X-Ray Reflectivity Analysis of SiO2 Nanochannels Filled with Water and Ions: A New Method for the Determination of the Spatial Distribution of Ions Inside Confined Media

F Baum, Diane Rébiscoul, S Tardif, N Tas, Lionel Mercury, F Rieutord

To cite this version:

HAL Id: insu-01440178
https://hal-insu.archives-ouvertes.fr/insu-01440178
Submitted on 19 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
X-Ray Reflectivity analysis of SiO$_2$ nanochannels filled with water and ions: a new method for the determination of the spatial distribution of ions inside confined media

M. Bauma,1, D. Rébiscoua, S. Tardifb, N. Tasc, L. Mercuryd, F Rieutordb

aCEA, ICSM – UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze Cedex, France
bCEA, INAC, Minatec Campus, 38000 Grenoble, France
cTransducers Science and Technology Group, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands
dISTO, UMR 6113 – CNRS/Université d’Orléans, 1A rue de la Férollerie, 45071 Orléans Cedex, France

Abstract

Chemical reactions occurring at the material–aqueous solution interface are controlled by an interfacial layer of a few nm where conceptual models such as the Electrical Double or Triple Layer models can be applied. These models describing the spatial distribution of ions in terms of perpendicular distance from the planar surface and ignoring topography or structure parallel to the surface are not validated in confined media. In order to investigate the critical dimensions of these models, our first approach was to use a model system consisting of two parallel plane surfaces of SiO$_2$ spaced of 5 nm (nanochannels) filled with salt solutions XCl$_2$ ($X = $ Ca$^{2+}$, Mg$^{2+}$, Ba$^{2+}$). These filled nanochannels were characterized using hard X-Ray reflectivity for the determination of electron density profiles perpendicular to the surface. From these results, the surface densities of adsorbed ions at SiO$_2$ surface were calculated and the solution density inside the nanochannels was determined. This method opens new perspectives to a better understanding of water and ion distribution inside nanoconfined media.

© 2017 The Authors. Published by Elsevier B.V.

Keywords: Confined media; adsorption kinetics; X-Ray Reflectivity; Electric Double Layer

1. Introduction

Prediction of material behaviour regarding the interactions with water is interesting for geochemistry and requires the use of modelling. Thermodynamic models and rate laws integrated in computer programs (PHREEQC,
JChess…) used to predict materials dissolution kinetics and phase transformation integrate data obtained from experiments performed in diluted media. Due to the fact that most of the materials in these domains are nanoporous filled of water and ions (clay materials, secondary minerals formed from rocks, alteration layer of glasses…) and the validity of these models and rate laws are still not proven yet, thus, prediction can be defective. The strong interaction between water and the surface in confined media are not considered in such calculations. Furthermore, it is also expected that nanoconfined water molecules are strongly influenced by the presence of ions through sorption processes with the surface. The ion ability to be solvated also modifies the electrostatic interactions in the system. These are really important since they strongly impact the hydrolysis rate of materials. In this context, the first step to adjust these models is the investigation of the Electric Double/Triple Layer models (EDL/ETL), which represents the charge distribution in the proximity of a charged surface in aqueous solution. The well-established concept for description of these adsorbed ions is called Stern layer concept, which combines the former pioneering approaches of Gouy and Chapman. In this case the layers are characterized by a static and a diffusive layer of ions.

Before adjusting the models in confined media having the critical size known to modify the properties of aqueous solution in such media, 3 nm typically, we started to investigate the ion distributions at SiO\(_2\) surface in 5 nm confined media. To reach this goal, we used a SiO\(_2\) model system consisting in two parallel plane surfaces spaced of 5 nm (nanochannels) filled of electrolyte solution XCl\(_2\) (X = Ba, Ca, Mg). To characterize the ion distribution we have used X-ray reflectivity, technique particularly interesting since it allows the determination of electron density profiles perpendicular to the surface. Such method should lead to a better understanding of water characteristics confined in environments less than 5 nm can also help to adjust standard values such as viscosity and surface tension within nanoscale environment.

2. Materials and methods

The model systems used in the following section were elaborated at the Institute of Nanotechnology, Twente, Netherlands, and are described in Figure 1 (b) and (c). Nanochannels were placed in experimental set-up dedicated to the X-ray reflectivity measurement of samples as described in Fig. 1. At both sides of this cube two compartments were screwed providing at the one side, a constant supply of solution and an empty one at the other side. Hard X-ray reflectivity measurements at 27 keV (\(\lambda = 0.4592\) Å) were performed at the ESRF BM32 beamline to limit the absorption of X-rays through sample crossing. Two types of experiments were performed. In the first experiment, the filling kinetics of nanochannels dried at 250°C under vacuum during 2 hours with a BaCl\(_2\) solution at 1 M was investigated in order to determine the time required to reach the equilibrium. In the second experiment, samples were analyzed after their immersion during 24 hours in water and in solutions of CaCl\(_2\) and MgCl\(_2\) first at 0.1 M and then at 1 M. The pH(20°C) of the electrolyte solutions were comprised between 5.2 and 5.7.

From, X-ray reflectivity curves electron density profiles were extracted directly by inverse Fourier transform assuming the symmetry of the profile. The reflectivity curves were plotted in the standard I.q vs. q (q = 4\(\pi\)sin(\(\theta\))/\(\lambda\) with the \(\theta\) incident angle) mode to remove the Fresnel decay with q the wave vector transfer and display large fringes in reciprocal space associated to gaps. These profiles were described using a classical rectangular box model, i.e. the interfacial bonding region having a constant density. The transition between the different layers is described by a standard rough interface model with a Gaussian statistics, i.e. using an error function profile.

![Fig. 1: (a) Patterned sample aligned inside sample holder, (b) structural design of sample, (c) cross section through the material visualizing the nanochannels.](image-url)
3. Results and discussion

3.1 First experiments: Kinetics of filling of the nanochannels with a BaCl$_2$ solution at 1 M

The evolution of the X-ray reflectivity curves as a function of time during the filling of nanochannels with a solution of BaCl$_2$ 1 M is presented in Figure 2 (a). The results show some modifications of the width intensity of the fringes vs time until 18h50 highlighting an evolution of the densities inside the nanochannels and at the SiO$_2$/solution interface. We attest that after 18h50 there is no evolution of the reflectivity signal showing that the equilibrium is reached. The associated electron density profiles presented in Fig.2 (b) present an increase of the density inside the nanochannels with the filling time. After 9h34, the density in the center of the nanochannels is equal to the one of the bulk water and the density at the SiO$_2$ surface exhibits a higher density than in the center. This could be explained by an adsorption process of Ba$^{2+}$ ions after filling with electrolyte solution. After 18h50, the density in the center increases until a density close to the one of a bulk solution at BaCl$_2$ 1M.

![Fig. 2: (a) Reflectivity curves obtained from the kinetics of nanochannels filling with BaCl$_2$ solution at 1 M and (b) the associated electron density profiles.](image)

3.2 Second experiments: Nanochannels filled of CaCl$_2$ and MgCl$_2$

The X-ray reflectivity curves are presented on the Fig.3 (a) show a shift of the fringes at high q characteristic of a modification of the SiO$_2$/solution interface. The density profiles presented in Fig. 3(b) depict an electron density increase at the SiO$_2$ surface of the nanochannels for all solutions.

![Fig. 3: (a) Reflectivity curves obtained from the measurements of nanochannels filled of CaCl$_2$ and MgCl$_2$ solution at 0.1 and then 1 M and (b) the associated electron density profiles.](image)

3.3 Electrolyte solution behaviour inside the nanochannels and determination of ions surface density

Regarding the first experiment, the electrolyte solution behavior inside the nanochannels can be described as follows. First of all, the density inside the nanochannels is close to the bulk water one until the saturation of the Si-
O’ site is reached. Thus, the ion adsorption can probably explain the depletion of the electrolyte solution inside the nanochannels. Afterwards, when the surface sites are saturated, the density of the solution in the center the nanochannels ($\rho_{\text{eleXRRCenter}}$) increases until the density of the bulk electrolyte solution. The rate of the density increase is probably dependent on the ion diffusion coefficients in water (at 25°C $D_{\text{Ba}}=5.4\times10^{-10}$ m².s⁻¹, $D_{\text{Ca}}=5.5\times10^{-10}$ m².s⁻¹, $D_{\text{Mg}}=6.6\times10^{-10}$ m².s⁻¹) and higher than the auto-diffusion coefficient of water (at 25°C $D_{\text{H}_2\text{O}}=2.6\times10^{-9}$ m².s⁻¹). The surface densities of ions have been determined considering a surface negatively charged according to two approaches: (i) a monolayer of adsorbed X^{2+} (Helmoltz model, equation (1)) and (ii) a distribution of X^{2+} (Gibbs concept, integral of the X^{2+} excess at the surface, equation (2)). The results are presented in Table 1.

$$\Gamma_{\text{ads}} = \frac{\rho_{\text{eleXRRCenter}}}{Z_X}$$ \hspace{1cm} (1)

with $\rho_{\text{eleXRRCenter}}$ the electron density at the surface of SiO$_2$ (Fig. 2(b) and (b)), φ_X the ionic diameter ($\varphi_{\text{Ca}^{2+}}=1.44$ Å, $\varphi_{\text{Mg}^{2+}}=2.00$, $\varphi_{\text{Ba}^{2+}}=2.70$ Å and $\varphi_{\text{H}_3\text{O}^+}=2.70$ Å) and Z_X the atomic number of X.

$$\Gamma_{\text{ads}} = \frac{\int_0^l (\rho_{\text{eleXRR}} - \rho_{\text{eleXRRCenter}}) \, dx}{Z_X}$$ \hspace{1cm} (2)

with $\rho_{\text{eleXRRCenter}}$ the electron density in the center of the filled nanochannels (Table 1) and l the distance considered for the X^{2+} distribution at the surface. The results from the equation (1) are about in the same order of magnitude than the one obtained at the equilibrium of the adsorption isotherms in ordered mesoporous silica SBA-15 having a pore size of 4.7 nm. However, these results are ten times higher than the ones obtained from the equation (2).

<table>
<thead>
<tr>
<th>Aqueous solution</th>
<th>ρ_{eleSol} (e.Å⁻³)</th>
<th>$\rho_{\text{eleSample}}$ (e.Å⁻³)</th>
<th>$\rho_{\text{eleXRRCenter}}$ (e.Å⁻³)</th>
<th>$\rho_{\text{eleXRRSurf}}$ (e.Å⁻³)</th>
<th>Γ_{ads} (equation 1) (X²+/nm²)</th>
<th>Γ_{ads} (equation 2) (X²+/nm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>0.334</td>
<td>0.508</td>
<td>0.508</td>
<td>0.508</td>
<td>8.7</td>
<td>8.3</td>
</tr>
<tr>
<td>BaCl$_2$ 1 M</td>
<td>0.378</td>
<td>0.526</td>
<td>0.521</td>
<td>0.533</td>
<td>1.9</td>
<td>0.2</td>
</tr>
<tr>
<td>CaCl$_2$ 0.1 M</td>
<td>0.336</td>
<td>0.509</td>
<td>0.520</td>
<td>0.525</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>CaCl$_2$ 1 M</td>
<td>0.388</td>
<td>0.518</td>
<td>0.520</td>
<td>0.531</td>
<td>3.9</td>
<td>0.3</td>
</tr>
<tr>
<td>MgCl$_2$ 0.1 M</td>
<td>0.336</td>
<td>0.509</td>
<td>0.515</td>
<td>0.526</td>
<td>4.5</td>
<td>0.6</td>
</tr>
<tr>
<td>MgCl$_2$ 1 M</td>
<td>0.355</td>
<td>0.516</td>
<td>0.508</td>
<td>0.524</td>
<td>4.5</td>
<td>0.6</td>
</tr>
</tbody>
</table>

4. Conclusion and outlook

The X-Ray reflectivity measurements of nanochannels filled with electrolyte solution allowed the determination of the electron density profiles inside a confined media. From these profiles the surface density of ions adsorbed at SiO$_2$ surface and the density of the electrolyte inside the nanochannels were determined. Nevertheless, it is necessary to study the effect of the size of the confinement decreasing the size of nanochannels. Thus, the oncoming experiments will be carried out in nanochannels of 2 and 3 nm. We are expecting to determine the electron density profiles and then calculate the potential in a SiO$_2$ confined media in order to investigate the critical dimensions of the EDL-TDL models validity.

References

