L. R. Kump and R. M. Garrels, Modeling atmospheric O 2 in the global sedimentary redox cycle, American Journal of Science, vol.286, issue.5, pp.337-360, 1986.
DOI : 10.2475/ajs.286.5.337

R. M. Garrels and A. Lerman, Coupling of the sedimentary sulfur and carbon cycles; an improved model, American Journal of Science, vol.284, issue.9, pp.989-1007, 1984.
DOI : 10.2475/ajs.284.9.989

A. Kampschulte and H. Strauss, The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates, Chemical Geology, vol.204, issue.3-4, pp.255-286, 2004.
DOI : 10.1016/j.chemgeo.2003.11.013

M. T. Hurtgen, G. P. Halverson, M. A. Arthur, and P. Hoffman, Sulfur cycling in the aftermath of a 635-Ma snowball glaciation: Evidence for a syn-glacial sulfidic deep ocean, Earth and Planetary Science Letters, vol.245, issue.3-4, pp.551-570, 2006.
DOI : 10.1016/j.epsl.2006.03.026

URL : https://hal.archives-ouvertes.fr/hal-00324719

M. T. Hurtgen, M. A. Arthur, and G. P. Halverson, Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite, Geology, vol.33, issue.1, pp.41-44, 2005.
DOI : 10.1130/G20923.1

URL : https://hal.archives-ouvertes.fr/hal-00324689

D. E. Canfield and A. Teske, Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies, Nature, vol.382, issue.6587, pp.127-132, 1996.
DOI : 10.1038/382127a0

H. Strauss, D. M. Banerjee, and V. Kumar, The sulfur isotopic composition of Neoproterozoic to early Cambrian seawater ??? evidence from the cyclic Hanseran evaporites, NW India, Chemical Geology, vol.175, issue.1-2, pp.17-28, 2001.
DOI : 10.1016/S0009-2541(00)00361-2

D. A. Fike and J. P. Grotzinger, A paired sulfate???pyrite ??34S approach to understanding the evolution of the Ediacaran???Cambrian sulfur cycle, Geochimica et Cosmochimica Acta, vol.72, issue.11, pp.2636-2648, 2008.
DOI : 10.1016/j.gca.2008.03.021

H. Strauss, Geological evolution from isotope proxy signals ??? sulfur, Chemical Geology, vol.161, issue.1-3, pp.89-101, 1999.
DOI : 10.1016/S0009-2541(99)00082-0

G. Shields-zhou and L. Och, The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences, GSA Today, vol.21, issue.3, pp.4-11, 2011.
DOI : 10.1130/GSATG102A.1

L. C. Kah, T. W. Lyons, and T. D. Franck, Low marine sulphate and protracted oxygenation of the Proterozoic biosphere, Nature, vol.44, issue.7010, pp.834-838, 2004.
DOI : 10.1016/S0016-7037(00)00572-X

N. Wu, J. Farquhar, and H. Strauss, ??34S and ??33S records of Paleozoic seawater sulfate based on the analysis of carbonate associated sulfate, Earth and Planetary Science Letters, vol.399, pp.44-51, 2014.
DOI : 10.1016/j.epsl.2014.05.004

J. A. Romero, J. M. Lafon, A. C. Nogueira, and J. L. Soares, Sr isotope geochemistry and Pb-Pb geochronology of the Neoproterozoic cap carbonates, Brazil. Intern. Geol. Rev, vol.1, pp.1-19, 2012.

A. C. Nogueira, C. Riccomini, A. N. Sial, C. A. Moura, and T. R. Fairchild, Soft-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth, Geology, vol.31, issue.7, pp.613-616, 2003.
DOI : 10.1130/0091-7613(2003)031<0613:SDATBO>2.0.CO;2

P. Sansjofre, Paleoenvironmental reconstruction of the Ediacaran Araras platform (Western Brazil) from the sedimentary and trace metals record, Precambrian Research, vol.241, pp.185-202, 2014.
DOI : 10.1016/j.precamres.2013.11.004

URL : https://hal.archives-ouvertes.fr/insu-00985285

B. C. Gill, T. W. Lyons, and T. D. Frank, Behavior of carbonate-associated sulfate during meteoric diagenesis and implications for the sulfur isotope paleoproxy, Geochimica et Cosmochimica Acta, vol.72, issue.19, pp.4699-4711, 2008.
DOI : 10.1016/j.gca.2008.07.001

Y. Peng, Widespread contamination of carbonate-associated sulfate by present-day secondary atmospheric sulfate: Evidence from triple oxygen isotopes, Geology, vol.42, issue.9, pp.815-818, 2014.
DOI : 10.1130/G35852.1

D. Condon, U-Pb Ages from the Neoproterozoic Doushantuo Formation, China, Science, vol.308, issue.5718, pp.95-98, 2005.
DOI : 10.1126/science.1107765

K. H. Hoffmann, D. J. Condon, S. A. Bowring, and J. L. Crowley, U-Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation, Geology, vol.32, issue.9, pp.817-820, 2004.
DOI : 10.1130/G20519.1

P. Sansjofre, A carbon isotope challenge to the snowball Earth, Nature, vol.56, issue.7367, pp.93-96, 2011.
DOI : 10.1038/nature10499

R. L. Hidalgo, Vida após as glaciac¸ões globais neoproterozoicas: um estudo microfossil?´feromicrofossil?´fero de capas carbonáticas dos Crátons do São Francisco e Amazônico, p.195, 2007.

K. Grey, Ediacaran palynolog of Australia Association of Australasian Palaeontologists. Geological Survey of Western Australia, pp.31-439, 2005.

B. Mcgee, A. S. Collins, R. I. Trindade, and J. Payne, Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil, Geological Society of America Bulletin, vol.127, issue.1-2, pp.76-86, 2015.
DOI : 10.1130/B30842.1

B. Shen, Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China, Earth and Planetary Science Letters, vol.265, issue.1-2, pp.209-228, 2008.
DOI : 10.1016/j.epsl.2007.10.005

J. Farquhar, D. T. Johnston, and B. A. Wing, Implications of conservation of mass effects on mass-dependent isotope fractionations: Influence of network structure on sulfur isotope phase space of dissimilatory sulfate reduction, Geochimica et Cosmochimica Acta, vol.71, issue.24, pp.5862-5875, 2007.
DOI : 10.1016/j.gca.2007.08.028

D. T. Johnston, Multiple sulfur isotopes and the evolution of Earth's surface sulfur cycle, Earth-Science Reviews, vol.106, issue.1-2, pp.161-183, 2011.
DOI : 10.1016/j.earscirev.2011.02.003

D. T. Johnston, Multiple sulfur isotope fractionations in biological systems: A case study with sulfate reducers and sulfur disproportionators, American Journal of Science, vol.305, issue.6-8, pp.645-660, 2005.
DOI : 10.2475/ajs.305.6-8.645

D. T. Johnston, Active Microbial Sulfur Disproportionation in the Mesoproterozoic, Science, vol.310, issue.5753, pp.1477-1479, 2005.
DOI : 10.1126/science.1117824

S. Ono, W. C. Shanks, O. J. Rouxel, and D. Rumble, S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides, Geochimica et Cosmochimica Acta, vol.71, issue.5, pp.1170-1182, 2007.
DOI : 10.1016/j.gca.2006.11.017

S. Ono, N. S. Keller, O. Rouxel, and J. C. Alt, Sulfur-33 constraints on the origin of secondary pyrite in altered oceanic basement, Geochimica et Cosmochimica Acta, vol.87, pp.323-340, 2012.
DOI : 10.1016/j.gca.2012.04.016

A. V. Turchyn and D. Schrag, Oxygen Isotope Constraints on the Sulfur Cycle over the Past 10 Million Years, Science, vol.303, issue.5666, pp.2004-2007, 2004.
DOI : 10.1126/science.1092296

J. Farquhar, Multiple sulphur isotopic interpretations of biosynthetic pathways: implications for biological signatures in the sulphur isotope record, Geobiology, vol.66, issue.12, pp.27-36, 2003.
DOI : 10.1016/0016-7037(73)90052-5

D. T. Johnston, . James, &. Farquhar, . Canfield, and E. Donald, Sulfur isotope insights into microbial sulfate reduction: When microbes meet models, Geochimica et Cosmochimica Acta, vol.71, issue.16, pp.3929-3947, 2007.
DOI : 10.1016/j.gca.2007.05.008

W. D. Leavitt, Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record, Proc. Natl Acad. Sci. USA, pp.11244-11249, 2013.
DOI : 10.1073/pnas.1218874110

M. S. Sim, Physiology of multiple sulfur isotope fractionation during microbial sulfate reduction. Doctoral dissertation, Massachusetts Institute of Technology, 2012.

K. S. Habicht, M. Gade, B. Thamdrup, P. Berg, and D. E. Canfield, Calibration of Sulfate Levels in the Archean Ocean, Science, vol.298, issue.5602, pp.2372-2374, 2002.
DOI : 10.1126/science.1078265

S. A. Crowe, Sulfate was a trace constituent of Archean seawater, Science, vol.346, issue.6210, pp.735-739, 2014.
DOI : 10.1126/science.1258966

N. J. Planavsky, The evolution of the marine phosphate reservoir, Nature, vol.33, issue.7319, pp.1088-1090, 2010.
DOI : 10.1038/nature09485

R. Raiswell, Iron Transport from the Continents to the Open Ocean: The Aging-Rejuvenation Cycle, Elements, vol.7, issue.2, pp.101-106, 2011.
DOI : 10.2113/gselements.7.2.101

M. Elie, A. C. Nogueira, A. Nédélec, R. I. Trindade, and F. Kenig, A red algal bloom in the aftermath of the Marinoan Snowball Earth, Terra Nova, vol.91, issue.5, pp.303-308, 2007.
DOI : 10.1016/j.orggeochem.2004.06.013

URL : https://hal.archives-ouvertes.fr/hal-00321046

G. A. Logan, J. M. Hayes, G. B. Hieshima, and R. E. Summons, Terminal Proterozoic reorganization of biogeochemical cycles, Nature, vol.376, issue.6535, pp.53-56, 1995.
DOI : 10.1038/376053a0

H. D. Holland, Volcanic gases, black smokers, and the great oxidation event, Geochimica et Cosmochimica Acta, vol.66, issue.21, pp.3811-3826, 2002.
DOI : 10.1016/S0016-7037(02)00950-X

D. C. Catling, Encyclopedia of Astrobiology, pp.1200-1208, 2011.

M. J. Costello, A. Cheung, and N. De-hauwere, Surface Area and the Seabed Area, Volume, Depth, Slope, and Topographic Variation for the World???s Seas, Oceans, and Countries, Environmental Science & Technology, vol.44, issue.23, pp.8821-8828, 2010.
DOI : 10.1021/es1012752

A. Kurtz, L. R. Kump, M. A. Arthur, J. C. Zachos, and A. Paytan, Early Cenozoic decoupling of the global carbon and sulfur cycles, Paleoceanography, vol.27, issue.B4, pp.1-14, 2003.
DOI : 10.1029/2003PA000908

M. T. Hurtgen, S. B. Pruss, and A. H. Knoll, Evaluating the relationship between the carbon and sulfur cycles in the later Cambrian ocean: An example from the Port au Port Group, western Newfoundland, Canada, Earth and Planetary Science Letters, vol.281, issue.3-4, pp.288-297, 2009.
DOI : 10.1016/j.epsl.2009.02.033

R. A. Berner, The Phanerozoic carbon cycle, pp.2-2, 2004.

S. V. Lalonde and K. Konhauser, Benthic perspective on Earth???s oldest evidence for oxygenic photosynthesis, Proc. Natl Acad. Sci, pp.995-1000, 2015.
DOI : 10.1073/pnas.1415718112

H. G. Thode, J. Monster, and H. B. Dunford, Sulphur isotope geochemistry, Geochimica et Cosmochimica Acta, vol.25, issue.3, pp.159-174, 1961.
DOI : 10.1016/0016-7037(61)90074-6

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.174.5986

E. D. Young, A. Galy, and H. Nagahara, Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance, Geochimica et Cosmochimica Acta, vol.66, issue.6, pp.1095-1104, 2002.
DOI : 10.1016/S0016-7037(01)00832-8

T. Otake, A. C. Lasaga, and H. Ohmoto, Ab initio calculations for equilibrium fractionations in multiple sulfur isotope systems, Chemical Geology, vol.249, issue.3-4, pp.357-376, 2008.
DOI : 10.1016/j.chemgeo.2008.01.020

E. Thomassot, Metasomatic diamond growth: A multi-isotope study (13C, 15N, 33S, 34S) of sulphide inclusions and their host diamonds from Jwaneng (Botswana), Earth and Planetary Science Letters, vol.282, issue.1-4, pp.79-90, 2009.
DOI : 10.1016/j.epsl.2009.03.001

M. F. Miller, Mass-independent fractionation of oxygen isotopes during thermal decomposition of carbonates, Proc. Natl Acad. Sci. USA 99, pp.10988-10993, 2002.
DOI : 10.1073/pnas.172378499

A. Mariotti, Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes, Plant and Soil, vol.61, issue.9, pp.413-430, 1981.
DOI : 10.1021/j150551a007