I. C. Bourg and C. Tournassat, Chapter 6 -Self-diffusion of water and ions in clay barriers, Natural and Engineered Clay C.; Steefel, C. I, vol.424, issue.425

F. Bergaya, I. C. Bourg, G. Sposito, B. A. Manning, S. M. Goldberg et al., Ion exchange phenomena; In Handbook of Soil Science, second 427 edition Adsorption and stability of arsenic(III) at the clay mineral- 429 water interface Evidence for the nucleation and epitaxial growth of Zn 431 phyllosilicate on montmorillonite The use of XAFS to distinguish between inner-and outer- 433 sphere lead adsorption complexes on montmorillonite Modeling specific pH dependent 436 sorption of divalent metals on montmorillonite surfaces. A review of pitfalls, recent 437 achievements and current challenges, Boca Raton Env. Sci. Tech. Geochim. Cosmochim. Acta J. Colloid Interface Sci Am. J. Sci. J, vol.6, issue.439, pp.71-100, 1997.

J. Brendlé, E. Giffaut, J. M. Soler, E. C. Gaucher, and C. Tournassat, Dissolution kinetics 440 of synthetic Na-smectite. An integrated experimental approach. Geochim. Cosmochim. 441 Acta, Steefel, C. I. Kaolinite dissolution and precipitation kinetics at 22 °C and pH 4, pp.5849-5864, 2011.

C. Geochim, E. Tombácz, M. Szekeres, J. A. Davis, R. O. James et al., Surface charge heterogeneity of kaolinite in aqueous 445 suspension in comparison with montmorillonite Surface ionization and complexation at the 447 oxide/water interface: I. Computation of electrical double layer properties in simple 448 electrolytes (14) Solomon, T. The definition and unit of ionic strength, Rosso, K. M. New approach for predicting acidity 452 constants: Combining bond-valence and ab initio methods. Abstracts of Papers of the 453, pp.99-116, 1978.

S. Goldberg, L. J. Criscenti, and N. J. Hoboken, Modeling adsorption of metals and metalloids by soil 455 components; In Biophysico-chemical processes of heavy metals and metalloids in soil 456 environments, P. T, vol.227, issue.459, pp.1203-1203, 2004.

D. A. Sverjensky and N. Sahai, Theoretical prediction of single-site surface-protonation 467 equilibrium constants for oxides and silicates in water, Geochim. Cosmochim. Acta, vol.1, issue.468, pp.291-314, 1996.

I. C. Sposito, G. Bourg, and A. C. , Modeling the acid-base surface chemistry of 470 montmorillonite, Caldwell, W. A. Structural characterization of terrestrial microbial Mn oxides from, pp.297-310, 2007.

C. Geochim, F. Trolard, G. Bourrié, M. Abdelmoula, P. Refait et al., Fougerite, a new mineral 478 of the pyroaurite-iowaite group: description and crystal structure Arsenate adsorption 481 by Mg/Al?NO3 layered double hydroxides with varying the Mg/Al ratio Temperature effect on the acid-base 484 behaviour of Na-montmorillonite Sensitivity of the acid-base properties of clays to the 486 methods of preparation and measurement: 1. Literature review Sensitivity of the acid-base properties of clays to the 489 methods of preparation and measurement: 2. Evidence from continuous potentiometric 490 titrations The titration of clay minerals, Thomas, F.; Gaboriaud, F. Coupled chemical processes at clay/electrolyte 492 interface: A batch titration study of Na-montmorillonites, pp.1967-1981, 2005.

I. Part, Discontinuous backtitration technique combined to CEC measurements, J. Colloid, vol.496

I. Sci-davis, J. A. Kent, D. Sondi, I. Biscan, J. Pravdic et al., Surface complexation modeling in aqueous geochemistry. Rev. 499 Mineral. Geochem Electrokinetics of pure clay minerals revisited. J. 501 Colloid Interface Sci Surface chemistry of kaolinite 503 and Na-montmorillonite in aqueous electrolyte solutions at 25 and 60?greC: 504 Experimental and modeling study (34) Tombácz, E.; Szekeres, M. Colloidal behavior of aqueous montmorillonite suspensions: 506 the specific role of pH in the presence of indifferent electrolytes Proton adsorption and electrokinetics of an argentinean 509 montmorillonite Application of mass titration to the point of zero charge 511 determination The surface chemistry of natural particles, Environ. Sci. Technol. Geochim. Cosmochim. Acta Appl. Clay Sci J. Colloid Interface Sci J. Colloid Interface Sci, vol.273, issue.14937, pp.224-233, 1990.

Y. Kraepiel, A. M. Keller, K. Morel, and F. M. , On the acid-base chemistry of 515 permanently charged minerals, Env. Sci. Tech, vol.32, pp.242-514, 1998.

B. R. Bickmore, K. M. Rosso, K. L. Nagy, R. T. Cygan, and C. J. Tadanier, A mechanistic description of Ni and Zn sorption on Na- 517 montmorillonite. Part I: Titration and sorption measurements Ab initio 520 determination of edge surface structures for dioctahedral 2:1 phyllosilicates: Implications 521 for acid-base reactivity The titration of clay minerals II, J. Contam. Hydrol. Clays Clay Miner, vol.27, issue.51, pp.199-222, 1997.

X. Y. Gu, L. J. Evans, and S. J. Barabash, Russian Federation)(Translation of Radiokhimiya), Modeling the adsorption of Cd(II), Cu(II), Ni(II), pp.527-96, 2009.

S. Korichi, A. Bensmaili, A. Kriaa, N. Hamdi, E. Srasra et al., Sorption of uranium (VI) on homoionic sodium smectite 532 experimental study and surface complexation modeling Acid-base chemistry of montmorillonitic and beidellitic- 535 montmorillonitic smectite Surface chemistry of K-montmorillonite: Ionic 537 strength, temperature dependence and dissolution kinetics Characterization of Lin'an 540 montmorillonite and its application in the removal of Ni2+ from aqueous solutions, Pb(II) and Zn(II) onto montmorillonite. Geochim. Cosmochim. Acta, pp.5718-530, 2007.

L. Forestier, L. Muller, F. Villiéras, F. Pelletier, and M. , Textural and hydration properties 545 of a synthetic montmorillonite compared with a natural Na-exchanged clay analogue, p.546

C. Appl and . Sci, (50) Delhorme, M.; Labbez, C.; Caillet, C.; Thomas, F. Acid-base properties of 2:1 clays. I, pp.18-25, 2010.

X. Liu, J. Cheng, M. Sprik, X. Lu, R. Wang et al., Interfacial structures and acidity of edge 550 surfaces of ferruginous smectites Surface acidity of 2:1-type dioctahedral 552 clay minerals from first principles molecular dynamics simulations. Geochim. 553 Cosmochim Temperature dependence of interfacial 555 structures and acidity of clay edge surfaces Acidity of edge surface 558 sites of montmorillonite and kaolinite, Modeling the role of electrostatics Q. Atomic-scale structures of 560 interfaces between phyllosilicate edges and water, pp.9240-9249, 2010.

X. D. Liu, X. C. Lu, R. C. Wang, E. J. Meijer, H. Q. Zhou et al., Atomic scale 563 structures of interfaces between kaolinite edges and water Absolute acidity of clay edge 566 sites from ab-initio simulations In situ atomic 568 force microscopy study of hectorite and nontronite dissolution: implications for 569 phyllosilicate edge surface structures and dissolution mechanisms The surface Coulomb energy and proton 572 Coulomb potentials of pyrophyllite {010},{110},{100}, and {130} edges. Clays Clay 573 Miner Ab initio study of sorption on pyrophyllite: Structure and acidity of the 575 edge sites Edge structure of montmorillonite from 577 atomistic simulations Molecular dynamics simulations of pyrophyllite edge 579 surfaces: structure, surface energies, and solvent accessibility Analysis and implications of the edge structure of 582 dioctahedral phyllosilicates Existing 588 approaches, new data and model refinements, G. Structure and stability of pyrophyllite edge surfaces: Effect 584 of temperature and water chemical potential Charlet, L. Modelling CEC 587 variations versus structural iron reduction levels in dioctahedral smectites, pp.233-242, 1988.

A. Viani, A. F. Gualtieri, G. Artioli, L. J. Michot, F. Villiéras et al., The nature of disorder in montmorillonite by 594 simulation of X-ray powder patterns10 -Surface Area and Porosity; In Handbook of 596 Clay Science Surface area and layer charge of smectite from CEC and 599 EGME/H 2 O-retention measurements Modelling approaches for anion-exclusion in compacted 601, Molecular dynamics simulations of cesium adsorption on illite nanoparticles. J. Colloid 592 Interface Sci. 2016, submitted, pp.593-67, 2002.

A. Na-bentonite-cadene, S. Durand-vidal, P. Turq, and J. Brendle, Study of individual Na- 603 montmorillonite particles size, morphology, and apparent charge, Geochim. Cosmochim. Acta J. Colloid Interface, vol.75, pp.3698-3710, 2011.

S. Nadeau and P. H. , The physical dimensions of fundamental clay particles. Clay Miner, pp.719-730, 1985.

A. Neaman, F. Villiéras, D. Bosbach, L. Charlet, M. X. Reinholdt et al., Nanomorphology of 608 montmorillonite particles: Estimation of the clay edge sorption site density by low- 609 pressure gas adsorption and AFM observations Morphological properties of 612 vermiculite particles in size-selected fractions obtained by sonication A mechanistic description of Ni and Zn sorption on Na- 615 montmorillonite. Part II: modeling, Am. Mineral. Appl. Clay Sci. J. Contam. Hydrol. C, vol.88, issue.2776, pp.610-628, 1989.

G. Eu-montavon, E. Alhajji, B. Grambow, E. Tertre, C. Beaucaire et al., Th, Zr, and U(VI) on MX80 bentonite: an 618 experimental approach to assess model uncertainty Study of the interaction of Ni 2+ and Cs + on MX- 620 80 bentonite; Effect of compaction using the " capillary method Modelling Zn(II) sorption onto clayey 623 sediments using a multi-site ion-exchange model Reactivity of bentonite. An additive model 625 applied to uranyl sorption; In Surface complexation modelling, Am(III), Cm, Ac(III), Tc(IV)80) Avena, M. J. Acid-base behavior of clay surfaces in aqueous media. Encyclopedia of 628 surface and colloid science Mariscal, M. M.; De Pauli, C. P. Proton binding at clay surfaces in water, pp.627-636, 2002.

. C. Appl, F. Sci-barbier, G. Duc, M. Petit-ramel, L. Charlet et al., Adsorption of lead and cadmium ions from 632 aqueous solution to the montmorillonite Cation adsorption on 635 oxides and clays: the aluminum case Aquatic Science Surface complexation modeling of 637 the sorption of Zn(II) by montmorillonite. Colloid. Surface. A Use of spectroscopic 639 techniques for uranium(VI)/montmorillonite interaction modeling Description of titration curves of mixed materials with 642 variable and permanent surface charge by amathematical model. 1. Theory. 2. 643 Application to mixtures of lepidocrocite and montmorillonite Nickel sorption to goethite 646 and montmorillonite in presence of citrate, Modeling of H + and Cu 2+ adsorption on calcium- 648 montmorillonite. Clays Clay Miner Csanaki, C. Surface charge heterogeneity and 650 aggregation of clay lamellae in aqueous suspensions Progress in Colloid and Polymer 651, pp.3-9, 1988.

Y. Albinson, O. Karnland, E. Wieland, P. Wersin, L. Charlet et al., The 654 acid/base chemistry of montmorillonite Edge complexation reactions of cadmium on specimen and 656 soil-derived smectite The electrical double layer of a disked-shaped clay mineral 658 particle: effect of electrolyte properties and surface charge density, Radiochim. Acta Soil Sci. Soc. Am. J. J. Colloid Interface, vol.6667, issue.65792, pp.157-162, 1994.

S. Chang, F. R. Sposito, G. Secor, R. B. Radke, C. J. Henderson et al., Spillover of the diffuse double layer on montmorillonite 663 particles Insights from theory and simulation on the electrical double 665 layer Ion adsorption 667 and diffusion in smectite: molecular, pore, and continuum scale views. Geochim. 668 Cosmochim Description of input and examples for PHREEQC 670 Version 3? a computer program for speciation,batch-reaction, one-dimensional 671 transport, and inverse geochemical calculations; U.S. Geological Survey Techniques 672 and Methods, book 6, chap. A43, 497 p., available at http://pubs.usgs.gov/tm/06 674 (98) Méring, J. On the hydration of montmorillonite. Transaction of Faraday Society (99) Norrish, K. The swelling of montmorillonite 679 Microstructural and swelling properties of Ca and Na montmorillonite:(in situ) 680 observations with cryo-TEM and SAXS (101) Sposito, G. The diffuse-ion swarm near smectite particles suspended in 1:1 electrolyte 682 solutions: modified Gouy-Chapman theory and quasicrystal formation; In Clay water 683 interface and its rheological implications Predicting the acidity constant of a goethite hydroxyl group 686 from first principles Elucidating the bimodal acid-base behavior of 688 the water-silica interface from first principles, Clay 684 minerals society Cation exchange capacity and condition of zero 694 charge of hydroxy-A1 montmorillonite. Clays Clay Miner, pp.555-564, 1946.

J. Delon, Layer charge and electrophoretic mobility of smectites, Colloid. Surface. A, vol.697, issue.159, pp.351-358, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00345882

T. Hiemstra, W. H. Van-riemsdijk, D. A. Kulik, P. Fletcher, and G. Sposito, On the relationship between charge distribution, surface hydration, and the structure of the interface of metal hydroxides, Drits, V. A. The distribution of octahedral cations in the 2:1 layers of 708 dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner, pp.1-18, 1984.
DOI : 10.1016/j.jcis.2006.05.008