P. Agrinier and M. Cannat, Oxygen-isotope constraints on serpentinization processes in ultramafic rocks from the mid-Atlantic ridge (238N), Proceedings of the Ocean Drilling Program, pp.381-388, 1997.

D. E. Allen and W. E. Seyfried, Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400??C, 500 bars, Geochimica et Cosmochimica Acta, vol.67, issue.8, pp.1531-154210, 2003.
DOI : 10.1016/S0016-7037(02)01173-0

J. C. Alt and W. C. Shanks, Sulfur in serpentinized oceanic peridotites: Serpentinization processes and microbial sulfate reduction, Journal of Geophysical Research: Solid Earth, vol.12, issue.B5, pp.9917-9929, 1998.
DOI : 10.1029/98JB00576

M. Andreani, C. , A. Boullier, and J. Escart-in, Dynamic control on serpentine crystallization in veins: Constraints on hydration processes in oceanic peridotites, Geochemistry, Geophysics, Geosystems, vol.24, issue.25, pp.10-1029, 2007.
DOI : 10.1029/2006GC001373

URL : https://hal.archives-ouvertes.fr/hal-00273230

M. Andreani, M. Mu~-noz, C. Marcaillou, and A. Delacour, ??XANES study of iron redox state in serpentine during oceanic serpentinization, Lithos, vol.178, pp.70-83, 2013.
DOI : 10.1016/j.lithos.2013.04.008

F. Aumento and H. Loubat, The mid-Atlantic ridge near 458N. XVI. Serpentinized ultramafic intrusions, Can, J. Earth Sci, vol.8, pp.631-66310, 1971.

W. Bach, H. Paulick, C. J. Garrido, B. Ildefonse, W. P. Meurer et al., Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 158N (ODP Leg 209, Geophys. Res. Lett, vol.33, p.1330610, 1029.

M. E. Berndt, D. E. Allen, and W. E. Seyfried, Reduction of CO 2 during serpentinization of olivine at 3008C and 500 bar, 024<0351:ROCDSO>2.3.CO, pp.351-3540091, 1130.

M. M. Bina and B. Henry, Magnetic properties, opaque mineralogy and magnetic anisotropies of serpentinized peridotites from ODP Hole 670A near the Mid-Atlantic Ridge, Physics of the Earth and Planetary Interiors, vol.65, issue.1-2, pp.88-103, 1990.
DOI : 10.1016/0031-9201(90)90078-C

H. Bougault, Initial Reports of the Deep Sea Drilling Project, U.S. Govt. Print. Off, vol.82, 1985.
DOI : 10.2973/dsdp.proc.82.1985

S. A. Brachfeld, S. K. Banerjee, Y. Guyodo, and G. D. Acton, A 13???200 year history of century to millennial-scale paleoenvironmental change magnetically recorded in the Palmer Deep, western Antarctic Peninsula, Earth and Planetary Science Letters, vol.194, issue.3-4, pp.311-32610, 2002.
DOI : 10.1016/S0012-821X(01)00567-2

M. Cannat, Emplacement of mantle rocks in the seafloor at mid-ocean ridges, Journal of Geophysical Research: Solid Earth, vol.312, issue.109, pp.4163-417210, 1993.
DOI : 10.1029/92JB02221

J. Charlou and J. Donval, Hydrothermal methane venting between 12??N and 26??N along the Mid-Atlantic Ridge, Journal of Geophysical Research, vol.320, issue.50, pp.9625-964210, 1993.
DOI : 10.1029/92JB02047

N. I. Christensen, Ophiolites, seismic velocities and oceanic crustal structure, Tectonophysics, pp.131-15710, 1978.
DOI : 10.1016/0040-1951(78)90155-5

N. I. Christensen and J. D. Smewing, Geology and seismic structure of the northern section of the Oman ophiolite, Journal of Geophysical Research: Solid Earth, vol.273, issue.B4, pp.2545-255510, 1981.
DOI : 10.1029/JB086iB04p02545

B. Debret, M. Andreani, M. Mu~-noz, N. Bolfan-casanova, J. Carlut et al., Evolution of Fe redox state in serpentine during subduction, Earth and Planetary Science Letters, vol.400, pp.206-218, 2014.
DOI : 10.1016/j.epsl.2014.05.038

URL : https://hal.archives-ouvertes.fr/hal-01134258

H. J. Dick, Terrestrial nickel-iron from the Josephine Peridotite, its geologic occurrence, associations, and origin, Earth and Planetary Science Letters, vol.24, issue.2, pp.291-19810, 1974.
DOI : 10.1016/0012-821X(74)90107-1

Y. Dilek, A. Coulton, and S. D. Hurst, Serpentinization and hydrothermal veining in peridotites at Site 920 in the MARK area, Proceedings of the Ocean Drilling Program, Scientific Results, pp.381-388, 1997.
DOI : 10.2973/odp.proc.sr.153.004.1997

F. A. Dullien, Porous Media: Fluid Transport and Pore Structure, pp.10-1002, 1992.

D. J. Dunlop, Theory and application of the Day plot (M rs /M s versus H cr /H c ) 1. Theoretical curves and tests using titanomagnetite data, J. Geophys. Res, vol.107, issue.B3, pp.10-1029, 2002.

D. J. Dunlop, Theory and application of the Day plot (M rs /M s versus H cr /H c ) 2. Application to data for rocks, sediments, and soils, J. Geophys. Res, vol.107, issue.B3, pp.10-1029, 2002.

R. A. Dunn, D. R. Toomey, and S. C. Solomon, Three-dimensional seismic structure and physical properties of the crust and shallow mantle beneath the East Pacific Rise at 9830 0 N, J. Geophys. Res, vol.105555, issue.23, pp.537-2310, 1029.

J. Escart-in, G. Hirth, and B. Evans, Strength of slightly serpentinized peridotites: Implications for the tectonics of oceanic lithosphere, 029<1023:SOSSPI>2.0.CO, pp.1023-10260091, 1130.

B. W. Evans, Control of the Products of Serpentinization by the Fe2+Mg-1 Exchange Potential of Olivine and Orthopyroxene, Journal of Petrology, vol.49, issue.10, pp.1873-1887, 2008.
DOI : 10.1093/petrology/egn050

B. W. Evans, S. M. Kuehner, and A. Chopelas, Magnetite-free, yellow lizardite serpentinization of olivine websterite, Canyon Mountain complex, N.E. Oregon, American Mineralogist, vol.94, issue.11-12, pp.1731-1734, 2009.
DOI : 10.2138/am.2009.3301

B. R. Frost, On the Stability of Sulfides, Oxides, and Native Metals in Serpentinite, Journal of Petrology, vol.26, issue.1, pp.31-63, 1985.
DOI : 10.1093/petrology/26.1.31

G. L. Fr?-uh-green, J. A. Connolly, and A. Plas, Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. The subseafloor biosphere at mid-ocean ridges, Geophys. Monogr. Ser, vol.144, pp.119-13510, 2004.

H. Horen, M. Soubrand, J. Kierczak, E. Joussein, and C. , Magnetic characterization of ferrichromite in soils developed on serpentinites under temperate climate, Geoderma, vol.235, issue.236, pp.83-89, 2014.
DOI : 10.1016/j.geoderma.2014.06.026

J. A. Karson, Along-axis variations in seafloor spreading in the MARK area, Nature, vol.328, issue.6132, pp.681-685, 1987.
DOI : 10.1038/328681a0

P. B. Kelemen, Scientific Results Ocean Drill. Program, College Station, Tex, Proceedings of the Ocean Drilling Program, 2004.

F. Klein and W. Bach, Fe-Ni-Co-O-S Phase Relations in Peridotite-Seawater Interactions, Journal of Petrology, vol.50, issue.1, pp.37-59, 2009.
DOI : 10.1093/petrology/egn071

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Klein, W. Bach, N. J?-ons, T. Mccollom, B. Moskowitz et al., Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15??N on the Mid-Atlantic Ridge, Geochimica et Cosmochimica Acta, vol.73, issue.22, pp.6868-6893, 2009.
DOI : 10.1016/j.gca.2009.08.021

F. Klein, W. Bach, and T. M. Mccollom, Compositional controls on hydrogen generation during serpentinization of ultramafic rocks, Lithos, vol.178, pp.55-69, 2013.
DOI : 10.1016/j.lithos.2013.03.008

F. Klein, W. Bach, S. E. Humphris, W. Kahl, N. J?-ons et al., Magnetite in seafloor serpentinite--Some like it hot, Geology, vol.42, issue.2, pp.135-138, 2014.
DOI : 10.1130/G35068.1

Y. Lagabrielle and M. Cannat, Alpine Jurassic ophiolites resemble the modern central Atlantic basement, Geology, vol.18, issue.4, pp.319-322, 1990.
DOI : 10.1130/0091-7613(1990)018<0319:AJORTM>2.3.CO;2

Y. Lagabrielle and R. Polino, A structural map of the ophiolite-bearing schistes lustres northwest of the Monte-Viso massif (SW Alps) and its implications, C. R. l'Acad. Sci. S er. II, vol.306, pp.921-928, 1988.

M. Lemoine, G. Boillot, and P. Tricart, Ultramafic and gabbroic ocean floor of the Ligurian Tethys (Alps, Corsica, Apennines): In search of a genetic imodel, 15<622:UAGOFO>2.0.CO, pp.622-62510, 1987.
DOI : 10.1130/0091-7613(1987)15<622:UAGOFO>2.0.CO;2

B. R. Lienert and P. J. Wasilewski, A magnetic study of the serpentinization process at Burro Mountain, California, Earth and Planetary Science Letters, vol.43, issue.3, pp.406-41610, 1979.
DOI : 10.1016/0012-821X(79)90095-5

C. J. Macleod, J. Carlut, J. Escart-in, H. Horen, and A. Morris, Quantitative constraint on footwall rotations at the 15845 0 N oceanic core complex, Mid-Atlantic Ridge: Implications for oceanic detachment fault processes, Geochem. Geophys. Geosyst, vol.12, pp.0-03, 1029.

M. Maffione, A. Morris, O. Pl?, and D. J. Van-hinsbergen, Magnetic properties of variably serpentinized peridotites and their implication for the evolution of oceanic core complexes, Geochemistry, Geophysics, Geosystems, vol.380, issue.4, pp.923-94410, 2014.
DOI : 10.1002/2013GC004993

B. Malvoisin, J. Carlut, and F. Brunet, Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments, Journal of Geophysical Research: Solid Earth, vol.65, issue.14, pp.10-1029, 2012.
DOI : 10.1016/0031-9201(90)90082-9

B. Malvoisin, F. Brunet, J. Carlut, S. Roum, and M. Cannat, Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration, Journal of Geophysical Research: Solid Earth, vol.97, issue.B5, pp.410210-1029, 2012.
DOI : 10.1016/0009-2541(92)90138-U

G. Manatschal, D. Sauter, A. M. Karpoff, E. Masini, G. Mohn et al., The Chenaillet Ophiolite in the French/Italian Alps: An ancient analogue for an Oceanic Core Complex?, Lithos, vol.124, issue.3-4, pp.169-184, 2011.
DOI : 10.1016/j.lithos.2010.10.017

URL : https://hal.archives-ouvertes.fr/hal-01256537

B. Martin and W. S. Fyfe, Some experimental and theoretical observations on the kinetics of hydration reactions with particular reference to serpentinization, Chemical Geology, vol.6, pp.185-20210, 1970.
DOI : 10.1016/0009-2541(70)90018-5

T. M. Mccollom and W. Bach, Thermodynamic constraints on hydrogen generation during serpentinization of ultramafic rocks, Geochimica et Cosmochimica Acta, vol.73, issue.3, pp.856-875, 2009.
DOI : 10.1016/j.gca.2008.10.032

M. Evel, C. , C. , M. Cannat, P. Gente et al., Serpentinization of abyssal peridotites at mid-ocean ridges, Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (M.A.R., 238N), Tectonophysics, pp.825-852, 1991.

M. Evel and C. , Initial Reports Ocean Drill. Program, College Station Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading mid-Atlantic ridge, South of the Kane Transform zone (MARK), Proceedings of the Ocean Drilling Program Proceeding of the Ocean Drilling Program, pp.437-454, 1993.

C. Monnier, J. Girardeau, L. Le, and M. , Along-ridge petrological segmentation of the mantle in the Oman ophiolite, Geochemistry, Geophysics, Geosystems, vol.106, issue.B8, pp.10-1029, 2006.
DOI : 10.1029/2006GC001320

URL : https://hal.archives-ouvertes.fr/hal-00321531

M. Mu~-noz, V. De-andrade, O. Vidal, E. Lewin, S. Pascarelli et al., Redox and speciation micro-mapping using dispersive X-ray absorption spectroscopy: Application to iron in chlorite mineral of a metamorphic rock thin section, Geochem. Geophys. Geosyst, vol.7, p.1102010, 1029.

C. Neal and G. Stanger, Hydrogen generation from mantle source rocks in Oman, Earth and Planetary Science Letters, vol.66, issue.83, pp.315-32010, 1983.
DOI : 10.1016/0012-821X(83)90144-9

E. H. Nickel, The occurrence of native nickel-iron in the serpentine rock of the eastern townships of Quebec Province, Can. Mineral, vol.6, pp.307-319, 1959.

A. Nicolas, F. Boudier, and B. Ildefonse, Variable crustal thickness in the Oman ophiolite: Implication for oceanic crust, Journal of Geophysical Research: Solid Earth, vol.97, issue.B8, pp.941-1710, 1996.
DOI : 10.1029/96JB00195

A. Nicolas, F. Boudier, and L. France, Subsidence in magma chamber and the development of magmatic foliation in Oman ophiolite gabbros, Earth and Planetary Science Letters, vol.284, issue.1-2, pp.76-87, 2009.
DOI : 10.1016/j.epsl.2009.04.012

URL : https://hal.archives-ouvertes.fr/hal-00420903

O. Reilly and W. , Rock and Mineral Magnetism, pp.10-1007, 1984.

D. S. Ohanley and M. D. Dyar, The composition of lizardite 1T and the formation of magnetite in serpentines, Am. Mineral, vol.78, pp.391-404, 1993.

O. Oufi, M. Cannat, and H. Horen, Magnetic properties of variably serpentinized abyssal peridotites, Journal of Geophysical Research, vol.46, issue.14, pp.10-1029, 2002.
DOI : 10.1029/2001JB000549

A. H. Rassios and E. M. Moores, Heterogeneous mantle complex, crustal processes, and obduction kinematics in a unified Pindos-Vourinos ophiolitic slab (northern Greece), Tectonic Development of the Eastern Mediterranean Region, pp.237-266, 2006.
DOI : 10.1144/GSL.SP.2006.260.01.11

A. E. Rassios and Y. Dilek, Rotational deformation in the Jurassic Mesohellenic ophiolites, Greece, and its tectonic significance, Lithos, vol.108, issue.1-4, pp.207-223, 2009.
DOI : 10.1016/j.lithos.2008.09.005

A. H. Robertson, Overview of the genesis and emplacement of Mesozoic ophiolites in the Eastern Mediterranean Tethyan region, Lithos, vol.65, issue.1-2, pp.1-6710, 2002.
DOI : 10.1016/S0024-4937(02)00160-3

E. Saccani and A. Photiades, Mid-ocean ridge and supra-subduction affinities in the Pindos ophiolites (Greece): implications for magma genesis in a forearc setting, Lithos, vol.73, issue.3-4, pp.229-253, 2004.
DOI : 10.1016/j.lithos.2003.12.002

M. H. Salisbury, Ocean Drill. Program, College Station, Proceedings of the Ocean Drilling Program, 2002.

D. R. Schmitt, Z. Han, V. A. Kravchinsky, and J. Escart-in, Seismic and magnetic anisotropy of serpentinized ophiolite: Implications for oceanic spreading rate dependent anisotropy, Earth and Planetary Science Letters, vol.261, issue.3-4, pp.590-601, 2007.
DOI : 10.1016/j.epsl.2007.07.024

URL : https://hal.archives-ouvertes.fr/hal-00315863

S. Schwartz, S. Guillot, B. Reynard, R. Lafay, B. Debret et al., Pressure???temperature estimates of the lizardite/antigorite transition in high pressure serpentinites, Lithos, vol.178, pp.197-210, 2013.
DOI : 10.1016/j.lithos.2012.11.023

URL : https://hal.archives-ouvertes.fr/insu-00854214

W. E. Seyfried, D. I. Foustoukos, and Q. Fu, Redox evolution and mass transfer during serpentinization: An experimental and theoretical study at 200??C, 500bar with implications for ultramafic-hosted hydrothermal systems at Mid-Ocean Ridges, Geochimica et Cosmochimica Acta, vol.71, issue.15, pp.3872-3886, 2007.
DOI : 10.1016/j.gca.2007.05.015

A. V. Smirnov, Grain size dependence of low-temperature remanent magnetization in natural and synthetic magnetite: Experimental study, Earth Planets Space, pp.119-124, 2009.

L. Stokking, D. Merrill, R. Haston, J. Ali, and K. Saboda, Rock Magnetic Studies of Serpentinite Seamounts in the Mariana and Izu-Bonin Regions, Proceedings of the Ocean Drilling Program, Scientific Results, pp.561-580, 1992.
DOI : 10.2973/odp.proc.sr.125.158.1992

P. B. Toft, J. Arkani-hamed, and S. E. Haggerty, The effects of serpentinization on density and magnetic susceptibility: a petrophysical model, Physics of the Earth and Planetary Interiors, vol.65, issue.1-2, pp.137-157, 1990.
DOI : 10.1016/0031-9201(90)90082-9

M. Wilke, F. Farges, P. Petit, G. Brown, and F. Martin, XANES spectroscopic study, American Mineralogist, vol.86, issue.5-6, pp.714-730, 2001.
DOI : 10.2138/am-2001-5-612

R. S. White, D. Mckenzie, and R. K. , Oceanic crustal thickness from seismic measurements and rare earth element inversions, Journal of Geophysical Research, vol.13, issue.10, pp.683-1910, 1992.
DOI : 10.1029/92JB01749

X. Zhao, Magnetic signatures of peridotite rocks from Sites 897 and 899 and their implications, Proceeding of the Ocean Drilling Program, Scientific Results, pp.431-446, 1996.
DOI : 10.2973/odp.proc.sr.149.214.1996