidal solutions, Transactions of the Faraday Society, vol.35, pp.154-160, 1940.
DOI : 10.1039/tf9403500154

A. Revil and P. W. Glover, Theory of ionic-surface electrical conduction in porous media, Physical Review B, vol.6, issue.3, pp.1757-1773, 1997.
DOI : 10.1021/la00093a012

J. Lyklema, S. S. Dukhin, and V. N. Shilov, The relaxation of the double layer around colloidal particles and the low-frequency dielectric dispersion, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol.143, issue.1-2, pp.1-21, 1983.
DOI : 10.1016/S0022-0728(83)80251-4

E. H. Delacey and L. R. White, Dielectric response and conductivity of dilute suspensions of colloidal particles, Journal of the Chemical Society, Faraday Transactions 2, vol.77, issue.11, p.77, 1981.
DOI : 10.1039/f29817702007

D. P. Lesmes and F. D. Morgan, Dielectric spectroscopy of sedimentary rocks, Journal of Geophysical Research: Solid Earth, vol.114, issue.B7, pp.13329-13346, 2001.
DOI : 10.1016/0021-9797(86)90239-0

G. R. Olhoeft, Electrical properties of rocks Physical properties of rocks and minerals, pp.257-339, 1981.

D. A. Robinson, Measurement of the Solid Dielectric Permittivity of Clay Minerals and Granular Samples Using a Time Domain Reflectometry Immersion Method, Vadose Zone Journal, vol.3, issue.2, pp.705-713, 2004.
DOI : 10.2136/vzj2004.0705

P. Leroy, S. Li, D. Jougnot, A. Revil, and Y. Wu, Modeling the evolution of complex conductivity during calcite precipitation on glass beads, Geophysical Journal International, pp.1-18, 2017.
DOI : 10.1093/gji/ggx001

M. Weigand and A. Kemna, Relationship between Cole???Cole model parameters and spectral decomposition parameters derived from SIP data, Geophysical Journal International, vol.205, issue.3, pp.1414-1419, 2016.
DOI : 10.1093/gji/ggw099

M. Weigand and A. Kemna, Debye decomposition of time-lapse spectral induced polarisation data, Computers & Geosciences, vol.86, pp.34-45, 2016.
DOI : 10.1016/j.cageo.2015.09.021

URL : http://doi.org/10.1016/j.cageo.2015.09.021

S. Nordsiek and A. Weller, A new approach to fitting induced-polarization spectra, GEOPHYSICS, vol.73, issue.6, pp.235-245, 2008.
DOI : 10.1190/1.2987412

A. Weller, S. Nordsiek, and W. Debschutz, Estimating permeability of sandstone samples by nuclear magnetic resonance and spectral-induced polarization, GEOPHYSICS, vol.75, issue.6, pp.215-226, 2010.
DOI : 10.1190/1.3507304

K. S. Cole and R. H. Cole, Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics, The Journal of Chemical Physics, vol.7, issue.4, pp.341-351, 1941.
DOI : 10.1063/1.1745400

A. Tarasov and K. Titov, On the use of the Cole-Cole equations in spectral induced polarization, Geophysical Journal International, vol.195, issue.1, pp.352-356, 2013.
DOI : 10.1093/gji/ggt251

H. Sato, T. Ashida, Y. Kohara, M. Yui, and N. Sasaki, Effect of Dry Density on Diffusion of Some Radionuclides in Compacted Sodium Bentonite, Journal of Nuclear Science and Technology, vol.15, issue.4, pp.873-882, 1992.
DOI : 10.1097/00010694-198506000-00006

M. Ochs, B. Lothenbach, H. Wanner, H. Sato, and M. Yui, An integrated sorption?diffusion model for the calculation of consistent distribution and diffusion coefficients in compacted bentonite, Journal of Contaminant Hydrology, vol.47, issue.2-4, pp.2-4, 2001.
DOI : 10.1016/S0169-7722(00)00157-1

B. K. Theng, S. Hayashi, M. Soma, and H. Seyama, Nuclear Magnetic Resonance and X-ray Photoelectron Spectroscopic Investigation of Lithium Migration in Montmorillonite, Clays and Clay Minerals, vol.45, issue.5, pp.718-723, 1997.
DOI : 10.1346/CCMN.1997.0450510

L. Massat, O. Cuisinier, I. Bihannic, F. Claret, M. Pelletier et al., Swelling pressure development and inter-aggregate porosity evolution upon hydration of a compacted swelling clay, Applied Clay Science, vol.124, issue.125, pp.125-197, 2016.
DOI : 10.1016/j.clay.2016.01.002

URL : https://hal.archives-ouvertes.fr/hal-01409015

C. M. Earnest, Thermal analysis of selected illite and smectite clay minerals. Part I. Illite clay specimens, pp.270-286, 1991.
DOI : 10.1007/BFb0010271

C. Tournassat, E. Ferrage, C. Poinsignon, and L. Charlet, The titration of clay minerals II
URL : https://hal.archives-ouvertes.fr/hal-00109235

I. Sondi, V. Tomasic, and N. , Filipovic-Vincekovic, Release of Silicon and Aluminum from Montmorillonite Surfaces in Aqueous Systems, Croat Chem Acta, vol.81, issue.4, pp.623-629, 2008.

D. Jougnot, A. Ghorbani, A. Revil, P. Leroy, and P. Cosenza, Spectral induced polarization of partially saturated clay-rocks: a mechanistic approach, Geophysical Journal International, vol.180, issue.1, pp.210-224, 2010.
DOI : 10.1111/j.1365-246X.2009.04426.x

URL : https://hal.archives-ouvertes.fr/insu-00548746

W. H. Pelton, W. R. Sill, and B. D. Smith, Interpretation of complex resistivity and dielectric data, Part I, Geophys Trans, vol.29, issue.4, pp.297-330, 1983.

O. A. De-lima and M. M. Sharma, A generalized Maxwell?Wagner theory for membrane polarization in shaly sands, GEOPHYSICS, vol.57, issue.3, pp.431-440, 1992.
DOI : 10.1190/1.1443257

E. Zimmermann, Phasengenaue Impedanzspektroskopie und -tomographie für geophysikalische Anwendungen, Faculty of Mathematics and Natural Sciences, Rheinische Friedrich-Wilhelms, p.151, 2010.

E. Zimmermann, J. A. Huisman, B. Wolters, and S. Van-waasen, Optimal electrode design for improved phase accuracy of spectral EIT images, 6th International Symposium on Process Tomography, Cape Town, pp.1-10, 2012.

J. A. Huisman, E. Zimmermann, O. Esser, F. Haegel, A. Treichel et al., Evaluation of a novel correction procedure to remove electrode impedance effects from broadband SIP measurements, Journal of Applied Geophysics, vol.135, pp.466-473, 2016.
DOI : 10.1016/j.jappgeo.2015.11.008

J. S. Chen, J. H. Cushman, and P. F. Low, Rheological Behavior of Na-Montmorillonite Suspensions at Low Electrolyte Concentration, Clays and Clay Minerals, vol.38, issue.1, pp.57-62, 1990.
DOI : 10.1346/CCMN.1990.0380108

K. Kim, J. H. Kim, and I. J. Chung, Effect of the clay size on the dispersion morphology and emulsion stability of ABS/layered silicate nanocomposites, Journal of Applied Polymer Science, vol.46, issue.3, pp.1287-1296, 2011.
DOI : 10.1002/app.30850

A. V. Delgado, F. J. Arroyo, F. Gonzalez-caballero, V. N. Shilov, and Y. B. Borkovskaya, The effect of the concentration of dispersed particles on the mechanisms of low-frequency dielectric dispersion (LFDD) in colloidal suspensions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.140, issue.1-3, pp.1-3, 1998.
DOI : 10.1016/S0927-7757(97)00272-0

T. Kozaki, S. Suzuki, N. Kozai, S. Sato, and H. Ohashi, Observation of Microstructures of Compacted Bentonite by Microfocus X-Ray Computerized Tomography (Micro-CT), Journal of Nuclear Science and Technology, vol.270, issue.1, pp.697-699, 2001.
DOI : 10.1016/S0022-3115(98)00782-X

I. Sondi, J. Biscan, and V. Pravdic, Electrokinetics of Pure Clay Minerals Revisited, Journal of Colloid and Interface Science, vol.178, issue.2, pp.514-522, 1996.
DOI : 10.1006/jcis.1996.0146

V. N. Shilov, A. V. Delgado, F. Gonzalez-caballero, and C. Grosse, Thin double layer theory of the wide-frequency range dielectric dispersion of suspensions of non-conducting spherical particles including surface conductivity of the stagnant layer, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.192, issue.1-3, pp.1-3, 2001.
DOI : 10.1016/S0927-7757(01)00729-4

S. Kaufhold and R. Dohrmann, Detachment of colloidal particles from bentonites in water, Applied Clay Science, vol.39, issue.1-2, pp.50-59, 2008.
DOI : 10.1016/j.clay.2007.04.008

T. R. Madden, RANDOM NETWORKS AND MIXING LAWS, GEOPHYSICS, vol.41, issue.6, pp.1104-1125, 1976.
DOI : 10.1190/1.2035907