P. Bennett, J. Rogers, W. Choi, and F. Hiebert, Silicates, silicate weathering, and microbial ecology, Geomicrobiol. J, vol.18, pp.3-19, 2001.

S. Brantley, L. Liermann, M. Bau, and S. Wu, Uptake of trace metals and rare earth elements from hornblende by a soil bacterium, Geomicrobiol. J, vol.18, pp.37-61, 2001.

N. Callac, C. Rommevaux-jestin, O. Rouxel, F. Lesongeur, C. Liorzou et al., Microbial colonization of basaltic glasses in hydrothermal organic-rich sediments at Guaymas Basin, Frontiers in Microbiology, vol.4, 2013.
DOI : 10.3389/fmicb.2013.00250

URL : https://hal.archives-ouvertes.fr/insu-00933493

C. S. Chan, S. C. Fakra, D. C. Edwards, D. Emerson, and J. F. Banfield, Iron oxyhydroxide mineralization on microbial extracellular polysaccharides, Geochimica et Cosmochimica Acta, vol.73, issue.13, pp.3807-3818, 2009.
DOI : 10.1016/j.gca.2009.02.036

C. S. Chan, S. C. Fakra, D. Emerson, E. J. Fleming, and K. J. Edwards, Lithotrophic iron-oxidizing bacteria produce organic stalks to control mineral growth: implications for biosignature formation, The ISME Journal, vol.137, issue.4, pp.717-727, 2011.
DOI : 10.1021/es0504035

L. Chou and R. Wollast, Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor, Geochim. Cosmochim. Acta, vol.4884, pp.2205-2217, 1984.

C. S. Cockell, P. Van-calsteren, J. F. Mosselmans, I. A. Franchi, I. Gilmour et al., Microbial endolithic colonization and the geochemical environment in young seafloor basalts, Chemical Geology, vol.279, issue.1-2, pp.17-30, 2010.
DOI : 10.1016/j.chemgeo.2010.09.015

J. P. Davis, N. H. Youssef, and M. S. Elshahed, Assessment of the Diversity, Abundance, and Ecological Distribution of Members of Candidate Division SR1 Reveals a High Level of Phylogenetic Diversity but Limited Morphotypic Diversity, Applied and Environmental Microbiology, vol.75, issue.12, pp.4139-4148, 1128.
DOI : 10.1128/AEM.00137-09

D. Beer, D. Stoodley, P. Roe, F. Lewandowski, and Z. , Effects of biofilm structures on oxygen distribution and mass transport, Biotechnology and Bioengineering, vol.36, issue.11, pp.1131-1138, 1994.
DOI : 10.1002/bit.260431118

A. W. Decho, Overview of biopolymer-induced mineralization: What goes on in biofilms?, Ecological Engineering, vol.36, issue.2, pp.137-144, 2010.
DOI : 10.1016/j.ecoleng.2009.01.003

R. C. Edgar, B. J. Haas, J. C. Clemente, C. Quince, R. Knight et al., UCHIME improves sensitivity and speed of chimera detection Geomicrobiology in oceanography: microbe?mineral interactions at and below the seafloor, Bioinformatics Trends Microbiol, vol.27, issue.13, pp.2194-2200, 2005.

K. J. Edwards, W. Bach, R. , and D. R. , Geomicrobiology of the Ocean Crust: A Role for Chemoautotrophic Fe-Bacteria, The Biological Bulletin, vol.204, issue.2, pp.180-185, 2003.
DOI : 10.2307/1543555

J. Einen, I. H. Thorseth, and L. Øvreås, Enumeration of Archaea and Bacteria in seafloor basalt using real-time quantitative PCR and fluorescence microscopy, FEMS Microbiology Letters, vol.282, issue.2, 2008.
DOI : 10.1111/j.1574-6968.2008.01119.x

D. Emerson, E. J. Fleming, and J. M. Mcbeth, Iron-Oxidizing Bacteria: An Environmental and Genomic Perspective, Annual Review of Microbiology, vol.64, issue.1, pp.561-583, 2010.
DOI : 10.1146/annurev.micro.112408.134208

D. Emerson and C. Moyer, Isolation and characterization of novel ironoxidizing bacteria that grow at circumneutral pH, Appl. Environ. Microbiol, vol.63, pp.4784-4792, 1997.

D. Emerson and C. L. Moyer, Neutrophilic Fe-Oxidizing Bacteria Are Abundant at the Loihi Seamount Hydrothermal Vents and Play a Major Role in Fe Oxide Deposition, Applied and Environmental Microbiology, vol.68, issue.6, pp.3085-3093, 2002.
DOI : 10.1128/AEM.68.6.3085-3093.2002

D. Emerson, J. A. Rentz, T. G. Lilburn, R. E. Davis, H. Aldrich et al., A Novel Lineage of Proteobacteria Involved in Formation of Marine Fe-Oxidizing Microbial Mat Communities, PLoS ONE, vol.14, issue.8, p.667, 2007.
DOI : 10.1371/journal.pone.0000667.s004

E. J. Fleming, R. E. Davis, S. M. Mcallister, C. S. Chan, C. L. Moyer et al., at Loihi Seamount, Hawaii, USA, FEMS Microbiology Ecology, vol.85, issue.1, pp.116-127, 2013.
DOI : 10.1111/1574-6941.12104

N. Forget, S. Murdock, and S. Juniper, Bacterial diversity in Ferich hydrothermal sediments at two South Tonga Arc submarine volcanoes, Geobiology, vol.8, 2010.

D. Fortin, S. H. Langley, and H. Staudigel, Formation and occurrence of biogenic iron-rich minerals Biological mediation in ocean crust alteration: how deep is the deep biosphere?, Earth Sci. Rev. Earth Planet. Sci. Lett, vol.72, issue.16699, pp.1-19, 1999.

R. Ghai, C. M. Mizuno, A. Picazo, A. Camacho, and F. Rodriguez-valera, Metagenomics uncovers a new group of low GC and ultra-small marine Actinobacteria, Scientific Reports, vol.44, 2013.
DOI : 10.1038/srep02471

P. N. Golyshin, T. N. Chernikova, W. Abraham, H. Lünsdorf, K. N. Timmis et al., Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons, Int. J. Syst. Evol. Microbiol, vol.52, pp.901-911, 2002.

T. W. Hodges and J. B. Olson, Molecular Comparison of Bacterial Communities within Iron-Containing Flocculent Mats Associated with Submarine Volcanoes along the Kermadec Arc, Applied and Environmental Microbiology, vol.75, issue.6, pp.1650-1657, 2009.
DOI : 10.1128/AEM.01835-08

S. Kato, K. Yanagawa, M. Sunamura, Y. Takano, J. Ishibashi et al., within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough, Environmental Microbiology, vol.46, issue.12, pp.3210-3222, 2009.
DOI : 10.1111/j.1462-2920.2009.02031.x

S. Kumar, M. Nei, J. Dudley, and K. Tamura, MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences, Briefings in Bioinformatics, vol.9, issue.4, pp.299-306, 2008.
DOI : 10.1093/bib/bbn017

J. S. Lee, J. M. Mcbeth, R. I. Ray, B. J. Little, E. et al., Iron cycling at corroding carbon steel surfaces, Biofouling, vol.98, issue.10, pp.1243-1252, 2013.
DOI : 10.1016/S0378-1097(04)00035-7

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3827670

J. Li, X. Peng, H. Zhou, J. Li, and Z. Sun, Molecular evidence for microorganisms participating in Fe, Mn, and S biogeochemical cycling in two low-temperature hydrothermal fields at the Southwest Indian Ridge, Journal of Geophysical Research: Biogeosciences, vol.37, issue.7, pp.665-679, 2013.
DOI : 10.1029/2010GL043542

K. Lysnes, I. H. Thorseth, B. O. Steinsbu, L. Øvreås, T. Torsvik et al., Microbial community diversity in seafloor basalt from the Arctic spreading ridges, FEMS Microbiology Ecology, vol.50, issue.3, pp.213-230, 2004.
DOI : 10.1016/j.femsec.2004.06.014

K. Maquelin, C. Kirschner, L. Choo-smith, N. Van-den-braak, H. P. Endtz et al., Identification of medically relevant microorganisms by vibrational spectroscopy, Journal of Microbiological Methods, vol.51, issue.3, pp.255-271, 2002.
DOI : 10.1016/S0167-7012(02)00127-6

O. U. Mason, D. Meo-savoie, C. A. Van-nostrand, J. D. Zhou, J. Fisk et al., Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts, The ISME Journal, vol.72, issue.2, pp.231-24292, 2008.
DOI : 10.1038/ismej.2008.92

O. U. Mason, U. Stingl, L. J. Wilhelm, M. M. Moeseneder, D. Meo-savoie et al., The phylogeny of endolithic microbes associated with marine basalts, Environmental Microbiology, vol.30, issue.10, pp.2539-2550, 2007.
DOI : 10.1360/04ye0001

S. M. Mcallister, R. E. Davis, J. M. Mcbeth, B. M. Tebo, D. Emerson et al., Biodiversity and Emerging Biogeography of the Neutrophilic Iron-Oxidizing Zetaproteobacteria, Applied and Environmental Microbiology, vol.77, issue.15, pp.5445-5457, 1128.
DOI : 10.1128/AEM.00533-11

J. M. Mcbeth, B. J. Little, R. I. Ray, K. M. Farrar, E. et al., Neutrophilic Iron-Oxidizing "Zetaproteobacteria" and Mild Steel Corrosion in Nearshore Marine Environments, Applied and Environmental Microbiology, vol.77, issue.4, pp.1405-1412, 1128.
DOI : 10.1128/AEM.02095-10

J. Miot, K. Benzerara, M. Obst, A. Kappler, F. Hegler et al., Extracellular Iron Biomineralization by Photoautotrophic Iron-Oxidizing Bacteria, Applied and Environmental Microbiology, vol.75, issue.17, pp.5586-5591, 2009.
DOI : 10.1128/AEM.00490-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2737918

R. M. Morris, M. S. Rappé, S. A. Connon, K. L. Vergin, W. A. Siebold et al., SAR11 clade dominates ocean surface bacterioplankton communities, Nature, vol.345, issue.6917, pp.806-810, 1038.
DOI : 10.1073/pnas.95.12.6578

C. L. Moyer, F. C. Dobbs, K. , and D. M. , Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Appl. Environ. Microbiol, vol.61, pp.1555-1562, 1995.

J. U. Navarrete, I. J. Cappelle, K. Schnittker, and D. M. Borrok, Bioleaching of ilmenite and basalt in the presence of iron-oxidizing and iron-scavenging bacteria, International Journal of Astrobiology, vol.19, issue.02, pp.123-134, 2013.
DOI : 10.1126/science.279.5356.1519

B. N. Orcutt, J. B. Sylvan, N. J. Knab, and K. J. Edwards, Microbial Ecology of the Dark Ocean above, at, and below the Seafloor, Microbiology and Molecular Biology Reviews, vol.75, issue.2, pp.361-422, 1128.
DOI : 10.1128/MMBR.00039-10

E. Pruesse, C. Quast, K. Knittel, B. M. Fuchs, W. Ludwig et al., SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB, Nucleic Acids Research, vol.35, issue.21, pp.7188-7196, 2007.
DOI : 10.1093/nar/gkm864

S. The, A. C. Project-rassa, S. M. Mcallister, S. A. Safran, and C. L. Moyer, Zeta- Proteobacteria dominate the colonization and formation of microbial mats in low-temperature hydrothermal vents at Loihi Seamount, Hawaii, Nucleic Acids Res. Geomicrobiol. J, vol.41, issue.26, pp.590-596, 1080.

J. R. Rogers and P. C. Bennett, Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates, Chemical Geology, vol.203, issue.1-2, 2004.
DOI : 10.1016/j.chemgeo.2003.09.001

M. Rubin-blum, G. Antler, R. Tsadok, E. Shemesh, J. A. Austin et al., First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins, PLoS ONE, vol.16, issue.3, 2014.
DOI : 10.1371/journal.pone.0091456.s004

C. M. Santelli, B. N. Orcutt, E. Banning, W. Bach, C. L. Moyer et al., Abundance and diversity of microbial life in ocean crust, Nature, vol.69, issue.7195, pp.653-656, 1038.
DOI : 10.1038/nature06899

P. D. Schloss, D. Gevers, and S. L. Westcott, Reducing the Effects of PCR Amplification and Sequencing Artifacts on 16S rRNA-Based Studies, PLoS ONE, vol.6, issue.12, 2011.
DOI : 10.1371/journal.pone.0027310.t004

P. D. Schloss, S. L. Westcott, T. Ryabin, J. R. Hall, M. Hartmann et al., Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities, Applied and Environmental Microbiology, vol.75, issue.23, pp.7537-7541, 1128.
DOI : 10.1128/AEM.01541-09

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786419

J. Schott and R. A. Berner, X-ray photoelectron studies of the mechanism of iron silicate dissolution during weathering, Geochimica et Cosmochimica Acta, vol.47, issue.12, pp.2233-2240, 1983.
DOI : 10.1016/0016-7037(83)90046-7

J. Schott and R. A. Berner, Dissolution Mechanisms of Pyroxenes and Olivines During Weathering, Chem. Weather, vol.149, pp.35-53, 1985.
DOI : 10.1007/978-94-009-5333-8_3

J. J. Scott, J. A. Breier, G. W. Luther, E. , and D. , Microbial Iron Mats at the Mid-Atlantic Ridge and Evidence that Zetaproteobacteria May Be Restricted to Iron-Oxidizing Marine Systems, PLOS ONE, vol.20, issue.3, 2015.
DOI : 10.1371/journal.pone.0119284.t002

C. Spötl, D. W. Houseknecht, and R. C. Jaques, Kerogen maturation and incipient graphitization of hydrocarbon source rocks in the Arkoma Basin, Oklahoma and Arkansas: a combined petrographic and Raman spectrometric study, Organic Geochemistry, vol.28, issue.9-10, pp.535-542, 1998.
DOI : 10.1016/S0146-6380(98)00021-7

H. Staudigel, H. Furnes, N. Mcloughlin, N. R. Banerjee, L. B. Connell et al., 3.5??billion years of glass bioalteration: Volcanic rocks as a basis for microbial life?, Earth-Science Reviews, vol.89, issue.3-4, pp.156-176, 2008.
DOI : 10.1016/j.earscirev.2008.04.005

L. A. Sudek, A. S. Templeton, B. M. Tebo, and H. Staudigel, Microbial Ecology of Fe (hydr)oxide Mats and Basaltic Rock from Vailulu'u Seamount, American Samoa, Geomicrobiology Journal, vol.61, issue.8, pp.581-596, 1080.
DOI : 10.1128/AEM.68.1.316-325.2002

A. S. Templeton, E. J. Knowles, D. L. Eldridge, B. W. Arey, A. C. Dohnalkova et al., A seafloor microbial biome hosted within incipient ferromanganese crusts, Nature Geoscience, vol.2005, issue.12, pp.872-876, 1038.
DOI : 10.1038/ngeo696

A. S. Templeton, H. Staudigel, and B. M. Tebo, Diverse Mn(II)-Oxidizing Bacteria Isolated from Submarine Basalts at Loihi Seamount, Geomicrobiology Journal, vol.64, issue.3-4, pp.127-139, 2005.
DOI : 10.1099/ijs.0.02377-0

I. H. Thorseth, H. Furnes, M. Heldal, I. H. Thorseth, R. B. Pedersen et al., The importance of microbiological activity in the alteration of natural basaltic glass Microbial alteration of 0?30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic Discordance, Geochim. Cosmochim. Acta Earth Planet. Sci. Lett, vol.5692, issue.21503, pp.845-850, 1992.

I. H. Thorseth, T. Torsvik, H. Furnes, and K. Muehlenbachs, Microbes play an important role in the alteration of oceanic crust, Chemical Geology, vol.126, issue.2, pp.137-146, 1995.
DOI : 10.1016/0009-2541(95)00114-8

I. Thorseth, T. Torsvik, V. Torsvik, F. Daae, and R. Pedersen, Diversity of life in ocean floor basalt, Earth and Planetary Science Letters, vol.194, issue.1-2, pp.31-37, 1038.
DOI : 10.1016/S0012-821X(01)00537-4

S. Vollrath, T. Behrends, C. B. Koch, and P. Van-cappellen, Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions, Geochimica et Cosmochimica Acta, vol.108, pp.107-124, 2013.
DOI : 10.1016/j.gca.2013.01.019

J. V. Weiss, J. A. Rentz, T. Plaia, S. C. Neubauer, M. Merrill-floyd et al., sp. nov., Geomicrobiology Journal, vol.64, issue.7-8, pp.559-570, 1080.
DOI : 10.1016/S0378-1097(04)00035-7

URL : https://hal.archives-ouvertes.fr/inserm-00350862

M. Wilke, F. Farges, P. Petit, G. E. Brown, M. et al., XANES spectroscopic study, American Mineralogist, vol.86, issue.5-6, pp.714-730, 2001.
DOI : 10.2138/am-2001-5-612

M. Wilke, G. M. Partzsch, R. Bernhardt, and D. Lattard, Determination of the iron oxidation state in basaltic glasses using XANES at the K-edge, Chemical Geology, vol.220, issue.1-2, pp.143-161, 2005.
DOI : 10.1016/j.chemgeo.2005.03.004

Y. Wu, L. Liao, C. Wang, W. Ma, F. Meng et al., A comparison of microbial communities in deep-sea polymetallic nodules and the surrounding sediments in the Pacific Ocean, Deep Sea Research Part I: Oceanographic Research Papers, vol.79, pp.40-49, 2013.
DOI : 10.1016/j.dsr.2013.05.004

K. D. Xu, P. S. Stewart, F. Xia, C. Huang, and G. A. Mcfeters, Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability, Appl. Environ. Microbiol, vol.64, pp.4035-4039, 1998.