J. P. Amend, T. M. Mccollom, M. Hentscher, and W. Bach, Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types, Geochimica et Cosmochimica Acta, vol.75, issue.19, pp.5736-5748, 2011.
DOI : 10.1016/j.gca.2011.07.041

R. Baba, M. Kimura, S. Asakawa, and T. Watanabe, Analysis of [FeFe]-hydrogenase genes for the elucidation of a hydrogen-producing bacterial community in paddy field soil, FEMS Microbiology Letters, vol.350, issue.2, pp.249-256, 2014.
DOI : 10.1111/1574-6968.12335

M. B. Begemann, M. R. Mormile, O. C. Sitton, J. D. Wall, E. et al., A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium, Frontiers in Microbiology, vol.3, 2012.
DOI : 10.3389/fmicb.2012.00093

B. Aissa, F. Postec, A. Erauso, G. Payri, C. Pelletier et al., Characterization of Alkaliphilus hydrothermalis sp. nov., a novel alkaliphilic anaerobic bacterium, isolated from a carbonaceous chimney of the Prony hydrothermal field, New Caledonia, Extremophiles, vol.60, issue.4, pp.183-188, 2015.
DOI : 10.1007/s00792-014-0697-y

URL : https://hal.archives-ouvertes.fr/hal-01362364

M. Bes, M. Merrouch, M. Joseph, M. Quéméneur, C. Payri et al., Acetoanaerobium pronyense sp. nov., an anaerobic alkaliphilic bacterium isolated from a carbonate chimney of the Prony Hydrothermal Field (New Caledonia), International Journal of Systematic and Evolutionary Microbiology, vol.65, issue.8, pp.2574-2580, 2015.
DOI : 10.1099/ijs.0.000307

URL : https://hal.archives-ouvertes.fr/hal-01177195

E. S. Boyd, T. L. Hamilton, J. R. Spear, M. Lavin, and J. W. Peters, [FeFe]-hydrogenase in Yellowstone National Park: evidence for dispersal limitation and phylogenetic niche conservatism, The ISME Journal, vol.58, issue.12, pp.1485-1495, 2010.
DOI : 10.1128/AEM.01946-07

E. S. Boyd, T. L. Hamilton, K. D. Swanson, A. E. Howells, B. K. Baxter et al., [FeFe]-Hydrogenase Abundance and Diversity along a Vertical Redox Gradient in Great Salt Lake, USA, International Journal of Molecular Sciences, vol.15, issue.12, pp.21947-21966, 2014.
DOI : 10.3390/ijms151221947

E. S. Boyd, J. R. Spear, and J. W. Peters, [FeFe] Hydrogenase Genetic Diversity Provides Insight into Molecular Adaptation in a Saline Microbial Mat Community, Applied and Environmental Microbiology, vol.75, issue.13, pp.4620-4623, 2009.
DOI : 10.1128/AEM.00582-09

W. J. Brazelton, P. L. Morrill, N. Szponar, and M. O. Schrenk, Bacterial Communities Associated with Subsurface Geochemical Processes in Continental Serpentinite Springs, Applied and Environmental Microbiology, vol.79, issue.13, pp.3906-3916, 2013.
DOI : 10.1128/AEM.00330-13

W. J. Brazelton, B. Nelson, and M. O. Schrenk, Metagenomic Evidence for H2 Oxidation and H2 Production by Serpentinite-Hosted Subsurface Microbial Communities, Frontiers in Microbiology, vol.2, 2012.
DOI : 10.3389/fmicb.2011.00268

URL : http://doi.org/10.3389/fmicb.2011.00268

M. Cai, J. Liu, W. , Y. J. Kuczynski, J. Stombaugh et al., Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment, Environmental Science & Technology, vol.38, issue.11, pp.3195-3202, 2004.
DOI : 10.1021/es0349204

URL : http://ir.rcees.ac.cn/bitstream/311016/23555/1/Enhanced%20biohydrogen%20production%20from%20sewage%20sludge%20with%20alkaline%20pretreatment.pdf

A. Chao, Nonparametric estimation of the number of classes in a population. Scand, J. Stat, vol.11, pp.265-270, 1984.

E. Deville and A. Prinzhofer, The origin of N 2 -H 2 -CH 4 -rich natural gas seepages in ophiolitic context: A major and noble gases study of fluid seepages in New Caledonia, Chemical Geology, vol.440, pp.139-147, 2016.
DOI : 10.1016/j.chemgeo.2016.06.011

URL : https://hal.archives-ouvertes.fr/hal-01451112

S. E. Dowd, T. R. Callaway, R. D. Wolcott, Y. Sun, T. Mckeehan et al., Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), BMC Microbiology, vol.8, issue.1, 2008.
DOI : 10.1186/1471-2180-8-125

R. C. Edgar, Search and clustering orders of magnitude faster than BLAST, Bioinformatics, vol.26, issue.19, pp.2460-2461, 1985.
DOI : 10.1093/bioinformatics/btq461

A. L. Gerasimchuk, A. A. Shatalov, A. L. Novikov, O. P. Butorova, N. V. Pimenov et al., The search for sulfate-reducing bacteria in mat samples from the lost city hydrothermal field by molecular cloning The population frequencies of species and the estimation of population parameters, Microbiology Biometrika, vol.79, issue.40, pp.96-105, 1953.

O. Haouari, M. Fardeau, J. L. Cayol, C. Casiot, F. Elbaz-poulichet et al., Desulfotomaculum hydrothermale sp. nov., a thermophilic sulfate-reducing bacterium isolated from a terrestrial Tunisian hot spring, INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol.58, issue.11, pp.2529-2535, 2008.
DOI : 10.1099/ijs.0.65339-0

R. E. Hungate, Chapter IV A Roll Tube Method for Cultivation of Strict Anaerobes, Method. Microbiol, vol.3, issue.08, pp.117-132, 1969.
DOI : 10.1016/S0580-9517(08)70503-8

H. Imachi, Y. Sekiguchi, Y. Kamagata, A. Loy, Y. L. Qiu et al., Non-Sulfate-Reducing, Syntrophic Bacteria Affiliated with Desulfotomaculum Cluster I Are Widely Distributed in Methanogenic Environments, Applied and Environmental Microbiology, vol.72, issue.3, pp.2080-2091, 2006.
DOI : 10.1128/AEM.72.3.2080-2091.2006

D. S. Kelley, J. A. Karson, G. L. Früh-green, D. R. Yoerger, T. M. Shank et al., A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field, Science, vol.307, issue.5714, pp.1428-1434, 2005.
DOI : 10.1126/science.1102556

D. J. Lane, Nucleic acid techniques in bacterial systematics, Nucleic Acid Techniques in Bacterial Systematics, pp.115-175, 1991.

J. Launay and J. C. Fontes, Les sources thermales de Prony (Nouvelle? Caledonie) et leurs precipites chimiques. Exemple de formation de brucite primaire, pp.83-100, 1985.

J. F. Liu, X. B. Sun, G. C. Yang, S. M. Mbadinga, J. D. Gu et al., Analysis of microbial communities in the oil reservoir subjected to CO 2 -flooding by using functional genes as molecular biomarkers for microbial CO 2 sequestration, Front. Microbiol, 2015.

W. Lubitz, H. Ogata, O. Rüdiger, R. , E. H. Arth et al., Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores, Hydrogenases. Chem. Rev. Appl. Environ. Microbiol, vol.114, issue.66, pp.4081-4148, 2000.

N. Mei, A. Postec, G. Erauso, M. Joseph, B. Pelletier et al., Serpentinicella alkaliphila gen. nov., sp. nov., a novel alkaliphilic anaerobic bacterium isolated from the serpentinite-hosted Prony hydrothermal field, Int. J. Syst. Evol. Microbiol, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01436930

N. Mei, N. Zergane, A. Postec, G. Erauso, A. Ollier et al., Fermentative hydrogen production by a new alkaliphilic Clostridium sp. (strain PROH2) isolated from a shallow submarine hydrothermal chimney in Prony Bay, New Caledonia, International Journal of Hydrogen Energy, vol.39, issue.34, 2014.
DOI : 10.1016/j.ijhydene.2014.09.111

URL : https://hal.archives-ouvertes.fr/hal-01178221

B. Meyer, J. Kuehl, A. M. Deutschbauer, M. N. Price, A. P. Arkin et al., Variation among Desulfovibrio Species in Electron Transfer Systems Used for Syntrophic Growth, Journal of Bacteriology, vol.195, issue.5, pp.990-1004, 1128.
DOI : 10.1128/JB.01959-12

F. Meyer, D. Paarmann, M. Souza, R. Olson, E. M. Glass et al., The metagenomics RAST server ??? a public resource for the automatic phylogenetic and functional analysis of metagenomes, BMC Bioinformatics, vol.9, issue.1, pp.386-396, 2008.
DOI : 10.1186/1471-2105-9-386

H. M. Miller, J. M. Matter, P. Kelemen, E. T. Ellison, M. E. Conrad et al., Modern water/rock reactions in Oman hyperalkaline peridotite aquifers and implications for microbial habitability, Geochimica et Cosmochimica Acta, vol.179, pp.217-241, 2016.
DOI : 10.1016/j.gca.2016.01.033

C. Monnin, V. Chavagnac, C. Boulart, B. Ménez, M. Gérard et al., Fluid chemistry of the low temperature hyperalkaline hydrothermal system of Prony Bay (New Caledonia), Biogeosciences, vol.11, issue.20, pp.5687-5706, 2014.
DOI : 10.5194/bg-11-5687-2014

URL : https://hal.archives-ouvertes.fr/hal-01178210

V. Pasini, D. Brunelli, P. Dumas, C. Sandt, J. Frederick et al., Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge, Lithos, vol.178, pp.84-95, 2013.
DOI : 10.1016/j.lithos.2013.06.014

J. W. Peters, G. J. Schut, E. S. Boyd, D. W. Mulder, E. M. Shepard et al., [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1853, issue.6, pp.1350-1369, 2015.
DOI : 10.1016/j.bbamcr.2014.11.021

URL : http://scholarworks.montana.edu/xmlui/handle/1/8928

C. Pisapia, E. Gérard, M. Gérard, L. Lecourt, B. Pelletier et al., Mineralizing filamentous bacteria from the Prony bay Hydrothermal Field open new perspectives for serpentinization-based deep ecosystems

A. Postec, M. Quéméneur, M. Bes, N. Mei, F. Benaïssa et al., Microbial diversity in a submarine carbonate edifice from the serpentinizing hydrothermal system of the Prony Bay (New Caledonia) over a 6-year period, Frontiers in Microbiology, vol.55, issue.268, 2015.
DOI : 10.1099/ijs.0.63490-0

URL : https://hal.archives-ouvertes.fr/hal-01221183

S. Poudel, M. Tokmina-lukaszewska, D. R. Colman, M. Refai, G. J. Schut et al., Unification of [FeFe]-hydrogenases into three structural and functional groups, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1860, issue.9, 1910.
DOI : 10.1016/j.bbagen.2016.05.034

M. Quéméneur, M. Bes, A. Postec, N. Mei, J. Hamelin et al., Spatial distribution of microbial communities in the shallow submarine alkaline hydrothermal field of the Prony Bay, New Caledonia, Environmental Microbiology Reports, vol.55, issue.6, pp.665-674, 2014.
DOI : 10.1111/1758-2229.12184

M. Quéméneur, J. Hamelin, E. Latrille, J. Steyer, and E. Trably, Development and application of a functional CE-SSCP fingerprinting method based on [Fe???Fe]-hydrogenase genes for monitoring hydrogen-producing Clostridium in mixed cultures, International Journal of Hydrogen Energy, vol.35, issue.24, pp.13158-13167, 2010.
DOI : 10.1016/j.ijhydene.2010.07.076

M. Quéméneur, J. Hamelin, E. Latrille, J. Steyer, and E. Trably, Functional versus phylogenetic fingerprint analyses for monitoring hydrogen-producing bacterial populations in dark fermentation cultures, International Journal of Hydrogen Energy, vol.36, issue.6, pp.3870-3879, 2011.
DOI : 10.1016/j.ijhydene.2010.12.100

M. Quéméneur, A. Palvadeau, A. Postec, C. Monnin, V. Chavagnac et al., Endolithic microbial communities in carbonate precipitates from serpentinite-hosted hyperalkaline springs of the Voltri Massif (Ligurian Alps, Northern Italy), Environmental Science and Pollution Research, vol.39, issue.3, pp.13613-13624, 2015.
DOI : 10.1007/s11356-015-4113-7

O. Schmidt, H. L. Drake, and M. A. Horn, Hitherto Unknown [Fe-Fe]-Hydrogenase Gene Diversity in Anaerobes and Anoxic Enrichments from a Moderately Acidic Fen, Applied and Environmental Microbiology, vol.76, issue.6, pp.2027-2031, 2010.
DOI : 10.1128/AEM.02895-09

M. O. Schrenk, W. J. Brazelton, L. , and S. Q. , Serpentinization, Carbon, and Deep Life, Reviews in Mineralogy and Geochemistry, vol.75, issue.1, pp.575-606, 2013.
DOI : 10.2138/rmg.2013.75.18

G. J. Schut, A. , and M. W. , The Iron-Hydrogenase of Thermotoga maritima Utilizes Ferredoxin and NADH Synergistically: a New Perspective on Anaerobic Hydrogen Production, Journal of Bacteriology, vol.191, issue.13, pp.4451-4457, 2009.
DOI : 10.1128/JB.01582-08

C. E. Shannon and W. Weaver, The Mathematical Theory of Communication, 1949.

E. H. Simpson, Measurement of Diversity, Nature, vol.163, issue.4148, pp.688-688, 1949.
DOI : 10.1038/163688a0

S. Suzuki, J. G. Kuenen, K. Schipper, S. Van-der-velde, S. I. Ishii et al., Physiological and genomic features of highly alkaliphilic hydrogen-utilizing Betaproteobacteria from a continental serpentinizing site, Nature Communications, vol.9, 2014.
DOI : 10.1038/ncomms4900

K. Tamura, G. Stecher, D. Peterson, A. Filipski, and S. Kumar, MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0, Molecular Biology and Evolution, vol.30, issue.12, pp.2725-2729, 2013.
DOI : 10.1093/molbev/mst197

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3840312

R. K. Thauer, K. Jungermann, and K. Decker, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev, vol.41, issue.100, 1977.

I. Tiago and A. Veríssimo, Microbial and functional diversity of a subterrestrial high pH groundwater associated to serpentinization, Environmental Microbiology, vol.44, issue.6, pp.1687-1706, 2013.
DOI : 10.1111/1462-2920.12034

P. M. Vignais, B. Billoud, M. , J. P. Colbeau, and A. , Classification and phylogeny of hydrogenases, FEMS Microbiology Reviews, vol.25, issue.4, pp.455-501, 2001.
DOI : 10.1111/j.1574-6976.2001.tb00587.x

J. Wang, W. , and W. , Factors influencing fermentative hydrogen production: A review, International Journal of Hydrogen Energy, vol.34, issue.2, pp.799-811, 2009.
DOI : 10.1016/j.ijhydene.2008.11.015

Q. Wang, G. M. Garrity, J. M. Tiedje, C. , and J. R. , Naive Bayesian Classifier for Rapid Assignment of rRNA Sequences into the New Bacterial Taxonomy, Applied and Environmental Microbiology, vol.73, issue.16, pp.5261-5267, 2007.
DOI : 10.1128/AEM.00062-07

S. Wang, H. Huang, J. Kahnt, and R. K. Thauer, A Reversible Electron-Bifurcating Ferredoxin- and NAD-Dependent [FeFe]-Hydrogenase (HydABC) in Moorella thermoacetica, Journal of Bacteriology, vol.195, issue.6, pp.1267-1275, 2013.
DOI : 10.1128/JB.02158-12

B. Xiao and J. Liu, pH dependency of hydrogen fermentation from alkali-pretreated sludge, Chinese Science Bulletin, vol.53, issue.8, pp.399-404, 2006.
DOI : 10.1007/s11434-006-0399-7

D. F. Xing, N. Q. Ren, and B. E. Rittmann, Genetic Diversity of Hydrogen-Producing Bacteria in an Acidophilic Ethanol-H2-Coproducing System, Analyzed Using the [Fe]-Hydrogenase Gene, Applied and Environmental Microbiology, vol.74, issue.4, pp.1232-1239, 1128.
DOI : 10.1128/AEM.01946-07