. Szabò, ?? = ?(ML y+z ,k) -?(M z ,k) - 705 ?(L y ,k), and ?z² = (z+y) 2 ? z 2 ? y 2 . Due to the complexity of HA, ?z² and ?? become adjustable 706 parameters of unclear physical meaning, For, vol.1, 1996.

. Czerwinski, are recalculated to log HA K values using the LC values and imposing 713 negligible [AmHA] in eq. 8. The results are shown in Figure 6a, p.714, 1996.

. Czerwinski, their log HA K 715 values are higher. This can be attributed to the effect of the metal loading. Specifically, at low 716 loading, Am binds to low abundance, strong HA sites, whereas, at high loading, these sites are 717 saturated and Am mainly binds to the more abundant, weaker HA sites (e.g., see Marsac et al. The effect of I below 1 m is more pronounced for the dataset of Wall, which 719 would lead to different SIT parameters (?z² and ??) in eq. 17. Therefore, it is difficult to 720 confidently apply an ionic strength correction for cation-HA binding constants using simple 721 metal ion-HA binding models, p.722, 1996.

C. Appelo and D. Postma, Geochemistry, groundwater and pollution, p.595, 2005.

M. F. Benedetti, W. H. Van-riemsdijk, and L. K. Koopal, Humic Substances Considered as a Heterogeneous Donnan Gel Phase, Environmental Science & Technology, vol.30, issue.6, pp.1805-1813, 1996.
DOI : 10.1021/es950012y

C. Catrouillet, M. Davranche, A. Dia, M. Bouhnik-le-coz, R. Marsac et al., Geochemical modeling of Fe(II) binding to humic and fulvic acids, Chemical Geology, vol.372, issue.851, pp.372-109, 2014.
DOI : 10.1016/j.chemgeo.2014.02.019

URL : https://hal.archives-ouvertes.fr/insu-00965127

C. Catrouillet, M. Davranche, A. Dia, M. Bouhnik-le-coz, M. Pédrot et al., Thiol groups controls on arsenite binding by organic matter: New experimental and modeling evidence, Journal of Colloid and Interface Science, vol.460, issue.460, pp.310-320, 2015.
DOI : 10.1016/j.jcis.2015.08.045

URL : https://hal.archives-ouvertes.fr/insu-01187067

L. Ciavatta, The specific interaction theory in the evaluating ionic equilibria, Ann. Chim, vol.856, issue.70, pp.551-562, 1980.

I. Christl, Ionic strength- and pH-dependence of calcium binding by terrestrial humic acids, Environmental Chemistry, vol.9, issue.1, pp.89-96, 2012.
DOI : 10.1071/EN11112

K. R. Czerwinski, J. I. Kim, D. S. Rhee, and G. Buckau, Complexation of trivalent actinide 860 ions (Am 3+ , Cm 3+ ) with humic acid: the effect of ionic strength, Radiochim. Acta, vol.72, issue.861, pp.179-187, 1996.

P. Fritz and S. K. Frape, Saline groundwaters in the Canadian Shield ??? A first overview, Chemical Geology, vol.36, issue.1-2, p.863, 1982.
DOI : 10.1016/0009-2541(82)90045-6

T. Data and . Chapter, Modeling in aquatic chemistry

J. P. Gustafsson, Visual MINTEQ version 3.0. http://vminteq.lwr.kth.se, pp.872-2012

J. P. Gustafsson, I. Persson, D. B. Kleja, and J. W. Van-schaik, Binding of iron(III) to 874 organic soils: EXAFS spectroscopy and chemical equilibrium modeling, Environ. Sci, vol.875, issue.41, pp.1232-1237, 2007.

D. Hesterberg, J. W. Chou, K. J. Hutchison, and D. E. Sayers, Bonding of Hg(II) to Reduced Organic Sulfur in Humic Acid As Affected by S/Hg Ratio, Environmental Science & Technology, vol.35, issue.13, pp.2741-2745, 2001.
DOI : 10.1021/es001960o

T. Hiemstra and W. Van-riemsdijk, Biogeochemical speciation of Fe in ocean water, Marine Chemistry, vol.102, issue.3-4, 0880.
DOI : 10.1016/j.marchem.2006.03.008

W. Hummel, M. A. Glaus, and L. R. Van-loon, Trace metal-humate interactions. II. The ???conservative roof??? model and its application, Applied Geochemistry, vol.15, issue.7, pp.975-1001, 2000.
DOI : 10.1016/S0883-2927(99)00100-6

J. I. Kim and K. R. Czerwinski, Complexation of Metal Ions with Humic Acid: Metal Ion Charge Neutralization Model, Radiochimica Acta, vol.73, issue.1, pp.5-10, 1996.
DOI : 10.1524/ract.1996.73.1.5

W. H. Riemsdijk, Metal ion binding by humic acid: application of the NICA- 887 Donnan model, Environ. Sci. Technol, vol.30, pp.1687-1698, 1996.

D. G. Kinniburgh, W. H. Van-riemsdijk, L. K. Koopal, M. Borkovec, M. F. Benedetti et al., Ion binding to natural organic matter: competition, heterogeneity, 890 stoichiometry and thermodynamic consistency. Colloid Surf, pp.147-166, 1999.
DOI : 10.1016/s0927-7757(98)00637-2

L. K. Koopal, T. Saito, J. P. Pinheiro, and W. H. Van-riemsdijk, Ion binding to natural organic matter: General considerations and the NICA???Donnan model, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.265, issue.1-3, pp.40-54, 2005.
DOI : 10.1016/j.colsurfa.2004.11.050

K. Mouvenchery, Y. Ku?erík, J. Diehl, D. Schaumann, and G. E. , Cation-mediated cross-linking in natural organic matter: a review, Reviews in Environmental Science and Bio/Technology, vol.4, issue.4, pp.41-896, 2012.
DOI : 10.1007/s11157-011-9258-3

D. N. Kurk and G. R. Choppin, Determination of Co(II) and Ni(II)-humate stability 898 constants at high ionic strength NaCl solutions, Radiochim. Acta, vol.88, pp.583-586, 2000.

D. Langmuir, Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits, Geochimica et Cosmochimica Acta, vol.42, issue.6, pp.547-569, 1978.
DOI : 10.1016/0016-7037(78)90001-7

N. Labonne-wall, G. R. Choppin, C. Lopez, and J. Monsallier, Interaction of uranyl 902 with humic and fulvic acids at high ionic strength In: Actinide speciation in high ionic 903 strength media: experimental and modeling approaches to predicting actinide speciation 904 and migration in the subsurface, pp.905-199, 1999.

I. Laszak and G. R. Choppin, Interaction study between Ca 2+ and humic acids in brine 907 media, Radiochim. Acta, vol.89, pp.653-659, 2001.

H. Lippold, A. Mansel, and H. Kupsch, Influence of trivalent electrolytes on the humic 909 colloid-borne transport of contaminant metals: competition and flocculation effects, J, p.910, 2005.

D. J. Liu, C. Bruggeman, and N. Maes, The influence of natural organic matter on the 912 speciation and solubility of Eu in Boom Clay porewater, Radiochim. Acta, vol.96, pp.711-720, 2008.

J. Lützenkirchen, The Constant Capacitance Model and Variable Ionic Strength: An Evaluation of Possible Applications and Applicability, Journal of Colloid and Interface Science, vol.217, issue.1, pp.8-18, 1999.
DOI : 10.1006/jcis.1999.6348

J. Lützenkirchen, J. Van-male, F. Leermakers, and S. Sjöberg, Comparison of various 916 models to describe the charge-pH dependence of poly(acrylic acid), J. Chem. Eng. Data, vol.917, pp.56-1602, 2011.

A. Maes, J. Tits, G. Mermans, and A. Dierckx, Measurement of the potentially available 919 charge and the dissociation behaviour of humic acid from cobaltihexammine adsorption, J, p.920, 1992.

J. A. Marinsky, S. Gupta, and P. Schindler, The interaction of Cu(II) ion with humic acid, Journal of Colloid and Interface Science, vol.89, issue.2, p.922, 1982.
DOI : 10.1016/0021-9797(82)90192-8

C. Marquardt and J. I. Kim, Complexation of Np(V) with Fulvic Acid, Radiochimica Acta, vol.81, issue.3, pp.143-148, 1998.
DOI : 10.1524/ract.1998.81.3.143

R. Marsac, N. L. Banik, C. M. Marquardt, and J. V. Kratz, Stabilization of polynuclear plutonium(IV) species by humic acid, Geochimica et Cosmochimica Acta, vol.131, pp.290-300, 2014.
DOI : 10.1016/j.gca.2014.01.039

R. Marsac, M. Davranche, G. Gruau, and A. Dia, Metal loading effect on rare earth element 928 binding to humic acid: Experimental and modeling evidence, Geochim. Cosmochim. Acta, vol.929, pp.74-1749, 2010.
DOI : 10.1016/j.gca.2009.12.006

R. Marsac, M. Davranche, G. Gruau, M. Bouhnik-le-coz, and A. Dia, An improved description of the interactions between rare earth elements and humic acids by modeling: PHREEQC-Model VI coupling, Geochimica et Cosmochimica Acta, vol.75, issue.19, pp.5625-5637, 2011.
DOI : 10.1016/j.gca.2011.07.009

URL : https://hal.archives-ouvertes.fr/insu-00624225

R. Marsac, M. Davranche, G. Gruau, A. Dia, and M. Bouhnik-le-coz, Aluminium 934 competitive effect on rare earth elements binding to humic acid, Geochim. Cosmochim. 935 Acta, pp.1-9, 2012.
DOI : 10.1016/j.gca.2012.04.028

R. Marsac, M. Davranche, G. Gruau, A. Dia, M. Pédrot et al., Effects of Fe competition on REE binding to humic acid: Origin of REE pattern variability in organic waters, Chemical Geology, vol.342, issue.342, pp.119-127, 2013.
DOI : 10.1016/j.chemgeo.2013.01.020

URL : https://hal.archives-ouvertes.fr/insu-00811470

A. E. Martell and R. D. Hancock, Metal Complexes in Aqueous Solutions, p.940, 1996.
DOI : 10.1007/978-1-4899-1486-6

C. J. Milne, D. G. Kinniburgh, and E. Tipping, Generic NICA-Donnan Model Parameters for Proton Binding by Humic Substances, Environmental Science & Technology, vol.35, issue.10, pp.2049-2059, 2001.
DOI : 10.1021/es000123j

C. J. Milne, D. G. Kinniburgh, W. H. Van-riemsdijk, and E. Tipping, Generic NICA???Donnan Model Parameters for Metal-Ion Binding by Humic Substances, Environmental Science & Technology, vol.37, issue.5, pp.958-971, 2003.
DOI : 10.1021/es0258879

A. C. Montenegro, S. Orsetti, and F. V. Molina, Modelling proton and metal binding to humic substances with the NICA???EPN model, Environmental Chemistry, vol.11, issue.3, pp.318-332, 2014.
DOI : 10.1071/EN13214

G. R. Choppin, Thermodynamic modeling of actinide complexation with acetate 950 and lactate at high ionic strength, J. Sol. Chem, vol.28, pp.521-531, 1999.

U. Mühlenweg, B. Th, and U. Hertes, Charakterisierung von mineralisierten 952 Tiefengrundwässern in nichtsalinaren Festgesteinen, Gesellschaft für Anlagen-und Reaktorsicherheit (GRS) mbH, p.19, 1997.

D. L. Parkhurst and C. A. Appelo, User's guide to PHREEQC (Version 2) -a computer 955 program for speciation, batch reaction, one-dimensional transport and inverse 956 geochemical calculation, Water-resources Investigation Report, pp.99-4259, 1999.

J. P. Pinheiro, A. M. Mota, and M. F. Benedetti, Effect of Aluminum Competition on Lead and Cadmium Binding to Humic Acids at Variable Ionic Strength, Environmental Science & Technology, vol.34, issue.24, pp.5137-5143, 2000.
DOI : 10.1021/es0000899

K. S. Pitzer, Ion interaction approach: theory and data correlation, 962 Activity Coefficients in Electrolyte Solutions, pp.75-963, 1991.

C. Rey-castro, P. Lodeiro, R. Herrer, and M. E. And-sastre-de-vicente, Acid???Base Properties of Brown Seaweed Biomass Considered As a Donnan Gel. A Model Reflecting Electrostatic Effects and Chemical Heterogeneity, Environmental Science & Technology, vol.37, issue.22, pp.5159-5167, 2003.
DOI : 10.1021/es0343353

A. Ringböm, Complexation in Analytical Chemistry, 1963.

J. D. Ritchie and E. M. Perdue, Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter, Geochimica et Cosmochimica Acta, vol.67, issue.1, pp.85-96, 2003.
DOI : 10.1016/S0016-7037(02)01044-X

T. Sasaki, T. Kobayashi, I. Tagagi, and H. Moriyama, Discrete Fragment Model for Complex Formation of Europium(III) with Humic Acid, Journal of Nuclear Science and Technology, vol.23, issue.8, pp.718-972, 2008.
DOI : 10.3327/jnst.42.724

J. Schijf and A. M. Ebling, s by Manual Alkalimetric Titrations, Environmental Science & Technology, vol.44, issue.5, pp.1644-1649, 2010.
DOI : 10.1021/es9029667

A. Schnurr, R. Marsac, T. Kupcik, T. Rabung, J. Lützenkirchen et al., Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: Batch adsorption, laser-fluorescence spectroscopy and modeling, Geochimica et Cosmochimica Acta, vol.151, issue.202, pp.192-979, 2015.
DOI : 10.1016/j.gca.2014.11.011

A. Stockdale, E. Tipping, J. Hamilton-taylor, and S. Lofts, Trace metals in the open oceans: speciation modelling based on humic-type ligands, Environmental Chemistry, vol.8, issue.3, pp.304-319, 2011.
DOI : 10.1071/EN11004

G. Szabò, J. Guczi, P. Reiller, T. Miyajima, and R. A. Bulman, Effect of ionic strength on 983 complexation of Pu(IV) with humic acid, Radiochim. Acta, vol.98, pp.13-18, 2010.

E. Tipping, Humic ion-binding model VI: an improved description of the interactions of 985 protons and metal ions with humic substances, Aquatic Geochemistry, vol.4, issue.1, pp.3-48, 1998.
DOI : 10.1023/A:1009627214459

E. Tipping and M. A. Hurley, A unifying model of cation binding by humic substances, Geochimica et Cosmochimica Acta, vol.56, issue.10, p.987, 1992.
DOI : 10.1016/0016-7037(92)90158-F

E. Tipping, S. Lofts, and J. Sonke, Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances, Environmental Chemistry, vol.8, issue.3, pp.225-235, 2011.
DOI : 10.1071/EN11016

E. Tipping, C. Rey-castro, S. E. Bryan, and J. Hamilton-taylor, Al(III) and Fe(III) binding 991 by humic substances in freshwaters and implications for trace metal speciation. Geochim. 992 Cosmochim, Acta, vol.66, pp.3211-3224, 2002.

R. A. Torres and G. R. Choppin, Europium(III) and Americium(III) stability constants 994 with Humic acid, Radiochim. Acta, vol.35, issue.3, pp.143-148, 1984.

A. Turner, S. S. Pedroso, and M. T. Brown, Influence of salinity and humic substances on the uptake of trace metals by the marine macroalga, Ulva lactuca: Experimental observations and modelling using WHAM, Marine Chemistry, vol.110, issue.3-4, pp.176-184, 2008.
DOI : 10.1016/j.marchem.2008.04.003

H. Z. Van-dijk, Zur Kenntnis der Basenbindung von Huminsäuren, Pflanzenernähr. Düng. 999 Bodenk, pp.150-155, 1000.

H. P. Van-leeuwen and R. M. Town, Electric condensation of divalent counterions by humic acid nanoparticles, Environmental Chemistry, vol.13, issue.1, pp.76-83, 2016.
DOI : 10.1071/EN15055

N. A. Wall and G. R. Choppin, Humic acids coagulation: influence of divalent cations, Applied Geochemistry, vol.18, issue.10, 1003.
DOI : 10.1016/S0883-2927(03)00046-5

N. A. Wall, M. Borkowski, J. Chen, and G. R. Choppin, Complexation of americium 1005 with humic, fulvic and citric acids at high ionic strength, Radiochim. Acta, vol.90, pp.563-568, 2002.

A. M. Zoll and J. Schjif, A surface complexation model of YREE sorption on Ulva lactuca in 0.05???5.0M NaCl solutions, Geochimica et Cosmochimica Acta, vol.97, pp.183-199, 2012.
DOI : 10.1016/j.gca.2012.08.022