ChronoModel version 1.5 User’s manual
Marie-Anne Vibet, Anne Philippe, Philippe Lanos, Philippe Dufresne

To cite this version:
Marie-Anne Vibet, Anne Philippe, Philippe Lanos, Philippe Dufresne. ChronoModel version 1.5 User’s manual. 95 p., 2016. <insu-01451452>

HAL Id: insu-01451452
https://hal-insu.archives-ouvertes.fr/insu-01451452
Submitted on 1 Feb 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A BibTeX entry for LaTeX users is

```
@Manual{chronomodel,
  title = {ChronoModel V1.5 User’s manual},
  author = {Vibet, M-A and Philippe, A. and Lanos, Ph. and Dufresne, Ph },
  url = {http://www.chronomodel.fr },
  year = 2016
}
```

```
@Manual{chronomodelSoft,
  title = {Chronomodel : Chronological Modelling of Archaeological Data using Bayesian Statistics (Version 1.5).},
  author = {Ph. Lanos and A. Philippe and H. Lanos and Ph. Dufresne },
  year = {2016},
  url = {http://www.chronomodel.fr },
}
```
Contents

1 Introduction .. 1

2 Bayesian modelling ... 3
 2.1 Event model ... 3
 2.1.1 Definition of the model 3
 2.1.2 Prior information about θ and $\sigma_1,...,\sigma_n$ 4
 2.1.3 Likelihood .. 5
 2.1.3.1 Observations 5
 2.1.3.2 Individual calibration 5
 2.1.3.3 Individual calibration and reservoir effect 6
 2.1.3.4 Calibration from multiple measurements 7
 2.1.3.5 Typo-chronological reference 8
 2.1.4 The wiggle-matching case 8
 2.1.5 Temporal order constraints 10
 2.2 Phases .. 10
 2.2.1 Definition of a phase 10
 2.2.2 Beginning, end and duration of a phase 10
 2.2.3 Prior information about the duration of a phase 11
 2.2.4 Prior information about a succession of phases 11
 2.2.4.1 Temporal succession between phases 11
 2.2.4.2 Prior information about a hiatus 12

3 Use of ChronoModel .. 13
 3.1 Installation ... 13
 3.2 Description of the icons of the main window 14
 3.3 Creating / Opening a project - Defining the study period 15
 3.4 Creating events, bounds and constraints 17
 3.4.1 Creating a new event 17
 3.4.2 Including measurements 17
CONTENTS

3.4.2.1 Radiocarbon dating (14C) ... 19
3.4.2.2 Archeomagnetism dating (AM) 23
3.4.2.3 Luminescence dating (TL/OSL) 24
3.4.2.4 Gaussian dating (Gauss) ... 25
3.4.2.5 Typo-chronological reference (Typo Ref.) 26
3.4.2.6 Importing data using a CSV file 27
3.4.2.7 Calibration process .. 31
3.4.2.8 Deleting / Restoring a measurement 31
3.4.3 Creating a new bound ... 32
3.4.4 Deleting / Restoring an event or a bound 32
3.4.5 Creating / Deleting a constraint 33
3.4.6 Using the grid ... 34
3.4.7 Using the overview .. 35
3.4.8 Exporting the image of the events’ scene 35
3.4.9 Exporting data from the project 35

3.5 Creating phases and constraints between phases 36
3.5.1 Creating a new phase ... 36
3.5.2 Modifying / Deleting a phase 37
3.5.3 Including / Removing events or bounds 37
3.5.4 Creating / Deleting a constraint between two phases 38
3.5.5 Using the grid ... 39
3.5.6 Using the overview .. 39
3.5.7 Exporting the image of the phases’ scene 39

4 Numerical methods ... 41
4.1 Markov chain Monte Carlo ... 41
4.2 Building a Markov chain in multiple dimensions: the Gibbs sampler . 42
4.3 Drawing from full conditional posterior distributions 42
4.3.1 Full conditional posterior distribution of the event θ 43
4.3.2 Full conditional posterior distribution of calibrated dates t_i . 43
4.3.3 Full conditional posterior distribution of the variance of a calibrated date σ_i^2 .. 44
4.3.4 Full conditional posterior distribution of a wiggle matching δ_i 44
4.3.5 Full conditional posterior distribution of a bound θ^B 44
4.4 MCMC settings .. 44
4.4.1 Burn .. 44
4.4.2 Adapt .. 45
4.4.3 Acquire .. 45
4.4.4 Thinning .. 45
4.4.5 Starting values ... 46
4.4.6 Number of chains 46

5 Results .. 47
 5.1 Checking the Markov chains 47
 5.1.1 Is the equilibrium reached ? Look at the history plots. . . . 48
 5.1.2 Correlation between successive values ? Look at the autocorre-
 lation functions ... 49
 5.1.3 Look at the acceptance rates. 49
 5.2 Marginal posterior densities 51
 5.2.1 Estimations .. 51
 5.2.1.1 Marginal posterior density 51
 5.2.1.2 Credibility interval (CI) 52
 5.2.1.3 Highest posterior density (HPD) region 53
 5.2.2 Date format ... 54
 5.2.3 Graphical results 54
 5.2.4 Statistical results 56
 5.3 Savings ... 57
 5.4 Summaries ... 58

6 Examples .. 59
 6.1 Radiocarbon datings in Sennefer’s tomb (Egypt) 60
 6.1.1 Bouquet 1 .. 60
 6.1.2 Bouquet 2 .. 69
 6.1.3 Modelling of bouquets 1 and 2 simultaneously 74
 6.1.4 Modelling of the phase including bouquets 1 and 2 - Estimation
 of the duration of the phase 75
 6.1.4.1 Phase without constraints 74
 6.1.4.2 Phase with bounds 81
 6.1.4.3 Phase with fixed duration 84
 6.2 Toy scenario .. 86
 6.2.1 A sequential model without phases 88
 6.2.2 Grouping events into phases 89
 6.2.3 Grouping events into two kinds of phases 92
Chapter 1

Introduction

Chronological modelling with « ChronoModel »

• Events:
 ChronoModel is based on the concept of “Event”. An Event is a point in time for which we can define a hierarchical Bayesian statistical model. An event is determined by its unknown calendar date. In ChronoModel, different types of measurement may be combined in order to estimate the date of the event of interest. These measurements may be ^{14}C ages in radiocarbon, paleodose measurements in luminescence, inclination, declination or intensity of the geomagnetic field in archaeomagnetism, typo-chronological references or Gaussian measurements.

• Phases:
 A Phase is a group of Events. It is defined on the basis of archaeological, geological, environmental,... criteria we want to locate in time. Unlike “Event” model, the Phase does not respond to a statistical model: indeed we do not know how Events can be a priori distributed in a phase. However, we can estimate the beginning, end or duration of a phase from the Events that are included in it. Prior information may be added: the Events of a phase may be constrained by the known duration or a hiatus between two phases may be inserted (this imposes a temporal order between the two groups of Events).

• Temporal order relationships:
 Events and/or Phases may be linked by temporal order relationships. These order relations are defined in different ways: by the stratigraphic relationship (physical relationship observed in the field) or by criteria of stylistic, technical, architectural etc. development which may be a priori known.
Chapter 2

Bayesian modelling

2.1 Event model

2.1.1 Definition of the model

In ChronoModel, an event is determined by its unknown calendar date θ. Assuming that this event can reliably be associated with one or several suitable samples, out of which measurements can be made and calendar dates can be obtained, the Event model combines these calendar dates, assumed to be contemporaneous, in order to estimate the unknown calendar date θ.

The following equation shows the stochastic relationship between θ, the calendar date associated with the event of interest, and $t_1,...,t_n$, the calendar dates obtained from the n measurements, M_i, assumed to be related to the event.

$$t_i = \theta + \sigma_i \epsilon_i$$

(2.1)

where $\epsilon_i \sim N(0,1)$, for $i = 1$ to n. $\epsilon_1,...,\epsilon_n$ are independent and $\sigma_1,...,\sigma_n$ are the unknown standard deviation parameters.

Such a model means that each calendar date, t_i, assumed to be related to the event of interest and contemporaneous to the other calendar dates $t_j, \forall j \neq i$, can be affected by errors σ_i that can come from different sources [1, 2]. Moreover, conditionally on θ and on σ_i^2, t_i is independent of all t_j, for $j \neq i$.

ChronoModel is actually based on a bayesian hierarchical model. Such a model can easily be represented by a directed acyclic graph (DAG) that defines the dependencies between the variables of the model [3]. A DAG is formed by nodes and edges. A node
can either represent an observation (data) or a parameter, that can be stochastic or deterministic. An edge is a directed arc that represents dependencies between two nodes. The edge starts at the parent node and heads to the child node. This relationship is often a stochastic one (single arc) but it may also be a deterministic one (double arc). The DAG can be read as follow, each node of the DAG is, conditionally on all its parent nodes, independent of all other nodes except of its child nodes. The following DAG is a representation of the Event model implemented in ChronoModel.

Prior information about θ and $\sigma_1, ..., \sigma_n$ are defined in section 2.1.2. Then the likelihood function is defined in section 2.1.3. According to the likelihood, three main types of data information may be implemented into ChronoModel: a single measurement with its laboratory error, a combination of multiple radiocarbon measurements or an interval referring to a typo-chronological reference. These different types are explained in section 2.1.3. Then the wiggle matching case, specific to the radiocarbon dating method, is explained in section 2.1.4. Finally, the case where several events are related by a temporal order constraint is explained.

2.1.2 Prior information about θ and $\sigma_1, ..., \sigma_n$

Without any other constraints than the beginning, τ_B, and the end, τ_E, of the study period (τ_B and τ_E are fixed parameters), the unknown calendar date θ is assumed to have a continuous uniform distribution on the study period. Hence the prior density function of θ is:

$$p(\theta) = \frac{1}{\tau_E - \tau_B} 1_{[\tau_B, \tau_E]}(\theta) \quad (2.2)$$

The variances σ_i^2, for $i = 1$ to n, are assumed to have a shrinkage uniform distribution.
2.1. EVENT MODEL

[4, 5]. Their prior density function is the following one:

\[p(\sigma^2_i) = \frac{s_0^2}{(s_0^2 + \sigma^2_i)^2} \] (2.3)

where

\[1 \frac{s_0^2}{s_0^2} = \frac{1}{n} \sum_{i=1}^{n} \frac{1}{s_i^2} \] (2.4)

with \(\hat{s}^2_i = \text{Var}(t_i|M_i) \) the variance of the posterior distribution of \(t_i \) obtained after individual calibration (See section 2.1.3.2) or \(\hat{s}^2_i = \text{Var}(t_i|t_{i,A}, t_{i,B}) \) the variance estimated out of a typo-chronological reference (See section 2.1.3.5).

2.1.3 Likelihood

2.1.3.1 Observations

In ChronoModel, these different types of measurement may be combined in order to estimate the date of the event of interest. The measurement may represent:

- a \(^{14}C\) age in radiocarbon
- a paleodose measurement in luminescence
- an inclination, a declination or an intensity of the geomagnetic field in archaeomagnetism
- a typo-chronological reference (for instance, an interval of ceramic dates)
- a Gaussian measurement with known variance

If needed, these measurements, \(M_i \), may be converted by ChronoModel into calendar dates using appropriate calibration curves.

2.1.3.2 Individual calibration

Most measurements have to be calibrated into calendar dates. This is the case of radiocarbon, archaeomagnetism, paleodose or even Gaussian ages. ChronoModel may convert these measurements into calendar dates using an appropriate calibration curve. If the observation about \(t_i \) comes from only one measurement that needs to be calibrated, then the DAG presented in Figure 2.2 applies.
Figure 2.2 – DAG representation of an individual calibration, that is the conversion of one measurement into a calendar date.

Directed edges represent stochastic relationships between two variables, blue circles represent model parameters, pink rectangular nodes represent stochastic observed data, pink triangles represent observed and deterministic data.

Let’s use the following notations: \(M_i \) is the measurement made by the laboratory and \(s_{i}^2 \), its variance. In ChronoModel, \(M_i \) is assumed to follow a normal distribution with mean \(\mu_i \), the true age, and with a variance \(s_{i}^2 \), the laboratory error. This may be expressed by the following equation:

\[
M_i = \mu_i + s_i \varepsilon_{i}^{\text{Lab}} \tag{2.5}
\]

where \(\varepsilon_{i}^{\text{Lab}} \sim N(0,1) \).

We assume that \(\mu_i \) follows a normal distribution with mean \(g_i(t_i) \) and variance \(\sigma_{g_i}^2(t_i) \), where \(g_i \) is the function of calibration associated with the type of measurement of \(M_i \).

\[
\mu_i = g_i(t_i) + \sigma_{g_i}(t_i) \varepsilon_{i}^{\text{Cal}} \tag{2.6}
\]

Hence pooling Equations 2.5 and 2.6 together,

\[
M_i = g_i(t_i) + s_i \varepsilon_{i}^{\text{Lab}} + \sigma_{g_i}(t_i) \varepsilon_{i}^{\text{Cal}} = g_i(t_i) + S_i \varepsilon_{i}^{\text{LabCal}} \tag{2.7}
\]

where \(\varepsilon_{i}^{\text{LabCal}} \sim N(0,1) \) and \(S_{i}^2 = s_{i}^2 + \sigma_{g_i}^2(t_i) \).

So, conditionally on \(t_i \), \(M_i \) follows a normal distribution with mean \(g_i(t_i) \) and variance \(S_{i}^2 \).

2.1.3.3 Individual calibration and reservoir effect

This is a special case of radiocarbon dating. If needed, a reservoir effect may be added to a measurement \(M_i \). Hence, the DAG 2.3 applies.
2.1. EVENT MODEL

Figure 2.3 – DAG representation of an individual calibration, that is the conversion of one measurement into a calendar date, including a reservoir effect Δ_i and its error R_i.

Directed edges represent stochastic relationships between two variables, blue circles represent model parameters, pink rectangular nodes represent stochastic observed data, pink triangles represent observed and deterministic data.

2.1.3.4 Calibration from multiple measurements

Let’s say we have K measurements M_k from a unique sample. For example, a sample may have been sent to K different laboratories. All these measurements refer to the same true radiocarbon age μ_i. In that case, the Bayesian model first gathers all information about μ_i before calibrating. Hence, $\forall k = 1, ..., K$,

$$M_k = \mu_i + s_k \epsilon_{Lab_k}^L$$ \hspace{1cm} (2.8)

where $\forall k = 1, ..., K$, $\epsilon_{Lab_k}^L \sim N(0, 1)$ and $\epsilon_{Lab_1}^L, ..., \epsilon_{Lab_K}^L$ are independent.

Now, as described by Ward and Wilson (1978) [6], a pooled mean, \overline{M}, and the variance of the pooled age, \overline{s}^2, may be calculated as follow:

$$\overline{M} = \left(\sum_{k=1}^{K} \frac{M_k}{s_k^2} \right) / \left(\sum_{k=1}^{K} \frac{1}{s_k^2} \right)$$

$$\overline{s}^2 = \frac{1}{\sum_{k=1}^{K} \frac{1}{s_k^2}}$$

Now, as all M_k refer to the same μ_i, we have

$$\overline{M} = \mu_i + \overline{s}^2 \sum_{k=1}^{K} \frac{\epsilon_{Lab_k}^L}{s_k}$$

$$\mu_i = g_i(t_i) + \epsilon_{Cal_i}$$
where $\epsilon_i^{\text{Cal}} \sim N(0, \sigma_{gi}^2(t_i))$ and g_i is the function of calibration. Hence,

$$\overline{M} = g_i(t_i) + \bar{s}^2 \sum_{k=1}^{K} \epsilon_k^{\text{Lab}}/s_k + \epsilon_i^{\text{Cal}} = g_i(t_i) + \epsilon_i^{\text{LabCalMult}}$$

(2.9)

where $\epsilon_i^{\text{LabCalMult}} \sim N(0, S_i^2)$ and $S_i^2 = \bar{s}^2 + \sigma_{gi}^2(t_i)$. So, conditionally on t_i, the calibrated measurement has a normal distribution with mean $g_i(t_i)$ and variance S_i^2. Figure 2.4 represents the corresponding DAG.

Figure 2.4 – DAG representation of a calibration from multiple measurements. Arrows represent stochastic relationships between two variables, blue circles represent model parameters, pink rectangles represent stochastic observed data, pink triangles represent deterministic observed data. Rectangular plates are used to show repeated conditionally independent parameters.

Be aware that the pooled mean \overline{M} is not robust to outliers. However, the test proposed by Ward and Wilson [6] is usually not valid as its requires to combine at least 30 measurements.

2.1.3.5 Typo-chronological reference

Let’s say that a typo-chronological information is a period defined by two calendar dates $t_{i,A}$ and $t_{i,R}$, with the constraint $t_{i,A} < t_{i,R}$.

The distribution of $(t_{i,A}, t_{i,R})$ conditional on t_i is given by the following equation

$$p(t_{i,A}, t_{i,R}|t_i) = \lambda^2 e^{-\lambda(t_{i,R} - t_{i,A})} 1_{t_{i,A} < t_i < t_{i,R}}$$

(2.10)

where λ is a positive constant. Figure 2.5 represents the corresponding DAG.

2.1.4 The wiggle-matching case

This case is specific to radiocarbon dating and dendrochronology. Let’s say that we have n radiocarbon datings referring to the unknown calendar date θ shifted by a
known quantity called δ_i. Then, the stochastic relationship between t_i and θ is given by the following equation:

$$t_i = \theta - \delta_i + \sigma_i \epsilon_i^{CM}$$ \hspace{1cm} (2.11)

where $\epsilon_i^{CM} \sim N(0,1)$ for $i=1$ to n and $\epsilon_1^{CM}, \ldots, \epsilon_n^{CM}$ are independent.

δ_i may either be a deterministic or a stochastic parameter. Then $t_i + \delta_i$ follows a normal distribution with mean θ and variance σ_i^2.

If δ_i is stochastic, then its prior distribution function may have a uniform distribution on $[d_{1i}, d_{2i}]$.

$$p(\delta_i) = \frac{1}{d_{2i} - d_{1i}} 1_{[d_{2i},d_{1i}]}(\delta_i)$$

or a Gaussian distribution with mean $\mu_{\delta,i}$ and variance $\sigma_{\delta,i}^2$.

$$p(\delta_i) = \frac{1}{\sqrt{2\pi}\sigma_{\delta,i}} \exp\left(-\frac{1}{2} \left(\frac{\delta_i - \mu_{\delta,i}}{\sigma_{\delta,i}}\right)^2\right)$$

In that case, the associated DAG is presented in Figure 2.6.
2.1.5 Temporal order constraints

Several events may be linked by a temporal order, such as stratigraphic constraints. Let’s say that three events happened successively in time. Then their true calendar dates are assumed to verify the following relationship:

\[\theta_1 < \theta_2 < \theta_3 \]

Bounds, such as historical dates or so called *Terminus post quem / terminus ante quem* \(^1\), may also be introduced in order to constrain one or several events. Let’s say that the three events are assumed to happen after a special event with true calendar date \(\theta^B\). Then the following relationship holds :

\[\theta^B < \theta_1 < \theta_2 < \theta_3 \]

2.2 Phases

2.2.1 Definition of a phase

A phase is a group of events defined on the basis of objective criteria such as archaeological, geological or environmental criteria. As we do not know how events are distributed in a phase, no model for the phase is computed in ChronoModel. The phase only reflects the group of events included in it.

However, using ChronoModel, we may have information about the beginning, the end and the duration of a phase.

Moreover, we may include prior information about the duration of a phase or about a hiatus between two successive phases.

2.2.2 Beginning, end and duration of a phase

The following information are given for each phase:

The **beginning of a phase**, \(\alpha\), reflects the most ancient event among the \(r\) events included in the phase:

\[\alpha = \min(\theta_{j,j=1...r}) \]

The **end of a phase**, \(\beta\), reflects the most recent event among the \(r\) events included in the phase:

\[\beta = \max(\theta_{j,j=1...r}) \]

\(^1\) Latin for "Limit after / before which"
2.2. PHASES

The duration, τ, is the time between the beginning and the end of a phase:

$$\tau = \beta - \alpha$$

The posterior distribution of all these elements may be approximated by MCMC methods (See section 4 for more details) and statistical results such as the mean, the standard deviation and so on, may be estimated.

2.2.3 Prior information about the duration of a phase

The duration of a phase, τ, may be known from prior information. Let’s say a phase lasted τ years. In ChronoModel, that means that the time elapsed between the earliest event of the phase and the latest event of the phase is at most of τ years. Hence, if there are r events in a phase, $\theta_{j,j=1...r}$, they have to verify the following constraint:

$$\max(\theta_{j,j=1...r}) - \min(\theta_{j,j=1...r}) \leq \tau$$

2.2.4 Prior information about a succession of phases

Succession or stratigraphic constraints between two phases may be included. These constraints of succession, called hiatus, may be of known duration imposing a temporal order between both groups of events.

2.2.4.1 Temporal succession between phases

Let’s say that a phase P, containing r_P events, is constrained to happen before a phase P^*, containing r_{P^*} events. Then, in ChronoModel, this means that all events of phase P are constrained to happen before the events included in phase P^*. The following equations should be verified by all the events included in both phases.

$$\forall i \in [(1, r_P)], \forall j \in [(1, r_{P^*})], \theta_i^P < \theta_j^{P^*}$$

or

$$\max(\theta_{i,i=1...r_P}) < \min(\theta_{j,j=1...r_{P^*}})$$

or

$$\min(\theta_{j,j=1...r_{P^*}}) - \max(\theta_{i,i=1...r_P}) > 0$$
2.2.4.2 Prior information about a hiatus

Prior information about a hiatus may be included in ChronoModel. Let say we have a hiatus of γ years between two phases : a phase P and a phase P^*. In Chronomodel, that means that the time elapsed between events of phase P are and events of phase P^* is at least of γ years. Consequently, all the events of phase P and phase P^* have to verify the following constraint:

$$\min(\theta_{j,j=1...r_{P^*}}) - \max(\theta_{i,i=1...r_P}) \geq \gamma > 0$$
Chapter 3

Use of ChronoModel

3.1 Installation

From the website (www.chronomodel.fr), you may download the software adapted to your computer.

- For MAC. Click on the "MAC Download" button. Then double-click on the package to install the software. Following the wizard window, the software is installed in the Applications directory. Once done, the logo of ChronoModel should be seen in the Applications directory.

- For Windows. Click on the "Windows Download" button. Then double-click on the .EXE to install the software.

- For Linux. The usual way is to install Qt on your computer and compiling yourself the application. Chronomodel is hosted on GitHub.com. You can clone the repository by typing:

```
clone https://github.com/Chronomodel/chronomodel.git
```
3.2 Description of the icons of the main window

The design of ChronoModel is implementing with the following idea: *Information are in the middle of the interface and tools are around.*

This section gives a description of all icons contained in the top of the window. On the left hand side of the main window, three icons help managing projects and two icons help managing modelling actions.

- **New** To create a new project.
- **Open** To open a pre-existing project. ChronoModel projects are saved using the extension file *.CHR*
- **Save** To save the current project.
- **Undo** To undo the last actions.
- **Redo** To redo the last actions.

In the middle of the window, the icons refer to the different steps of the modelling with ChronoModel.

- **Model** To design the model.
- **MCMC** To open the MCMC settings window.
- **Run** To run the bayesian modelling.
- **Results** To show the results of the modelling.
- **Log** To show summaries of the MCMC methods used for this modelling and its results.

Then on the right hand side of the window:
To activate or un-activate the context-sensitive tips seen in yellow bubbles. By default, Help is active.

To reach the user manual on the web site.

To open the ChronoModel website.

3.3 Creating / Opening a project - Defining the study period

After having launched ChronoModel, the following interface appears (See Figure 3.1).

![Figure 3.1 – ChronoModel interface](image)

In order to create a new project, click on ![new](image) on the left hand side of the window. This action opens a new window asking you to name this new project and to save it in a chosen directory.

Once done, a dialog box appears and asks to define the study period (see Figure 3.2). This is actually the first thing to do otherwise no other action will be allowed. The study period is the period under which you assume that the unknown calendar dates...
of the events are likely to be. These pieces of information may be modified by filling the following boxes on the right hand side of the window (See Figure 3.3). The study period should be given in the date format BC/AD\(^1\) as the bayesian modelling is computed in this date format. The "Apply" button will stay red as long as the study period is undefined and become green afterwards.

For the example, let’s use a study period from 0 to 2 000 (BC/AD). Now the interface looks like Figure 3.4, the left hand side part represents the events’ scene and the right hand side part gives different types of information that will be further detailed in the following sections. The Properties tab gives information about events and associated datings. The CSV Data tab allows to import a .CSV file containing informations about datings and to export all datings used in the modelling of the current project. The Phases tab shows the phases’ scene.

\(^1\)Before Christ / Anno Domini
To open a pre-existing project, use the button on the top left of the window and then choose the project. ChronoModel projects are saved with the extension .CHR.

3.4 Creating events, bounds and constraints

3.4.1 Creating a new event

To create a new event, select on the left hand side of the events’ scene (see Figure 3.4). A window will be opened asking you to name that new event. For example, let’s call it "My event 1". A default color is given to this new event but you may wish to change it. Click on the color chosen by default and select a new color from the "Colors" window.

After validation, the event appears in the events’ scene (See Figure 3.5). Now, when the event is selected in the event’s scene, that is when the event is circled by a red line, the event’s properties may be seen on the right hand side of the window, using the tab. From there, the name, the color and the MCMC method associated with this event might be changed (See Section 4 for more details on MCMC methods).

3.4.2 Including measurements

An event may be associated with data information such as measurements or typo-chronological references. There are two ways to insert data with ChronoModel:

Using the tab
CHAPTER 3. USE OF CHRONOMODEL

Figure 3.5 – Chronomodel window showing the new event in the events’ scene

Select the event in which you want to add a measurement. An event is selected if it is surrounded by a red line. Then select a measurement type by clicking on one measurement icon on the right hand side of the Properties tab and include information measurement by measurement. Details are given for each type of measurement in the followings.

Using the CSV tab
Click on "Load CSV file ..." to include information from a CSV file. However, the CSV file has to be organised according to the type of measurements included (more details are given in the followings). Then, you may drag a selected line to the corre-

Figure 3.6 – Inclusion of information dragged from a CSV file
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

sponding event.

Be aware that by default ChronoModel reads a CSV file using a coma as cell separator and a dot as a decimal separator. In the Application Settings presented in Figure 3.7, these options may be changed.

![Application Settings](image)

Figure 3.7 – Application settings

3.4.2.1 Radiocarbon dating (14C)

Clicking on ![14C](image), the radiocarbon extension window will be opened (See Figure 3.8). Within this window, you can insert the reference name of the measurement, the age value given by the laboratory ("Age"), its associated standard error ("Error"), the reservoir effect \(\Delta R \) with its associated standard error \(\Delta R Error \) (data base: http://radiocarbon.pa.qub.ac.uk/marine/).

Reference curves

In ChronoModel, several calibration curves are already implemented. These curves are listed in Table 3.1. When adding a radiocarbon dating, you may select one of these reference curves using the drop-down menu. Other curves may be included in ChronoModel from the Application settings. Figure
CHAPTER 3. USE OF CHRONOMODEL

Figure 3.8 – The radiocarbon measurement extension window with advanced options

3.9 shows the window from which it is possible to add a new reference curve.

Figure 3.9 – Application settings - Reference curves for C14 datations
Advanced options

You may want to include a wiggle matching or you may want to change the MCMC method used to sample out of the posterior distribution of the calibrated date associated with that dating (See 4 section for more details). To do that, click on the "Advanced" menu from the same window (See Figure 3.8).

The default MCMC method used for radiocarbon datings is the Metropolis Hastings algorithm using a distribution that mimics the individual calibration density as a proposal. Two other proposals may also be selected, the prior distribution and a Gaussian adaptive random walk (See Section 4 for more details on MCMC methods).

The wiggle matching may be fixed or included within a range of values or even have a Gaussian distribution defined by its mean value and its standard error. By default, the wiggle matching is set to 0.

Once the measurement is validated, its details appear in the Properties tab as shown in Figure 3.10 and might be changed by double-clicking on its name from the list of measurements.

Combining radiocarbon datings

Several radiocarbon measurements referring to a unique sample may be "combined". These radiocarbon measurements should have the same reference curve for the calibration and the same MCMC method. To "combine" several measurements, select the associated event in the events’ scene, then select the Properties tab. Now select all measurements to be combined from the list of measurements and click on the "Combine" button at the bottom of the window (See section 2.1.3.4 for more details on the combine function). Now a unique measurement appears marked by . Click on

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uwsy98</td>
<td>Stuiver et al. 1998 [7]</td>
</tr>
<tr>
<td>IntCal04</td>
<td>Reimer et al. 2004 [8]</td>
</tr>
<tr>
<td>Marine04</td>
<td>Hughen et al. 2004 [9]</td>
</tr>
<tr>
<td>ShCal04</td>
<td>McCormac et al. 2004 [10]</td>
</tr>
<tr>
<td>IntCal13</td>
<td>Reimer et al. 2013 [12]</td>
</tr>
<tr>
<td>Marine13</td>
<td>Reimer et al. 2013 [12]</td>
</tr>
<tr>
<td>ShCal13</td>
<td>McCormac et al. 2013 [13]</td>
</tr>
</tbody>
</table>

Table 3.1 – Reference curves for C14 datations implemented in ChronoModel
to split the measurements.
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

3.4.2.2 Archeomagnetism dating (AM)

Click on to open the extension window associated with archeomagnetism datings, as displayed in Figure 3.11. Within this window, you can insert the reference name of the measurement, you can choose the magnetic parameter (inclination, declination or intensity) and insert values, you can also choose the reference curve for the calibration process.

![Figure 3.11 – The archeomagnetism extension window with advanced options](image)

- If you choose Inclination: enter its value and its alpha 95 value. The associated error is then calculated by
 \[
 \frac{\alpha_{95}}{2.448}
 \]

- If you choose Declination: enter its value, the value of the Inclination associated and its associated alpha 95 value. The associated error on the declination is calculated by
 \[
 \frac{\alpha_{95}}{\cos(\text{Inclination}) \times 2.448}
 \]

- If you choose Intensity: enter its value and its Error.

Reference curves
Several reference curves are implemented in ChronoModel. They are listed in Table 3.2. Other curves may be included in ChronoModel from Application settings. See Figure 3.9 that shows the windows allowing to add a new reference cur
CHAPTER 3. USE OF CHRONOMODEL

<table>
<thead>
<tr>
<th>Name</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gal2002Sph2014_D</td>
<td>Hervé et al. [14, 15]</td>
</tr>
<tr>
<td>Gal2002Sph2014_I</td>
<td>Hervé et al. [14, 15]</td>
</tr>
<tr>
<td>Gws2003uni_F</td>
<td>Hervé et al. [14, 15]</td>
</tr>
<tr>
<td>Bulgaria_D</td>
<td>Kovacheva et al. [16]</td>
</tr>
<tr>
<td>Bulgaria_I</td>
<td>Kovacheva et al. [16]</td>
</tr>
<tr>
<td>Bulgaria_F</td>
<td>Kovacheva et al. [16]</td>
</tr>
</tbody>
</table>

Table 3.2 – Reference curves implemented in ChronoModel

Advanced options
You may want to change the MCMC method used to sample out of the posterior distribution of the calibrated date associated with that dating (See 4 section for more details on MCMC methods). The default MCMC method used for archeomagnetism datings is the Metropolis Hastings algorithm using a distribution that mimics the individual calibration density as a proposal. Two other proposals may also be selected, the prior distribution and a Gaussian adaptative random walk.

3.4.2.3 Luminescence dating (TL/OSL)

Click on to open the TL/OSL extension window as shown in Figure 3.12. A TL/OSL measurement is defined by its name, its Age, its error and the year of reference.

Reference year
The function of calibration associated is then $g(t) = t_0 - t$, where t_0 is the reference year.

Advanced options
You may want to change the MCMC method used to sample out of the posterior distribution of the calibrated date associated with that dating (See 4 section for more details on MCMC methods). The default MCMC method used for TL/OSL datings is the Metropolis Hastings algorithm using a Gaussian adaptative random walk as a proposal. Two other proposals may also be selected, the prior distribution and a distribution that mimics the individual calibration density.
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

3.4.2.4 Gaussian dating (Gauss)

Click on \(\text{Gauss} \) to open the Gauss extension window as presented in Figure 3.13. A Gaussian dating is defined by its name, its mean and its error. A Gaussian date is assumed to be defined in date format BC/AD.

Reference curve

For Gaussian datings, the calibration process follows a quadratic function \(g(t) = at^2 + bt + c \).

If \(a = c = 0 \) and \(b = 1 \), then \(g(t) = t \) that is the calibration function is the identity function (that is no calibration). This is the default choice corresponding to the option "None".

You may also custom your own calibration curve using the option "Build your equation". The parameters \(a, b, \) and \(c \) may be changed.

Since ChronoModel version 1.3, a third option is implemented. You may load a CSV file containing a different calibration curve. To do that, select the last option "Use custom curve file" and choose a file from the drop-down menu. If your file is not already included in ChronoModel, use the "Application settings" windows to add/delete another file. See Figure 3.9 that shows the windows allowing to add a new reference curve for radiocarbon datings.

Advanced options

You may want to change the MCMC method used to sample out of the posterior distribution of the calibrated date associated with that dating (See 4 section for more details on MCMC methods). The default MCMC method used for Gaussian datings...
is the Metropolis Hastings algorithm using a Gaussian adaptative random walk as a proposal. Two other proposals may also be selected, the prior distribution and a distribution that mimics the individual calibration density.

![Figure 3.13 – The Gaussian measurement extension window with advanced options](image)

3.4.2.5 Typo-chronological reference (Typo Ref.)

Click on ![Typo Ref.](image) to open the Typo-reference extension window (See Figure 3.14). A Typo-reference is defined by its Name, its Lower date and its Upper date, with the constraint that the Lower date is the more ancient date.

Advanced options

You may want to change the MCMC method used to sample out of the posterior distribution of the calibrated date associated with that dating (See 4 section for more details on MCMC methods). The default MCMC method used for typo-chronological reference is the Metropolis Hastings algorithm using a Gaussian adaptative random walk as a proposal. The other proposal that may also be selected is the prior distribution.
3.4. Creating Events, Bounds and Constraints

3.4.2.6 Importing data using a CSV file

Data may also be imported using a CSV file from the Data tab. Any CSV file may be imported by clicking on the Load CSV file button. However, CSV files have to be organised in a specific way depending on the type of measurements (the type of the dating process). Each of the following information should be written in the same row but in a separate cell.

Gaussian measurements:
- **Cell 1**: GAUSS, the type of measurement
- **Cell 2**: Name, the name of the dated sample
- **Cell 3**: Age, the mean of the Gaussian measurement
- **Cell 4**: Error (sd), the standard error of the Gaussian measurement
- **Cell 5**: Ref. curve, one of the following options: "none" (if no calibration is needed) or "equation" (when specifying an equation) or the name of the file containing the reference curve to be used.

Now, if "none" or a CSV file is declared,
- **Cell 6**: any text will be considered as a comment

Now, if "equation" is declared,
- **Cell 6**: a, **Cell 7**: b and **Cell 8**: c

where a, b and c refer to the calibration curve. Indeed, in that case the equation of the calibration curve is the following one:

\[g(t) = a \ast t^2 + b \ast t + c \]

The content of any following cells will be ignored (so these can be used for comments). See Figure 3.15 for an example.
CHAPTER 3. USE OF CHRONOMODEL

Thermoluminescence measurements:
Cell 1: TL/OSL, the type of measurement
Cell 2: Name, the name of the dated sample
Cell 3: Age, the value of the measurement
Cell 4: Error (sd), the standard error of the measurement
Cell 5: Reference year, the year of the dating of the sample
The content of any following cells will be ignored (so these can be used for comments).
See Figure 3.16 for an example.

Radiocarbon measurements:
Cell 1: 14C, the type of measurement
Cell 2: Name, the name of the dated sample
Cell 3: Age, the value of the measurement
Cell 4: Error (sd), the standard error of the measurement
Cell 5: Reference curve, the name of the file containing the reference curve associated with the measurement
Cell 6: Reservoir effect, the value of the reservoir effect if any
Cell 7: Error of the reservoir effect, the value of the error associated, if any
Cell 8: Wiggle matching type if any: "fixed", "range" or "gaussian"
Any other word will be ignored by ChronoModel.
Cell 9: Wiggle matching value, the value if "fixed", the lower value if "range" or the mean value if "gaussian"
Cell 10: Wiggle matching value, the higher value if "range" or the standard error value if "gaussian"
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

The content of any following cells will be ignored (so these can be used for comments). See Figure 3.17 for an example.

![Figure 3.17 – Example of a CSV file containing radiocarbon datings](image)

Archeomagnetism measurements:

- **Cell 1:** AM, the type of measurement
- **Cell 2:** Name, the name of the dated sample
- **Cell 3:** Type, "inclination", "declination" or "intensity"
- **Cell 4:** Inclination value
- **Cell 5:** Declination value
- **Cell 6:** Intensity value
- **Cell 7:** Error (sd) or alpha 95, the degree of alpha 95 associated with the inclination / declination value or the standard error associated with the intensity value
- **Cell 8:** Reference curve, the name of the file containing the reference curve associated with the measurement

The content of any following cells will be ignored (so these can be used for comments). See Figure 3.18 for an example.

![Figure 3.18 – Example of a CSV file containing archeomagnetism datings](image)

Typo-chronological reference:

- **Cell 1:** Typo ref., the type of measurement
- **Cell 2:** Name, the name of the dated sample
- **Cell 3:** Lower date
- **Cell 4:** Upper date

The content of any following cells will be ignored (so these can be used for comments). See Figure 3.19 for an example.
CHAPTER 3. USE OF CHRONOMODEL

Figure 3.19 – Example of a CSV file containing a Typo-chronological reference

Be aware that the cell separator and the decimal separator of CSV files have to be those specified in the Application settings of ChronoModel otherwise the CSV file will not be loaded.

Figure 3.20 displays an example of a CSV file loaded in ChronoModel. This file contains 4 data: 2 radiocarbon measurements, an inclination measurement in archeomagnetism and a Gaussian date. When a data line is selected, the labels of each column is refreshed according to the type of data.

<table>
<thead>
<tr>
<th>Name</th>
<th>Age</th>
<th>Error (s)</th>
<th>Reference time</th>
<th>δR</th>
<th>All Error</th>
<th>Wiggle Type (Fixed</th>
<th>Range</th>
<th>Gaussian</th>
<th>Wiggle value 1</th>
<th>Wiggle value 2</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>14C My radiocarbon date 1</td>
<td>3432.37</td>
<td>13.3934</td>
<td>intcal09.14c</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>ref1</td>
</tr>
<tr>
<td>14C My radiocarbon date 2</td>
<td>3412</td>
<td>50</td>
<td>intcal04.14c</td>
<td>0</td>
<td>0</td>
<td>gaussian</td>
<td>12</td>
<td>2</td>
<td>ref2002iph2014</td>
<td>ref2003iph2014</td>
<td></td>
</tr>
<tr>
<td>AM My AM date 1</td>
<td>inclin</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ref2002iph2014</td>
<td>ref2003iph2014</td>
<td></td>
</tr>
<tr>
<td>CA.55 My Gaussian date 1</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>ref2002iph2014</td>
<td>ref2003iph2014</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3.20 – CSV file loaded in ChronoModel - 14C type

Figure 3.21 – CSV file loaded in ChronoModel - AM type

Now, once the CSV file is loaded, data may be included in an already existing event. To do that, select the data line to be included, click on the associated name and then drag and drop it in the event. Multiple selection may also be done. Click on the type of the first dataline to be included, then press and keep pressing "Ctrl" key (or the equivalent for MAC) while selecting the other datalines. Then click on one of the selected line and drag and drop them all in an event.

You may also drag and drop one or several data lines directly into the events’ scene. ChronoModel will create an event for each dataline. The name of the events will be the name of the dataline included.

If a line appears in green, that means that the data has been attributed to an event. If the line is colored in green, that means that the data has not been attributed due to errors. In this case, ages and errors should be checked and modified before any use in ChronoModel.
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

3.4.2.7 Calibration process

For each measurement, it is possible to see the result from the individual calibration process. First, select the associated event from the events’ scene. Then select the measurement from the tab and click on at the bottom of the window. For instance, Figure 3.22 displays the calibration process of a radiocarbon measurement. Several statistical results according to the distribution of the calibrated date are summaries (See section 5.2.4 for more details on statistics). The level of the HPD regions may be changed from this window.

Unclick to see the events’ scene again.

![Figure 3.22 – Calibration process of a radiocarbon datation](image)

3.4.2.8 Deleting / Restoring a measurement

To delete a measurement from an event, first select the event in the event’s scene by clicking on its name. The event will be selected only if it is surrounded by a red line. Then using the tab, you may select the measurement to be deleted and then click on the icon situated on the right hand side of the window to delete it from this event.
A deleted measurement may be restored in a selected event. Click on the icon at the bottom of the window and choose the measurement to be restored from the list of deleted measurements.

3.4.3 Creating a new bound

To create a new bound in the events’ scene, select on the left hand side of the window. A new window will be opened asking you to name this new bound. For example, let’s call it "My bound 1".

![New Bound Window]

After validation, the bound appears in the events’ scene (See Figure 3.23). Now, when the bound is selected in the event’s scene, the bound’s properties may be seen on the right hand side of the window, in the tab. From there, its name and its color might be changed and values may be added. A bound may either have a fixed value or have a uniform distribution within a range of values. These options may be changed from that window as well.

3.4.4 Deleting / Restoring an event or a bound

An event or a bound may be deleted from the events’ scene first by selecting the event and then by clicking on the icon placed on the left hand side of the events’ scene. An event is deleted with all its measurements.

Any element deleted may be restored by clicking on the icon on the left hand side of the events’ scene. Then the element to be restored may be picked from the new window presenting all deleted elements (bounds or events). See Figure 3.24 An event containing measurements is restored with all its measurements.
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

3.4.5 Creating / Deleting a constraint

From the events’ scene, stratigraphic or succession constraint may be added between any two elements (events and bounds). To create such a constraint, first select the oldest element of the succession. This selected element should now be surrounded by a red line. Now, click and keep clicking on the "Alt" key from your keyboard. A black arrow should now be seen in the events’ scene. Now select the youngest element of the succession. To validate the constraint, you need to click on the name of the second element before releasing the "Alt" key. The arrow should be seen in black heading
from the oldest element to the youngest one.

![Figure 3.25 – Events’ scene showing a constraint between a bound and an event](image)

To delete a constraint, move the mouse over the corresponding black arrow. This arrow should become red and a cross should appear in the middle of the arrow. You may now click on the cross, to begin the deleting process. A confirmation box should appear to validate the deleting action.

![Figure 3.26 – Events’ scene showing a constraint ready to be deleted](image)

![Figure 3.27 – Confirmation box to delete a constraint](image)

3.4.6 Using the grid

By default, the events’ scene is white. A grid may be added using the [grid] icon situated on the left hand side of the window.
3.4. CREATING EVENTS, BOUNDS AND CONSTRAINTS

3.4.7 Using the overview

The overview may be useful when many elements are created in the event’s scene. To watch the events scene from an overview use the icon placed on the left hand side of the window.

3.4.8 Exporting the image of the events’ scene

You may also export the image of the events’ scene by clicking on the icon and save it either in PNG format or in Scalable Vector Graphics (SVG) format. In both cases, you will need to name the image and to choose the directory where to save the image (see Figure 3.28). If you choose the PNG format, you will be ask for the image size factor and the number of dots per inch.

![Figure 3.28 – Dialog box used to name the image and to choose the directory where to save the image.](image)

3.4.9 Exporting data from the project

All measurements included in the current project may be exported in a CSV file using from the tab.
CHAPTER 3. USE OF CHRONOMODEL

3.5 Creating phases and constraints between phases

In ChronoModel, the events’ scene and the phases’ scene are separated in order to keep the design of the model comprehensible. Indeed an event may belong to several phases. Moreover, the phases’ scene may be placed side by side with the events’ scene, in order to have a complete look at the design of the model.

The phases’ scene may be seen from the tab placed on the right hand side of the window. See Figure 3.29.

![Figure 3.29 – View of the events’ scene and the phases’ scene](image)

3.5.1 Creating a new phase

To create a phase, click on the icon on the right hand side of the window. This action will open a new dialog box presented in Figure 3.30. This dialog box asks for the name and the color given to the phase and its maximum duration. By default, the duration of the phase is unknown. If prior information about the maximum duration are available, it may be included in the model. See Figure 3.30.
3.5. CREATING PHASES AND CONSTRAINTS BETWEEN PHASES

3.5.2 Modifying / Deleting a phase

To modify a phase, double-click on its name and the dialog box presented in Figure 3.30 will be reopened.

To delete a phase, select the phase to be deleted by clicking on its name and then click on the icon on the left hand side of the window.

3.5.3 Including / Removing events or bounds

Events may be included in a phase. You may select one or several events or bounds from the events’ scene and then click in the white square on the left of the phase’s box. The Figure 3.31 presents the inclusion of a bound in a phase. As a result, the color of the phase appears on the bottom of the event’s (or the bound’s) box, and the name and the color of the event (or the bound) appear at the bottom of the phase’s box.
Several events or bounds may be included in a same phase. An event or a bound may also belong to several phases. Figure 3.32 illustrates these cases. We may see that "My phase 1" contains two elements: "My event 1" and "My bound 1". "My bound 1" belongs to both phases as both colors appear at the bottom of its box, and a cross appears in the white square of each phase’s box.

To remove an element from a phase, first select the element from the events’ scene, then click on the cross associated in the phase from which this element should be remove. Once the element is removed from a phase, its name does not appear any more in the phase’s box and the phase’s color does not appear any longer in the element’s box.

3.5.4 Creating / Deleting a constraint between two phases

A succession constraint may relate two phases. To do that, first select the "oldest" phase. Press and keep pressing the "Alt" key from your keyboard. Then move the arrow up to the "youngest" phase and click on its name. Now, you may release the "Alt" key and a black arrow should be seen between both phases heading from the oldest phase to the youngest one. Figure 3.33 displays an example.

In ChronoModel, a hiatus expresses the minimum time elapsed between two phases. By default, the hiatus between these phases is unknown. However, if prior information about the hiatus are available, it might be included in the model. In order to include prior information about a hiatus, double-click on the constraint (the black arrow) to be modified, and then fill the dialog box shown in Figure 3.34.

To delete a constraint, double-click on it to see the dialog box shown in Figure 3.34.
3.5. **CREATING PHASES AND CONSTRAINTS BETWEEN PHASES**

and click on "Delete constraint".

![Figure 3.34 – Dialog box to modify a hiatus between two phases](image)

3.5.5 **Using the grid**

By default, the phases’ scene is white. A grid may be added using the icon situated on the right hand side of the window.

3.5.6 **Using the overview**

The phases’ scene may also be seen from an overview using the icon situated on the right hand side of the window.

3.5.7 **Exporting the image of the phases’ scene**

The image of the phases’ scene may be saved by clicking on the icon placed on the right hand side of the window. You may save it either in PNG format or in Scalable Vector Graphics (SVG) format. In both cases, you will need to name the image and
to choose the directory where to save the image (see Figure 3.28). If you choose the PNG format, you will be asked for the image size factor and the number of dots per inch.
Chapter 4

Numerical methods

In Bayesian modelling, posterior densities and their marginal densities are of interest. In general, we cannot derive posterior distributions analytically. However, posterior distributions are always known up to proportionality.

Let's define by θ the parameter of interest and by y the data sample. The posterior distribution $p(\theta|y)$, is known up to proportionality, by multiplying the prior and likelihood functions as follow:

$$p(\theta|y) \propto p(\theta)p(y|\theta)$$

We can build up a sample of θ from $p(\theta|y)$ even if we only know $p(\theta|y)$ up to proportionality using simulation methods based on Markov chain Monte Carlo (MCMC).

4.1 Markov chain Monte Carlo

Monte Carlo methods aim at estimating numerical values using repeated random sampling. By the law of large numbers, integrals described by the expected value of some random variable can be approximated by taking the empirical mean of independent samples of the variable. However, independent samples are usually difficult to compute. That is why Markov chains, more easily computed, are usually implemented.

A Markov chain is a sequence of random variables $\theta^{(1)}$, $\theta^{(2)}$, ..., $\theta^{(I)}$, for which, for any t, the distribution of $\theta^{(t)}$ given all previous θ’s depend only on the recent value, $\theta^{(t-1)}$ [17, 18]. Under regularity conditions, when I becomes large, the Markov chain converges to its stationary (or equilibrium) distribution. When a Markov chain has reach its equilibrium (or its stationary state), any sample from the Markov chain is a sample from the stationary distribution.
Now, for any posterior distribution \(p(\theta | y) \), it is possible to build a Markov chain \(\theta^{(1)}, \theta^{(2)}, \ldots, \theta^{(I)} \), whose stationary distribution is the posterior distribution \(p(\theta | y) \). Once the equilibrium state is reached, any sample from the Markov chain may be used to estimate the posterior density, the posterior mean ...

As the sampling is done sequentially, with the distribution of the sampled draws depending on the past value drawn, correlation between successive values is high. To reduce this correlation, it is required to thin the Markov chain and use a subsample to estimate the posterior density distribution.

4.2 Building a Markov chain in multiple dimensions: the Gibbs sampler

A convenient algorithm useful in many multidimensional problems is the Gibbs sampler [17, 18].

Let’s say we want to approximate the joint posterior probability density function, \(p(\theta_1, \theta_2, \ldots, \theta_d | y) \). The algorithm starts with a sample of initial values \((\theta_1^{(0)}, \theta_2^{(0)}, \ldots, \theta_d^{(0)})\) randomly selected. The first step of the algorithm is to update the first value by sampling a candidate value of \(\theta_1^{(1)} \) knowing \(\theta_2^{(0)}, \ldots, \theta_d^{(0)} \) from the full conditional distribution \(p(\theta_1 | \theta_2^{(0)}, \ldots, \theta_d^{(0)}) \). The next step is to find a candidate value \(\theta_2^{(1)} \) knowing \(\theta_1^{(1)}, \theta_3^{(0)}, \ldots, \theta_d^{(0)} \) using the full conditional distribution \(p(\theta_2 | \theta_1^{(1)}, \theta_3^{(0)}, \ldots, \theta_d^{(0)}) \). And so on... Then the \(d^{th} \) step is to find a candidate value for \(\theta_d^{(1)} \) knowing \(\theta_1^{(1)}, \theta_2^{(1)}, \ldots, \theta_{d-1}^{(1)} \). This process is then iteratively repeated.

When the number of iterations, \(I \), becomes large, the distribution of the sample \((\theta_1^{(0)}, \ldots, \theta_d^{(I)})\) becomes extremely close to the marginal posterior distribution of \(\theta_i \). In practical terms, this means that if we can simulate a Markov chain for \(\theta_i \) until it reaches its equilibrium, then any sample from this Markov chain may be used to estimate information about the marginal posterior distribution.

4.3 Drawing from full conditional posterior distributions

Again, full conditional posterior distributions are not always easy to simulate. Algorithms are required to approximate these posterior distributions. In ChronoModel, two main algorithms are implemented, the rejection sampling method (also called
acceptance-rejection) and the Metropolis Hastings algorithm. Both algorithms requires a proposal density function that should be easily sampled from in order to generate new candidate values. For the rejection sampling algorithm, it is common to use, if possible, the prior function or the likelihood as a proposal function. For the Metropolis-Hastings algorithm, a common choice is to use a symmetric density, such as the Gaussian density.

Depending on the type of the parameter, event θ, calibrated date t_i, variance of calibrated date σ_i^2 or bound θ^B, different methods are proposed. These methods are described here in turn.

4.3.1 Full conditional posterior distribution of the event θ

Three different methods can be chosen.

- Rejection sampling with a Gaussian proposal [19]
- Rejection sampling with a Double exponential proposal [19]
- Metropolis-Hastings algorithm with an adaptative Gaussian random walk [20]

The two first methods are exact methods. We recommend to use one of them.

4.3.2 Full conditional posterior distribution of calibrated dates t_i

In this case, three different methods can be chosen.

- Metropolis-Hastings algorithm using a density that mimics the individual calibration density
 This method is adapted for multimodal densities, such as calibrated measures.
- Metropolis-Hastings algorithm using the parameter prior distribution
 This method is recommended when no calibration is needed, namely for TL/OSL, gaussian measurements or typo-chronological references.
- Metropolis-Hastings algorithm using an adaptative Gaussian random walk
 This method is adapted when the density to be approximated is unimodal. The variance of this proposal density is adapted during the process.
4.3.3 Full conditional posterior distribution of the variance of a calibrated date σ_i^2

As the full conditional density is unimodal, the Metropolis Hastings algorithm can be implemented here. The proposal density involved is an adaptative Gaussian random walk [20]. The variance of this proposal density is adapted during the process.

4.3.4 Full conditional posterior distribution of a wiggle matching δ_i

If the δ_i is fixed, no sampling is needed.
If the δ_i has a uniform distribution on $[\delta_m, \delta_M]$ or if it has a Gaussian distribution, then the rejection sampling is used in order to sample out of the full conditional. In both cases, the proposal is a Gaussian distribution.

4.3.5 Full conditional posterior distribution of a bound θ^B

If the bound is fixed, no sampling is needed.
If the bound has a uniform distribution, the full conditional distribution is also a uniform distribution.

4.4 MCMC settings

The Gibbs sampler described above generates a Markov chain for each parameter. These Markov chains are samples of the marginal posterior distribution of each parameter.
Each Markov chain starts with a given starting value, uses a burn-in phase to forget about this starting value, uses an adaptative phase to adapt all random walk variances. Then, and only then, all values of the chains are used to make estimates of the posterior distribution.
The number of iterations desired for each phase may be modified using MCMC settings. Figure 4.1 shows the dialog box containing the MCMC settings. Each of these settings is describe here in turn.

4.4.1 Burn

The **BURN-in period** is used to start the algorithm. As successive values of a Markov chain depend on the last value, a number of iterations are needed to "forget"
4.4. MCMC SETTINGS

the initial value. We recommend to use at least 1,000 iterations.

4.4.2 Adapt

During the ADAPT period, variances of all adaptative Metropolis-Hastings Gaussian random walks are calibrated so that the corresponding acceptance rates are close to 43%. The adaptation period goes on with another batch until the acceptance rate calculated on the last batch is included between 40% and 46% unless the maximum number of batches is reached.

4.4.3 Acquire

In this period, all Markov chains are assumed to have reached their equilibrium distribution. Of course, this has to be checked and the next section provides useful tools that can help controlling whether the equilibrium is actually reached. If so, Markov chains may be sampled and information about conditional posterior distributions may be extracted.

Sampling from these Markov chains need to be carefully made. Indeed, successive value of a Markov chain are not independent. In order to limit the correlation of the sample, we can choose to thin the sample by only keeping equally spaced values.

4.4.4 Thinning

Successive values of Markov chains are not independent. The idea is to sample a large amount of values and then, once equilibrium reached, to keep every \(m \) values. \(m \) should be chosen so that remaining values may be considered as independent.

In order to check the correlation between two successive values of the sample kept from the ACQUIRE period, autocorrelograms may be seen in the ”Autocorrelation
tab" of the Results part. Hence, it is recommended to start with the default thinning interval and to change it if one autocorrelogram is not correct.

4.4.5 Starting values

Each Markov chain starts with a starting value that is randomly selected among all solutions compatible with constraints.
Starting values may be fixed using a seed for each chain.

4.4.6 Number of chains

It is recommended to run several chains in parallel using different starting values when examining a new problem. This may be used to state whether the equilibrium is reached before the end of the ADAPT period.
Chapter 5

Results

After having gone through the running process, the results tab appears. Now, before any interpretations, the Markov chains have to be checked in order to know whether they have reached their equilibrium before the acquire period.

5.1 Checking the Markov chains

When Markov chains are generated, two points have to be verified: the convergence of the chains and the absence of correlation between successive values. If the Markov chain has not reached its equilibrium, values extracted from the chains will give inappropriate estimates of the posterior distribution. If high correlation remains between successive values of the chain, then variance of the posterior distribution will be biased. Here are some tools to detect whether a chain has reached its equilibrium and whether successive values are correlated. We also give indications about what can be done in these unfortunate situations.

By default, results shown correspond to the date density functions. To see results corresponding to individual standard deviations (σ), select "Individual std deviation"
under the "Results options" section. Now, in order to see information about all dates included in an event, click on on the right hand side of the window.

5.1.1 Is the equilibrium reached? Look at the history plots.

Unfortunately, there is no theoretical way to determine how long a burn-in period needs to be. The first thing to do is to observe the history plot of the chains (dates and variances) and to inspect it for signs of convergence. Figure 5.1 displays an example where the Markov chain explored a first state in the neighbourhood of the starting value. Then during the ADAPT period (orange period), the Markov chain finally found its equilibrium state that was very different from the starting state. History plots should have good mixing properties during the ACQUIRE period (green period). They should not show tendencies or constant stages as shown in the example of Figure 5.2.

Figure 5.1 – Illustration of the use of the BURN-in period and the ADAPT period.

Producing parallel Markov chains, all with different starting values, can help deciding whether a chain has reached its equilibrium. When the equilibrium is reached, the posterior distributions estimated by each chain should be similar.
5.1. **CHECKING THE MARKOV CHAINS**

What should be done if equilibrium is not reached? First, the number of iterations of the **BURN period** (red period) should be augmented. A higher number of iterations per batch may also be used. It might also be of help to change the algorithm used to draw values from full conditional posterior distributions (the MCMC method selected for each parameter).

5.1.2 **Correlation between successive values? Look at the autocorrelation functions.**

A Markov chain is a sequence of random variables $\theta^{(1)}, \theta^{(2)}$, ..., for which, for any t, the distribution of $\theta^{(t)}$ given all previous θ’s depend only on the recent value, $\theta^{(t-1)}$ [17, 18]. Hence, a high correlation between two consecutive values is expected. However, correlation will biased the estimations. That is why thinning the Markov chains is required.

To check whether the chain is correlated, observe the autocorrelation plot. The autocorrelation function should have an exponential decrease. Only the first autocorrelation should be high (at lag 0), the remaining correlations should be negligible. Figure 5.3 displays several autocorrelation functions having a good behaviour.

What should be done if correlation is high? By default, the thinning interval from the MCMC settings is 10, that is only one value out of 10 is kept from the Markov chains. This thinning interval should be long enough to reduce the correlation between successive values. If not, it should be increased.

5.1.3 **Look at the acceptance rates.**

The Metropolis Hastings algorithm generates a candidate value from a proposal density. This candidate value is accepted with a probability. An interesting point is the
acceptance rate of these candidate values. This rate gives an idea of the adequation of the MCMC method used. This rate should not be too low or too high. However, there are no theoretical criterion except for adaptative Metropolis Hastings Gaussian random walk.

The theoretical optimal rate for the adaptative Gaussian random walk is 43% [20]. In ChronoModel, this algorithm is used to draw values from the full conditional posterior density of individual variances. But this method may be also choosen for other parameters.

Figure 5.4 displays an example of acceptance rates that are close to 43% (within the interval of 40% and 46%). Acceptance rates of each adaptative Gaussian random walk should be checked.

Be careful, if all batches are used in the adapt period, this might tell that all adaptative Gaussian random walks did not reach the optimal interval. To see that, use the icon on the top of the window. From there in the MCMC part, the number of batches used is stated. Figure 5.5 displays an example where only 18 batches out of 100 were used. That means that all adaptative Gaussian random walks reached the
5.2. MARGINAL POSTERIOR DENSITIES

optimal interval within these 13 batches.

What should be done if the acceptance rates are not close to 43%? From the MCMC settings, ask for a longer number of iterations per batch.

5.2 Marginal posterior densities

If all Markov chains have reached their equilibrium and are not autocorrelated, then the statistical results may be interpreted. These results are estimated using the values of the Markov chains drawn during the Acquire period. By default, results are estimated using values from the concatenation of all chains when several chains were requested.

5.2.1 Estimations

5.2.1.1 Marginal posterior density

When a sample is obtained, let say $X_1, ..., X_n$, the posterior density f is estimated using a Gaussian kernel:

$$\hat{f}_n(x) = \frac{1}{nh_n} \sum_{i=1}^{n} K\left(\frac{X_i - x}{h_n}\right)$$

where n is the sample size and K the gaussian density with mean 0 and variance 1. The value of h_n, called the bandwidth, is defined by the Silverman criterion:

$$h_n = \text{bandwidth const.} \times s \times n^{-1/5}$$
For Gaussian data, the above equation is optimal when the bandwidth const. = 1.06 [21]. That is why the default value is 1.06, however it may be changed from the Results options (See Figure 5.6).

This estimation is done on a grid with fixed stepsize. The number of points in this grid is optimal if diatonic. By default, it has 1024 points (10^{10}). This number of points is called Grid length and may be decreased or increased from the Results options (See Figure 5.6).

![Figure 5.6 – Results options](image)

5.2.1.2 Credibility interval (CI)

Once the Markov chain of the parameter of interest is obtained, the credibility interval is constructed using the empirical quantile function. In ChronoModel, a $100(1 - \alpha)\%$ credibility interval is the shortest interval, defined by two empirical quantile function values, out of which $\alpha\%$ of the Markov chain remains. Figure 5.7 shows an example of a confidence interval.
5.2. MARGINAL POSTERIOR DENSITIES

5.2.1.3 Highest posterior density (HPD) region

In ChronoModel, highest posterior density regions are estimated by

\[J = \{ x \in \text{Grid} | \hat{f}_n(x) \geq k \} \]

The value of \(k \) is chosen so that

\[\delta \sum_{x \in J} \hat{f}_n(x) \]

where \(\delta \) is the grid stepsize.

However, a better estimation would be the one developed by Samworth and Wand [22].

Figure 5.8 shows an example of a HPD region.

Figure 5.7 – Example of confidence interval (the region in red)

Figure 5.8 – Example of a HPD region (the region in red)
5.2.2 Date format

Results may be seen in different date formats. This might be changed from the "Application Settings" of ChronoModel.

- BC/AD: Before Christ / Anno domini
- Age cal. BP: Ages calibrated before present. Corresponds to 1950 - t in BC/AD
- Date cal. BP: Ages calibrated before present. Corresponds to t in BC/AD - 1950

5.2.3 Graphical results

When the model does not include phases, by default, only marginal posterior distributions of events or bounds are shown. To see marginal posterior distributions of all calendar dates, use the icon on the left hand side of the window. To see marginal posterior distributions of individual standard deviations, click on "individual std deviations" under "Results options".

![Figure 5.9 – Marginal posterior densities of two events](image)

For any parameter (event, dates and individual standard deviations), the marginal posterior density is associated with its HPD region and its credibility interval as shown in Figure 5.9. HPD regions, regions with the highest probability density, are shown under the curves. Credibility intervals (CI) are actually the shortest credible intervals
and are shown above the posterior densities by a thickened line. CI may also be hidden, see options under "Post. distrib. options".

By default, HPD regions and credibility intervals are given at 95%. This might be changed under "Post. distrib. options".

By default, results (statistics and posterior density estimations) are given from the concatenation of all chains, but posterior densities may also be seen for each chain using the "MCMC options" on the right hand side of the window.

Figure 5.10 – Marginal posterior densities of events and dates

Figure 5.10 displays the posterior densities of event "My event 1" and of both dates included in it. Only one chain is used. On this picture, the grey curves represent densities of the calibration dates, blue curves represent the marginal posterior densities.

Figure 5.11 – Marginal posterior densities of individual standard deviations
CHAPTER 5. RESULTS

Figure 5.11 shows the posterior densities of individual standard deviations corresponding to the dates. An event is not associated with a standard deviation, however standard deviations from all calendar dates included in the event are overlaid for comparison. Now, to see each individual standard deviation alone, use the icon.

Figure 5.12 – Marginal posterior densities of the beginning and the end of a phase

When a phase is modelled, then the marginal posterior densities of the beginning (dotted line) and the end (dashed line) of the phase are displayed on the same graphic, as presented in Figure 5.12. Posterior densities are marginal densities. These densities should be interpreted parameter by parameter.

To see posterior densities of all the events included in the phase, click on the icon. To see posterior densities of all the dates included in the events, click on "Unfold data under event", from "Results options".

The density of the duration of the phase may also be seen by clicking on "Show duration" on the left hand side of the window in the part corresponding to the associated phase.

5.2.4 Statistical results

ChronoModel gives also a list of statistical results. For each parameter, the following results are given:
• MAP : Maximum a posteriori, the highest mode of the marginal posterior density. The MAP may be used to give an estimation of the posterior date.

• Mean : the mean of the posterior density function. The MEAN may also be used to give an estimation of the posterior date. The mean is usually preferred to MAP or Median as its statistical properties are better than the others.

• Std deviation : the standard deviation of the chain

• Q1 : the numerical value separating the lower 25% of the data from the higher 75%

• Q2 (MEDIAN): the numerical value separating the lower 50% of the data from the higher 50%. The MEDIAN may also be used to give an estimation of the posterior date.

• Q3 : the numerical value separating the lower 75% of the data from the higher 25%

• Crediblity interval : the shortest credible interval.

• HPD region : the region with the highest posterior density. It might be an interval (if the density is unimodal) or a discontinuous set (if the density is multimodal). When the density is unimodal, HPD region and CI should give similar results. However, due to numerical errors, HPD regions may be less precised than CI. Hence we recommand the use of CI when the density is unimodal.

• Acceptation rate : global acceptance rate

Those statistics may be seen under each posterior density function by clicking on the right hand side of the window.

5.3 Savings

Each graph may be saved either individually, using the icon on the left hand side of the window, or globally using the icon but from the right hand side of the window. Different type of formats may be choosen : PNG, JPG, SVG or even BMP for global graphs.

Individual graphs may also be copied and pasted using the clipboard thanks to
Statistics related to each parameter may also be saved thanks to icon on the left hand side of the window.

It is also possible to extract the results from the Markov chains using the icon.

Using icon, on the right hand side of the window, some information may be saved: a summary of the statistical results, and the MCMC sample of the joint distribution in format BC/AD. Only the samples of events and phases parameters (beginning and end) are saved.

Several CSV files are created: a file called "events.csv" containing the MCMC samples of all events, a file called "phases.csv" containing all parameters (beginning and end) of phases if at least one phase is modelled, and a file per phase (if any) containing the MCMC samples of the parameters of the phase and all events included in it.

5.4 Summaries

On the tab, a list of summaries is displayed.
Under "Model description" is a summary of the model structure along with the type of measurement, age, standard deviation, reference curve for the calibration process, MCMC method, stratigraphic constraints, and so on.
Under "MCMC initialization" is the list of initial values used in the MCMC process and for each chain.
Under "Posterior distrib. resuls" are all statistical results according to all posterior distributions.
Chapter 6

Examples
6.1 Radiocarbon datings in Sennefer’s tomb (Egypt)

For this illustrative example, we use data published in the article of Anita Quiles [23] regarding Sennefer’s tomb. Several bouquets of flowers were found in Sennefer’s tomb at Deir el-Medineh. As they were found at the entrance of the tomb, they were assumed to date the same archeological event: one of the three phases of the burial of Sennefer. Samples were extracted from different short-lived plants (leaves, twigs, etc) on each bouquet in order to ensure the consistency of the dates. All samples were radiocarbon dated.

The objective of this study is to date Sennefer’s burial using ChronoModel.

6.1.1 Bouquet 1

Let’s say we want to estimate the calendar date of the cut of bouquet 1. 6 samples were extracted from this bouquet and radiocarbon dated (Bouquet1.CSV contains all the datings related to Bouquet 1). The event : cut of bouquet 1 is represented by Figure 6.1.

Each radiocarbon measurement is calibrated using IntCal09 curve. No reservoir offset is taken into account. The study period is chosen to start at -2 000 and end at 0 using a step of 1 year.

For the MCMC method, the method used to generate new values at each step of the Gibbs sampler are the following ones (these are the default settings) : for the event Bouquet 1: rejection sampling using a double exponential proposal, for the distributions of the datings : Metropolis-Hastings algorithm using the posterior distribution of calibrated dates.

We start with 1 000 iterations in the Burn-in period, 1 000 iterations in each of the 100 maximum batches in the Adapt period and 10 000 iterations in the Acquire period using thinning intervals of 1. Only one chain is produced.

Figure 6.2 presents the marginal posterior densities of each date parameter (the event and the calendar dates of the calibrated measurements). In this example, 95% intervals (CI and HPD) are represented. We can see that all calendar dates seem to be contemporary. Numerical values, displayed in Figure 6.4, show that the MAP and the mean values were quite close, as well as HPD et CI intervals. The event is dated with at -1370 (mean value) associated with its 95% HPD interval [-1417; -1314]. Figure 6.3 shows the history plots (or the trace of the Markov chains) of each date parameter. During the acquisition period, all chains seem to have good mixing properties. We may assume that all chains have reach their equilibrium before the acquisition period.
Figure 6.1 – Modelling of Bouquet 1 with ChronoModel

Figure 6.5 presents the autocorrelation functions of each date parameter. We can see that all autocorrelation functions decrease exponentially and fall under the 95% confidence interval after a lag of 30 for calibrated dates and after a lag of 50 for the event. This autocorrelation between successive values may be reduced by increasing the thinning interval at 10 for example. In order to keep 10 000 observations in the acquire period, we ask for 100 000 but only 1 out of 10 values were kept for the analysis. The autocorrelation functions obtained decrease exponentially and fall under the 95% confidence interval after a lag of 6 for each parameter (see Figure 6.6). However, with this new MCMC settings, all other results are similar to those already given.

Now, let’s look at the individual standard deviations results. The marginal posterior densities of each individual standard deviations, presented Figure 6.7, seem to be of similar behaviour, with a mean about 50 and a standard deviation about 48 (numerical values displayed in Figure 6.8). History plots of these individual standard deviations, presented Figure 6.9, seem to have good mixing properties. Hence, the equilibrium is assumed to be reached. Each acceptance rates, presented Figure 6.10, are close to the optimal rate of 43%. And finally, each autocorrelation function, displayed in Figure 6.10, shows an exponential decrease and all values fall under the 95% interval of signification after a lag of 10.

In conclusion, the modelling of Bouquet 1 seems consistent. All individual standard deviations take values close to 50 compared to -1400 for the event. That is to say, standard deviations are rather small compared to the event’s posterior mean. Hence, according to ChronoModel, all datings seem to be contemporary. Now we can
Figure 6.2 – Marginal posterior densities related to the modelling of Bouquet 1. The dark lines correspond to distribution of calibrated dates, the green lines correspond to posterior density functions. Highest posterior density (HPD) intervals are represented by the green shadow area under the green lines. Credibility intervals are represented by thick lines drawn above the green lines.

Figure 6.3 – History plots of date parameters related to the modelling of Bouquet 1
Figure 6.4 – Numerical values of each date parameter related to the modelling of Bouquet 1
Figure 6.5 – Autocorrelation functions related to the modelling of Bouquet 1 (Thinning interval = 1)

Figure 6.6 – Autocorrelation functions related to the modelling of Bouquet 1 (Thinning interval = 10)
draw conclusions about the calendar date of the event. The event Bouquet 1 may be dated at -1370 (mean value) with a 95% interval of [-1417; -1314] (HPD interval).
Figure 6.8 – Numerical values of individual standard deviations related to the modelling of Bouquet 1
6.1. RADIOCARBON DATING IN SENNEFER’S TOMB (EGYPT)

Figure 6.9 – History plots of individual standard deviations related to the modelling of Bouquet 1

Figure 6.10 – Acceptation rates of individual standard deviations related to the modelling of Bouquet 1
Figure 6.11 – Autocorrelation functions of individual standard deviations related to the modelling of Bouquet 1
6.1.2 Bouquet 2

Now, let’s say we want to estimate the calendar date of bouquet 2. 8 samples were extracted from Bouquet 2 and radiocarbon dated. The modelling of this bouquet by ChronoModel is represented by Figure 6.12.

![Figure 6.12 – Modelling of Bouquet 2 with ChronoModel](image)

Each radiocarbon measurement is calibrated using IntCal09 curve. No reservoir offset is taken into account. The study period is chosen to start at -2000 and end at 2000 using a step of 1 year. This study period is chosen so that every distribution of the calibrated date is included in this study period.

The default MCMC methods are used. We use 1 000 iterations in the Burn-in period, 1 000 iterations in each of the 100 maximum batches in the Adapt period and 100 000 iterations in the Acquire period using thinning intervals of 10.

The marginal posterior densities, presented in Figure 6.13, are of two sorts. Although, the first 6 datings seem to be contemporary, the two last ones seem to be some kind of outliers. Indeed their density function takes values about 1600 whereas the other densities take values between -1500 and -1200. All history plots have good mixing properties and autocorrelation functions are correct (results not shown). Looking at individual standard deviations, the marginal posterior densities, displayed Figure 6.15, show three distinct standard deviations. The first 5 samples are associated with a standard deviation density function that takes small values, with mean values about 50. The next sample’s individual standard deviation has a mean posterior density at 100. And the 2 last samples are associated with individual standard deviations with a mean higher than 2 000 (See Figure 6.16 for numerical values). Hence these two last datings give a piece of information that has a reduced importance in the construction
of the posterior density function of the event Bouquet 2. All individual standard deviations have a history plot with good properties, an acceptance rate about 43% or higher and a correct autocorrelation function (results not shown).

As a conclusion, the first 6 samples seem to be contemporary but the two last ones seem to be some kind of outliers. Then the event Bouquet 2 may be dated at -1344 (mean value) with a 95% HPD interval [-1405;-1278].

The example shows that the modelling is robust to outliers. Indeed even if two outliers were included in the analysis, the datation of the event was not affected by them. ChronoModel do not need any particular manipulation of outliers before analysing the datings. Indeed there is no need to withdraw any datation or to use a special treatment to them.

Figure 6.13 – Marginal posterior densities related to the modelling of Bouquet 2
Figure 6.14 – Numerical values related to the modelling of Bouquet 2

<table>
<thead>
<tr>
<th>Event: Bouquet2</th>
<th>Mode: 1391</th>
<th>Mean: 1344</th>
<th>Std deviation: 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1307.73</td>
<td>Q2 (Median): -1346.16</td>
<td>Q3: 1321.81</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1405.1278]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1364.1280]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 100.0% (AR: proposal = Double-Exponential)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA15969</th>
<th>Mode: 1335.07</th>
<th>Mean: 1329</th>
<th>Std deviation: 42</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1250.57</td>
<td>Q2 (Median): -1237.24</td>
<td>Q3: -1302.47</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1404.1248]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1345.1232]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 50.9% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA18761</th>
<th>Mode: 1353.08</th>
<th>Mean: 1107</th>
<th>Std deviation: 58</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1253.98</td>
<td>Q2 (Median): -1210.43</td>
<td>Q3: -1272.46</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1400.1192]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1393.1192]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 37.2% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA14970</th>
<th>Mode: 1353.91</th>
<th>Mean: 1126</th>
<th>Std deviation: 45</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1560.19</td>
<td>Q2 (Median): -1334.55</td>
<td>Q3: -1395.54</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1404.1222]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1364.1243]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 49.3% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA18762</th>
<th>Mode: 1380.57</th>
<th>Mean: 1353</th>
<th>Std deviation: 33</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1380.57</td>
<td>Q2 (Median): -1349.86</td>
<td>Q3: -1327.17</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1345.1296]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1412.1296]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 68.0% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA18775</th>
<th>Mode: 1375.82</th>
<th>Mean: 1348</th>
<th>Std deviation: 36</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1375.82</td>
<td>Q2 (Median): -1347.07</td>
<td>Q3: -1322.72</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1345.1278]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1343.1270]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 63.0% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA18763</th>
<th>Mode: 1435.35</th>
<th>Mean: 1435</th>
<th>Std deviation: 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: -1448.29</td>
<td>Q2 (Median): -1342.50</td>
<td>Q3: -1419.92</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [-1494.1304]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [-1493.1395]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 70.6% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA15972</th>
<th>Mode: 1780.00</th>
<th>Mean: 1780</th>
<th>Std deviation: 83</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: 1733.85</td>
<td>Q2 (Median): 1708.14</td>
<td>Q3: 1840.74</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [1653.1680]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [1665.1545]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 95.3% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data: SacA18764</th>
<th>Mode: 1905.00</th>
<th>Mean: 1905</th>
<th>Std deviation: 68</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1: 1896.88</td>
<td>Q2 (Median): 1906.68</td>
<td>Q3: 1954.43</td>
<td></td>
</tr>
<tr>
<td>HPD Intervals (95%): [1790.1842]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Credibility Interval (95%): [1735.1951]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tau of acceptance global: 97.2% (MH: proposal = distribution of calibrated date)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 6.15 – Marginal posterior densities of individual standard deviations related to the modelling of Bouquet 2
Figure 6.16 – Numerical values of individual standard deviations related to the modelling of Bouquet 2
6.1.3 Modelling of bouquets 1 and 2 simultaneously

Now let’s say we want to date Bouquet 1 and Bouquet 2 simultaneously. See bouquets12.chr.

The study period was chosen to start at -2000 and end at 2000 using a step of 1 year. All other parameters are those used for the modelling of Bouquet 1 and of Bouquet 2.

Three different modellings are compared here. In the first modelling, no further constraints are included (See Figure 6.17). In the two next modellings, two bounds are introduced to constrain the beginning and the end of the burial of Sennefer (See Figure 6.18). Indeed, the burial of Sennefer is assumed to have happened between the accession date of Tutankamun and the accession date of Horemheb (See [23]). These accession dates are considered as bounds in ChronoModel. There are two different ways to introduce a bound. A bound may be fixed (Accession date of Tutankamun -1356 and Accession date of Horemheb -1312) or a bound may have a uniform distribution (Accession date of Tutankamun : uniform on [-1360; -1352], Accession date of Horemheb : uniform on [-1316; -1308]).

Figure 6.19 displays the marginal posterior densities of both bouquets when the modelling does not include bounds. Figure 6.20 displays the marginal posterior densities of both bouquets when the modelling includes bounds, using fixed bounds (figure on the left hand side) and using uniform bounds (figure on the right hand side). From these results, we can see that the introduction of bounds helps restrain the posterior densities and the HPD interval of both events. However, using fixed bounds or bounds having a uniform distribution with a small period (8 years) lead to similar results. Numerical values are presented in Table 6.1.
Figure 6.17 – Modelling of Bouquets 1 and 2 without bounds
Figure 6.18 – Modelling of Bouquets 1 and 2 including bounds
6.1. RADIOCARBON DATINGS IN SENNEFER’S TOMB (EGYPT)

Figure 6.19 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 without bounds

Figure 6.20 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 with bounds (fixed bounds on the left handside figure, with uniform bounds on the right handside figure)
Table 6.1 – Numerical values related to the modellings of Bouquets 1 and 2

<table>
<thead>
<tr>
<th>Modelling of Bouquets 1 and 2</th>
<th>Without bounds</th>
<th>With fixed bounds</th>
<th>With uniform bounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event Bouquet 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1371</td>
<td>-1338</td>
<td>-1338</td>
</tr>
<tr>
<td>HPD region</td>
<td>[-1418; -1315]</td>
<td>[-1357; -1316]</td>
<td>[-1358; -1316]</td>
</tr>
<tr>
<td>Event Bouquet 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>-1344</td>
<td>-1336</td>
<td>-1336</td>
</tr>
<tr>
<td>HPD region</td>
<td>[-1406; -1278]</td>
<td>[-1356; -1313]</td>
<td>[-1357; -1313]</td>
</tr>
</tbody>
</table>
6.1.4 Modelling of the phase including bouquets 1 and 2 - Estimation of the duration of the phase

Let’s say that now we want to estimate the duration of the phase including both bouquets. This phase might be seen as the duration of Sennefer’s burial. Three different modellings are possible and presented here in turn. For all of them, the study period is chosen to start at -2000 and end at 2000 using a step of 1 year. All other parameters are those used for the modelling of Bouquet 1 and of Bouquet 2.

6.1.4.1 Phase without constraints

The modelling of the phase including both bouquets is displayed in Figure 6.21. In this modelling, no further constraints are included. The phase’s duration is kept unknown.

Figure 6.21 – Modelling of the phase including Bouquets 1 and 2 including a phase

Figure 6.22 displays the marginal posterior densities of both events and those of the beginning and the end of the phase. Statistical results regarding Bouquet 1 and Bouquet 2 are unchanged by the introduction of the phase, the results are similar to those presented in the last section when no bounds were introduced (See Table 6.1). In addition, this modelling allows to estimate the mean duration of the phase (35) as well as its credibility interval ([0, 101]).
Figure 6.22 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 including a phase and without bounds. The densities of the minimum and the maximum are drawn in red, the density of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.
6.1.4.2 Phase with bounds

Now, let’s include prior information about the accession dates of Tutankhamun and Horemheb. We include the two fixed bounds as detailed in section 6.1.3. Here two modellings are possible using ChronoModel. Figure 6.23 represents the first modelling in which bounds constrain events. Figure 6.24 represents the second modelling in which bounds are included in separated phases, using one phase for each bound, and stratigraphic constraints are placed between phases. However, these two modellings give similar results. The marginal posterior densities of all parameters are presented in Figure 6.25. The mean duration of the bouquets’ phase is 12 years associated with a credibility interval of [0, 33] that is smaller than the one estimated without bounds.
Figure 6.24 – Second modelling of Bouquets 1 and 2 including a phase and bounds
Figure 6.25 – Marginal posterior densities related to the modelling of Bouquets 1 and 2 including a phase and bounds. The densities of the minimum and the maximum are drawn in red, the density of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.
6.1.4.3 Phase with fixed duration

The phase of Sennefer’s burial is assumed to have happened between the accession date of Tutankamun (-1356) and the accession date of Horemheb (-1312). Hence, the duration of the phase is smaller than 44 years.

In this last modelling, no bounds are included but the maximum duration of the phase is fixed at 44 years, the delay between the accession date of Tutankamun and the accession date of Horemheb.

![Diagram of modelling](image)

Figure 6.26 – Modelling of the phase including Bouquets 1 and 2 having a fixed duration

This modelling leads to the following results:

<table>
<thead>
<tr>
<th>Duration of the phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
</tr>
<tr>
<td>Credibility interval</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Bouquet 1</th>
<th>Bouquet 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>-1364</td>
<td>-1357</td>
</tr>
<tr>
<td>HPD region</td>
<td>[-1408; -1317]</td>
<td>[-1403; -1306]</td>
</tr>
</tbody>
</table>

Table 6.2 – Numerical values related to the phase including Bouquets 1 and 2 and having a fixed duration

In that case, although the duration of the phase is reduced compared to the modelling without bounds, however, the estimation of the calendar dates of bouquet 1 and bouquet 2 are less precise than those estimated with the modelling with bounds.
Figure 6.27 – Marginal posterior densities related to the modelling of the phase including Bouquets 1 and 2 having a fixed duration.. The densities of the minimum and the maximum are drawn in red, the density of Bouquet 1 is drawn in green, the density of Bouquet 2 is drawn in purple.

In fact, the prior information about the maximum duration of a phase gives less information than two constraining bounds.
6.2 Toy scenario

In this example, we present a fictitious archaeological excavation with stratigraphy on several structures. This toy scenario is used to give an idea different modellings that may be designed with ChronoModel. Figure 6.28 shows the stratigraphy of the archaeological field. For all modellings, the study period is -2 000 to 2 000.

Table 6.3 listes all the measurements and the corresponding structures. Each structure will be considered as an event in ChronoModel, and so there are only one radiocarbon specimen for each event.

Figure 6.28 – Field model
<table>
<thead>
<tr>
<th>Structure</th>
<th>Ref. 14C</th>
<th>Value and standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclos</td>
<td>Pr1</td>
<td>2540 ± 50</td>
</tr>
<tr>
<td>Villae</td>
<td>GR5</td>
<td>1850 ± 30</td>
</tr>
<tr>
<td>Atelier</td>
<td>GR4</td>
<td>1735 ± 30</td>
</tr>
<tr>
<td>Forum</td>
<td>GR3</td>
<td>1764 ± 30</td>
</tr>
<tr>
<td>Tepidarium</td>
<td>GR2</td>
<td>1760 ± 30</td>
</tr>
<tr>
<td>Caldarium</td>
<td>GR1</td>
<td>1734 ± 30</td>
</tr>
<tr>
<td>Sepulture 1</td>
<td>M3</td>
<td>1350 ± 35</td>
</tr>
<tr>
<td>Sepulture 2</td>
<td>M4</td>
<td>1390 ± 30</td>
</tr>
<tr>
<td>Sepulture 3</td>
<td>M5</td>
<td>1370 ± 50</td>
</tr>
<tr>
<td>Chapelle</td>
<td>M2</td>
<td>1180 ± 30</td>
</tr>
<tr>
<td>Eglise</td>
<td>M1</td>
<td>950 ± 35</td>
</tr>
</tbody>
</table>

Table 6.3 – Radiocarbon datations
6.2.1 A sequential model without phases

In this first modelling, no phase is used. Each measurement is included in one event and stratigraphic constraints between events are added to the modelling. Figure 6.29 shows the first modelling of this toy scenario by ChronoModel.

Markov chains were checked, convergence was reached before the Acquire period, au-
to correlation functions felt under the 95% confidence interval after a lag of 2 and acceptance rates were all about 43%. Figure 6.30 shows the marginal posterior densities of the events of this sequential model.

![Figure 6.30 – Marginal posterior densities obtained from the sequential model using ChronoModel](image)

6.2.2 Grouping events into phases

Another equivalent way to build the chronology is to introduce phases. In our example, we can see 4 sequences nested in 4 phases. Each phase corresponds to a group of structures. Figure 6.31 displays the design of this second model including phases. For this modelling, constraints between events were only kept within phases. Constraints between events of different phases were replaced by constraints between phases. However, both modellings lead to the same results. This second modelling is also a way to simplify the design of the model limiting the number of constraints between events. Figure 6.32 shows the marginal posterior densities computed with the second modelling. These densities are similar to those obtained from the first modelling. However, now information about phases: the density if the beginning and the end of each phase may also be seen.
Figure 6.31 – Design of the second modelling by ChronoModel: introduction of phases
Figure 6.32 – Marginal posterior densities of all events and phases modelled by the second model
6.2.3 Grouping events into two kinds of phases

Now, keeping the same sequences, we may add new phases corresponding to typo-chronological criteria.

Figure 6.33 – Design of the third modelling by ChronoModel
6.2. **TOY SCENARIO**

Figure 6.34 – Marginal posterior densities of the events - Third modelling

Figure 6.35 – Marginal posterior densities of the beginning and the end of the phases - Third modelling
CHAPTER 6. EXAMPLES
Bibliography

