N. Makedonska, S. L. Painter, Q. M. Bui, C. W. Gable, and S. Karra, Particle tracking approach for transport in three-dimensional discrete fracture networks, Computational Geosciences, vol.74, issue.3, pp.1123-1137, 2015.
DOI : 10.1007/s10596-015-9525-4

J. D. Hyman, S. Karra, N. Makedonska, C. W. Gable, and S. L. Painter, dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport, Computers & Geosciences, vol.84, issue.557, pp.10-19, 2015.
DOI : 10.1016/j.cageo.2015.08.001

Y. Wang, M. Qi, and . Li, Passive advection-dispersion in 559 networks of pipes: Effect of connectivity and relationship to perme- 560 ability, J. Geophys. Res. Solid Earth, vol.121, issue.2, pp.558-713, 2016.

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, p.1972
DOI : 10.1097/00010694-197508000-00022

G. De-marsily and Q. Hydrogeology, Groundwater Hydrology 565 for Engineers Basic concepts in the 567 theory of seepage of homogeneous liquids in fissured rocks [strata, p.566, 1986.

J. E. Warren and P. J. Root, The Behavior of Naturally Fractured Reservoirs, Society of Petroleum Engineers Journal, vol.3, issue.03, p.570
DOI : 10.2118/426-PA

]. H. Kazemi, L. S. Merrill, K. L. Porterfield, and P. R. Zeman, Numerical 572 simulation of water?oil flow in naturally fractured reservoirs, p.571

]. R. Bibby, Mass transport of solutes in dual-porosity media, Water Re- 575 sour, Res, vol.17, issue.4, pp.574-1075, 1981.

]. S. Feenstra, J. A. Cherry, and E. A. Sudicky, Matrix diffusion effects on 577 contaminant migration from an injection well in fractured sandstone, pp.576-578

P. Maloszewski and A. Zuber, On the theory of tracer experiments in fis- 580 sured rocks with a porous matrix Pruess, A practical method for modeling fluid and heat flow in 582 fractured porous media, J. Hydrol. Soc. Pet. Eng. J, vol.79, issue.251, pp.5793-5797, 1985.

]. T. Arbogast, J. Douglas, and U. Hornung, Derivation of the double porosity 584 model of single phase flow via homogenization theory, p.583

P. K. Kang, Y. Zheng, X. Fang, R. Wojcik, D. Mclaughlin et al., Sequential approach to joint flow-seismic inversion for improved characterization of fractured media, Impact of 618 velocity correlation and distribution on transport in fractured media: 619 Field evidence and theoretical model, pp.903-919, 2003.
DOI : 10.1002/grl.50479

J. D. Seymour, J. P. Gage, S. L. Codd, R. Gerlach, U. M. Scheven et al., Anomalous fluid 622 transport in porous media induced by biofilm growth 625 Quantitative nuclear magnetic resonance measurements of preasymp- 626 totic dispersion in flow through porous media Signature of non-Fickian solute 629 transport in complex heterogeneous porous media Self-affine fronts in 643 self-affine fractures: Large and small-scale structure, Cardenas, Non-Fickian transport through two- 646 dimensional rough fractures: Assessment and prediction, Water Re- 647 sour. Res, pp.940-95910, 2004.

P. K. Kang, S. Brown, and R. Juanes, Emergence of anomalous transport 649 in stressed rough fractures Dispersive transport of ions in column experi- 651 ments: An explanation of long-tailed profiles, Earth Planet. Sci. Lett Water Resour. Res, vol.648, issue.345, pp.46-54, 1998.

]. R. Haggerty, S. W. Fleming, L. C. Meigs, and S. A. Mckenna, Tracer 663 tests in a fractured dolomite 2 Analysis of mass transfer in single-well 664 injection-withdrawal tests Tracer tests in a fractured 666, Water Resour. Res, vol.3756, issue.665, pp.653-1129, 2001.

P. K. Kang, M. Dentz, and R. Juanes, Predictability of anomalous transport 698 on lattice networks with quenched disorder, Phys. Rev. E, vol.83, p.699, 2011.

M. Dentz, P. K. Kang, and T. L. Borgne, Continuous time random walks 701 for non-local radial solute transport, Adv. Water Resour, vol.82, issue.702, pp.30101-30117, 2015.
DOI : 10.1016/j.advwatres.2015.04.005

URL : http://arxiv.org/abs/1611.08452

]. R. Benke and S. Painter, Modeling conservative tracer transport in fracture 704 networks with a hybrid approach based on the Boltzmann transport 705 equation, ) 1324. 706 [71] S. Painter, V. Cvetkovic, Upscaling discrete fracture network simula- 707 tions: An alternative to continuum transport models, p.703, 2003.

S. Res, V. Painter, J. Cvetkovic, O. Mancillas, and . Pensado, Time domain par- 710 ticle tracking methods for simulating transport with retention and 711 first-order transformation W01406, doi: 712 10, Analysis of nonlinear effects on 714 tracer migration in heterogeneous aquifers using Lagrangian travel time 715 statistics, pp.709-713, 1029.

T. Le-borgne, M. Dentz, and J. Carrera, Lagrangian statistical model for 717 transport in highly heterogeneous velocity fields, Phys. Rev. Lett, vol.101, pp.716-718, 2008.

H. Gotovac, V. Cvetkovic, and R. Andricevic, Flow and travel time statis- 720 tics in highly heterogeneous porous media, Water Resour. Res, issue.7, p.45

P. K. Kang, M. Dentz, T. Le-borgne, and R. Juanes, Markovian velocity processes for tracer dispersion in highly heteroge- 723 neous porous media, Spatial Markov model 725 of anomalous transport through random lattice networks, 2010.

S. S. Lett, H. Datta, T. S. Chiang, D. A. Ramakrishnan, and . Weitz, Flow intermittency, dispersion, and correlated continuous time 729 random walks in porous media Spatial fluc- 731 tuations of fluid velocities in flow through a three-dimensional porous 732 medium, Juanes, Anomalous transport 734 on regular fracture networks: impact of conductivity heterogeneity and 735 mixing at fracture intersections On the physical meaning of the dispersion equation 737 and its solutions for different initial and boundary conditions, 2011.

]. G. Sposito and G. Dagan, Predicting solute plume evolution in heteroge- 740 neous porous formations, Water Resour. Res, vol.30, issue.2, pp.739-585, 1994.

T. Le-borgne, J. De-dreuzy, P. Davy, O. Bour, A. Frampton et al., Characterization of 742 the velocity field organization in heterogeneous media by conditional 743 correlation Significance of injection modes and het- 745 erogeneity on spatial and temporal dispersion of advecting particles in 746 two-dimensional discrete fracture networks, Water Resour. Res. Adv. Water Resour, vol.43, issue.325, pp.744-747, 2007.

]. I. Jankovi´cjankovi´c and A. Fiori, Analysis of the impact of injection mode in 749 transport through strongly heterogeneous aquifers, Adv. Water Resour, vol.750, issue.10, pp.748-781, 2010.

T. Le-borgne, M. Dentz, D. Bolster, J. Carrera, and J. Dreuzy, Davy, Non-Fickian mixing: Temporal evolution of the scalar dissipa- 753 tion rate in heterogeneous porous media, Adv. Water Resour, vol.752, issue.3312, pp.751-754, 2010.

G. Dagan, Solute plumes mean velocity in aquifer transport: Impact 756 of injection and detection modes, Adv. Water Resour. in press, Con- 758 tinuous time random walks for the evolution of Lagrangian velocities, pp.755-759

. Phys, J. C. Rev, J. S. Long, C. R. Remer, P. A. Wilson et al., Porous 761 media equivalents for networks of discontinuous fractures, Water Re- 762 sour, Res, vol.1, issue.183, pp.760-645, 1982.

L. Bianchi and D. T. Snow, Permeability of crystalline rock interpreted 764 from measured orientations and apertures of fractures, Ann. Arid Zone 765, vol.8, issue.2, pp.231-245, 1969.

X. Sanchez-vila, A. Guadagnini, J. Carrera, and J. Geophys, Representative hydraulic 767 conductivities in saturated groundwater flow, Rev. Geophys, vol.44, p.766, 2006.

R. A. Res, J. A. Freeze, . Cherry, . Groundwater, and . Prentice-hall, Mass transfer at fracture inter- 774 sections: An evaluation of mixing models, Solid Earth Water Resour. Res, vol.103, issue.306, pp.513-525, 1977.

H. W. Stockman, C. Li, and J. L. Wilson, A lattice-gas and lattice Boltz- 777 mann study of mixing at continuous fracture Junctions: Importance of 778 boundary conditions, Transport and 780 intersection mixing in random fracture networks with power law length 781 distributions, pp.776-1515, 1997.

Y. J. Park, K. K. Lee, and B. Berkowitz, Effects of junction transfer char- 783 acteristics on transport in fracture networks, Water Resour. Res, vol.37, issue.4, pp.782-784, 2001.

M. Dentz and D. Bolster, Distribution-versus correlation-induced anoma- 786 lous transport in quenched random velocity fields The Fokker-Planck Equation, Phys. Rev. Lett, vol.105, p.787, 2010.

M. Montero, J. Masoliver, A. Chechkin, M. Hofmann, S. I. Harvey et al., Nonindependent continuous- 793 time random walks Continuous-time random walk 796 with correlated waiting times Rate-limited mass transfer or macrodisper- 799 sion: Which dominates plume evolution at the macrodispersion exper- 800 iment (MADE) site?, Phys. Rev. E Phys. Rev. E Water Resour. Res, vol.76, issue.363, pp.792-637, 2000.