H. L. Clever, Helium and Neon -Gas Solubilities. Solubility data Ser. 1979, 1, 393. (2) Clever, H. L. Krypton, Xenon and Radon -Gas-Solubilities. Solubility data Ser, pp.357-367, 1979.

H. L. Clever and . Argon, Solubility data Ser M. The solubility of noble gases in water and in NaCl brine, Geochim. Cosmochim. Acta, vol.80, issue.411, pp.10-1016, 1980.

R. F. Weiss, The solubility of nirogen, oxygen and argon in water and seawater. Deep-Sea Res, pp.721-735, 1970.

R. F. Weiss, Carbon dioxide in water and seawater: the solubility of a non-ideal gas, Marine Chemistry, vol.2, issue.3, pp.203-215, 1974.
DOI : 10.1016/0304-4203(74)90015-2

R. F. Weiss and B. A. Price, Nitrous oxide solubility in water and seawater, Marine Chemistry, vol.8, issue.4, pp.347-35910, 1980.
DOI : 10.1016/0304-4203(80)90024-9

D. A. Wiesenburg and N. L. Guinasso, Equilibrium solubilities of methane, carbon monoxide, and hydrogen in water and sea water, Journal of Chemical & Engineering Data, vol.24, issue.4, pp.356-360, 1979.
DOI : 10.1021/je60083a006

W. Aeschbach-hertig, F. Peeters, U. Beyerle, and R. Kipfer, Interpretation of dissolved atmospheric noble gases in natural waters, Water Resources Research, vol.54, issue.576, pp.2779-2792, 1999.
DOI : 10.1029/1999WR900130

M. Khaska, C. Le-gal-la-salle, and F. Barbecot, Impact of climate changes during the last 5 million years on groundwater in basement aquifers
URL : https://hal.archives-ouvertes.fr/insu-01203447

M. Stute and P. Schlosser, Principles and applications of the noble gas paleothermometer, Geophysical Monograph Series, p.78, 1993.
DOI : 10.1029/GM078p0089

L. N. Plummer, J. R. Eggleston, D. C. Andreasen, J. P. Raffensperger, A. G. Hunt et al., Old groundwater in parts of the upper Patapsco aquifer: Page 21 of 28 ACS Paragon Plus Environment Environmental Science & Technology evidence from radiocarbon, chlorine-36 and helium-4, Atlantic Coastal Plain Hydrogeol. J, vol.2012, issue.137, pp.20-1269

J. L. Michelot, H. Moser, B. Smith, and M. Wolf, The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite, Geochim. Cosmochim. Acta, vol.53, pp.1803-1815, 1989.

P. Méjean, D. L. Pinti, M. Larocque, B. Ghaleb, G. Meyzonnat et al., Processes controlling 234U and 238U isotope fractionation and helium in the groundwater of the St. Lawrence Lowlands, Quebec: The potential role of natural rock fracturing, Applied Geochemistry, vol.66, issue.15, pp.198-209, 2016.
DOI : 10.1016/j.apgeochem.2015.12.015

D. K. Solomon, A. G. Hunt, and R. J. Poreda, Source of radiogenic helium 4 in shallow aquifers: Implications for dating young groundwater, Water Resources Research, vol.16, issue.2, pp.1805-181310, 1996.
DOI : 10.1029/96WR00600

W. Wei, Identification of He sources and estimation of He ages in groundwater of the North China Plain, Applied Geochemistry, vol.63, issue.17, pp.182-189, 2015.
DOI : 10.1016/j.apgeochem.2015.08.010

A. Boisson, P. De-anna, O. Bour, T. Le-borgne, T. Labasque et al., Reaction chain modeling of denitrification reactions during a push???pull test, Journal of Contaminant Hydrology, vol.148, issue.18, pp.1-11, 2013.
DOI : 10.1016/j.jconhyd.2013.02.006

URL : https://hal.archives-ouvertes.fr/insu-00866128

B. W. Abbott, J. B. Jones, S. E. Godsey, J. R. Larouche, and W. Bowden, Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost, Biogeosciences, vol.20155194, issue.1212, pp.3725-374010
URL : https://hal.archives-ouvertes.fr/hal-01231207

R. W. Sheibley, D. J. Sobota, and S. M. Thomas, Nitrous oxide emission from denitrification in stream and river networks, Proc. Natl. Acad. Sci. U.S.A, vol.108, issue.1, pp.214-219, 2011.

J. R. Gardner, T. R. Fisher, T. E. Jordan, and K. L. Knee, Balancing watershed nitrogen budgets: accounting for biogenic gases in streams, Biogeochemistry, vol.1, issue.2, pp.231-253
DOI : 10.1007/s10533-015-0177-1

G. W. Kling, G. W. Kipphut, and M. C. Miller, Arctic Lakes and Streams as Gas Conduits to the Atmosphere: Implications for Tundra Carbon Budgets, Science, vol.251, issue.4991, pp.251-298, 1991.
DOI : 10.1126/science.251.4991.298

L. Mächler, M. S. Brennwald, L. Tyroller, D. M. Livingstone, and R. Kipfer, Conquering the Outdoors with On-site Mass Spectrometry, CHIMIA International Journal for Chemistry, vol.68, issue.3, pp.155-159
DOI : 10.2533/chimia.2014.155

S. Peter, L. Mächler, R. Kipfer, B. Wehrli, and E. Durisch-kaiser, Flood-Controlled Excess-Air Formation Favors Aerobic Respiration and Limits Denitrification Activity in Riparian Groundwater, Frontiers in Environmental Science, vol.230
DOI : 10.1016/S0022-1694(00)00172-4

A. J. Riley and W. K. Dodds, Whole-stream metabolism: strategies for measuring and modeling diel trends of dissolved oxygen, Freshwater Science, vol.32, issue.1, pp.56-6910
DOI : 10.1899/12-058.1

T. E. Reilly and D. R. Leblanc, Experimental Evaluation of Factors Affecting Temporal Variability of Water Samples Obtained from Long-Screened Wells, Ground Water, vol.3, issue.1, pp.566-576, 1998.
DOI : 10.1016/0169-7722(91)90020-2

G. Cowie and D. Lloyd, Membrane inlet ion trap mass spectrometry for the direct measurement of dissolved gases in ecological samples, Journal of Microbiological Methods, vol.35, issue.1, pp.1-12, 1999.
DOI : 10.1016/S0167-7012(98)00090-6

T. Kotiaho, On???site environmental and in situ process analysis by mass spectrometry, Journal of Mass Spectrometry, vol.31, issue.1, pp.31-32, 1996.
DOI : 10.1002/(SICI)1096-9888(199601)31:1<1::AID-JMS295>3.3.CO;2-A

D. Lloyd and R. I. Scott, Direct measurement of dissolved gases in microbiological systems using membrane inlet mass spectrometry, Journal of Microbiological Methods, vol.1, issue.6, pp.313-32810, 1983.
DOI : 10.1016/0167-7012(83)90008-8

N. Takahata, G. Igarashi, and Y. Sano, Continuous monitoring of dissolved gas concentrations in groundwater using a quadrupole mass spectrometer, Applied Geochemistry, vol.12, issue.4, pp.377-382, 1997.
DOI : 10.1016/S0883-2927(97)00007-3

V. T. Virkki, R. A. Ketola, M. Ojala, T. Kotiaho, V. Komppa et al., On-Site Environmental Analysis by Membrane Inlet Mass Spectrometry, Analytical Chemistry, vol.67, issue.8, pp.67-1421, 1995.
DOI : 10.1021/ac00104a019

S. J. Mullock, Development of a portable time-of-flight mebrane inlet mass spectrometer for environmental analysis, Rev. Sci. Instrum, vol.69, issue.565, 1998.

H. F. Hemond, A backpack???portable mass spectrometer for measurement of volatile compounds in the environment, Review of Scientific Instruments, vol.62, issue.6, 1420.
DOI : 10.1063/1.1142461

F. R. Lauritsen, S. Bohatka, and H. Degn, A membrane-inlet tandem mass spectrometer for continuous monitoring of volatile organic compounds, Rapid Communications in Mass Spectrometry, vol.51, issue.10, pp.401-403, 1990.
DOI : 10.1002/rcm.1290041011

R. A. Ketola, T. Kotiaho, M. E. Cisper, and T. M. Allen, Environmental applications of membrane introduction mass spectrometry, Journal of Mass Spectrometry, vol.14, issue.5, pp.457-47610, 2002.
DOI : 10.1002/jms.327

S. An, W. S. Gardner, and T. M. Kana, Simultaneous Measurement of Denitrification and Nitrogen Fixation Using Isotope Pairing with Membrane Inlet Mass Spectrometry Analysis, Applied and Environmental Microbiology, vol.67, issue.3
DOI : 10.1128/AEM.67.3.1171-1178.2001

J. Szadai and G. Szekely, Quadrupole mass spectrometer system for fermentation monitoring, Vacuum, vol.44, issue.93, pp.5-7, 1993.

H. Degn, Membrane inlet mass spectrometry in pure and applied microbiology, Journal of Microbiological Methods, vol.15, issue.3, pp.185-19710, 1992.
DOI : 10.1016/0167-7012(92)90039-7

W. Eschenbach and R. Well, Online measurement of denitrification rates in aquifer samples by an approach coupling an automated sampling and calibration unit to a membrane inlet mass spectrometry system, Rapid Communications in Mass Spectrometry, vol.41, issue.14, p.25, 1993.
DOI : 10.1002/rcm.5066

R. J. Bell, R. T. Short, F. H. Van-amerom, and R. H. Byrne, Calibration of an In Situ Membrane Inlet Mass Spectrometer for Measurements of Dissolved Gases and Volatile Organics in Seawater, Environmental Science & Technology, vol.41, issue.23
DOI : 10.1021/es070905d

R. T. Short, D. D. Fries, M. L. Kerr, C. E. Lembke, S. K. Toler et al., Underwater mass spectrometers for in situ chemical analysis of the hydrosphere, Journal of the American Society for Mass Spectrometry, vol.96, issue.8, pp.676-682, 2001.
DOI : 10.1016/S1044-0305(01)00246-X

P. D. Tortell, Dissolved gas measurements in oceanic waters made by membrane inlet mass spectrometry, Limnology and Oceanography: Methods, vol.3, issue.1, pp.24-37, 2005.
DOI : 10.4319/lom.2005.3.24

L. Mächler, M. S. Brennwald, and R. Kipfer, Membrane Inlet Mass Spectrometer for the Quasi-Continuous On-Site Analysis of Dissolved Gases in Groundwater, Environmental Science & Technology, vol.46, issue.15, pp.8288-829610
DOI : 10.1021/es3004409

A. Visser, M. J. Singleton, D. J. Hillegonds, C. A. Velsko, J. E. Moran et al., A membrane inlet mass spectrometry system for noble gases at natural abundances in gas and water samples, Rapid Communications in Mass Spectrometry, vol.66, issue.21, pp.2472-2482, 2013.
DOI : 10.1002/rcm.6704

R. C. Hamme and S. R. Emerson, Measurement of dissolved neon by isotope dilution using a quadrupole mass spectrometer, Marine Chemistry, vol.91, issue.1-4, pp.53-64, 2004.
DOI : 10.1016/j.marchem.2004.05.001

C. C. Manning, R. H. Stanley, and D. E. Lott, Continuous Measurements of Dissolved Ne, Ar, Kr, and Xe Ratios with a Field-Deployable Gas Equilibration Mass Spectrometer, Analytical Chemistry, vol.88, issue.6, pp.3040-3048
DOI : 10.1021/acs.analchem.5b03102

M. W. Becker and R. J. Charbeneau, First-passage-time transfer functions for groundwater tracer tests conducted in radially convergent flow, Journal of Contaminant Hydrology, vol.40, issue.4, pp.299-310, 2000.
DOI : 10.1016/S0169-7722(99)00061-3

M. W. Becker and A. M. Shapiro, Tracer transport in fractured crystalline rock: Evidence of nondiffusive breakthrough tailing, Water Resources Research, vol.153, issue.11, pp.1677-1686, 2000.
DOI : 10.1029/2000WR900080

P. Kang, T. Le-borgne, M. Dentz, O. Bour, and R. Juanes, Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model, Water Resources Research, vol.110, issue.3
DOI : 10.1029/2003WR002141

URL : https://hal.archives-ouvertes.fr/insu-01119364

S. K. Gupta, L. Stephen-lau, and P. S. Moravcik, Ground-Water Tracing with Injected Helium, Ground Water, vol.52, issue.1, pp.26-28
DOI : 10.1111/j.1745-6584.1994.tb00616.x

S. K. Gupta, P. S. Moravcik, and L. Stephen-lau, Use of injected helium as a hydrological tracer, Hydrological Sciences Journal, vol.55, issue.2, pp.109-11910, 1080.
DOI : 10.1021/je60049a019

W. E. Sanford, R. G. Shropshire, and D. K. Solomon, Dissolved gas tracers in groundwater: Simplified injection, sampling, and analysis, Water Resources Research, vol.31, issue.5, pp.1635-164210, 1996.
DOI : 10.1029/96WR00599

A. Visser, M. J. Singleton, and B. K. Esser, Xenon Tracer Test at Woodland Aquifer Storage and Recovery Well, 2014.
DOI : 10.2172/1162248

URL : http://www.osti.gov/scitech/servlets/purl/1162248

I. M. Laidlaw and P. L. Smart, An Evaluation of Some Fluorescent Dyes for Water Tracing, Water Resour. Res, vol.13, issue.561, pp.15-33, 1977.

E. Magal, N. Weisbrod, A. Yakirevich, and Y. Yechieli, The use of fluorescent dyes as tracers in highly saline groundwater, Journal of Hydrology, vol.358, issue.1-2, pp.124-133, 2008.
DOI : 10.1016/j.jhydrol.2008.05.035

A. Shakas, N. Linde, L. Baron, O. Bochet, O. Bour et al., Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull and single-hole ground penetrating radar experiments, Water Resources Research, vol.73, issue.5, pp.52-938
DOI : 10.1190/1.2957893

URL : https://hal.archives-ouvertes.fr/insu-01263718

M. K. Uddin, J. F. Dowd, and D. B. Wenner, Krypton Tracer Test to Characterize the Recharge of Highly Fractured Aquifer in Lawrenceville, Proc. Georg. Water Resour. Conf, pp.516-519, 1999.

T. Aquilina, L. Vergnaud, V. Hochreutener, R. Barbecot, F. Casile et al., Intercomparison exercises on dissolved gases for groundwater dating -(1) Goals of the exercise and site choice, validation of the sampling strategy, pp.119-125
URL : https://hal.archives-ouvertes.fr/insu-00934494

R. Sugisaki and K. Taki, Simplified analyses of He, Ne, and Ar dissolved in natural waters., GEOCHEMICAL JOURNAL, vol.21, issue.1, pp.23-27, 1987.
DOI : 10.2343/geochemj.21.23

W. Aeschbach-hertig, F. Peeters, U. Beyerle, and R. Kipfer, Palaeotemperature reconstruction from noble gases in ground water taking into account equilibration with entrapped air, Nature, vol.63, issue.6790, pp.405-1040, 2000.

V. Durand, O. Bour, C. Tarits, P. Le-corre, E. Fourre et al., Compartmentalization of physical and chemical properties in hard-rock aquifers deduced from chemical and groundwater age analyses, Appl. Geochem, vol.23, issue.9, pp.2686-2707, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00338893