Skip to Main content Skip to Navigation
New interface
Journal articles

Earth's dynamo limit of predictability controlled by magnetic dissipation

Abstract : To constrain the forecast horizon of geomagnetic data assimilation, it is of interest to quantify the range of predictability of the geodynamo. Following earlier work in the field of dynamic meteorology, we investigate the sensitivity of numerical dynamos to various perturbations applied to the magnetic, velocity and temperature fields. These perturbations result in some errors, which affect all fields in the same relative way, and grow at the same exponential rate λ = τ −1 e , independent of the type and the amplitude of perturbation. Errors produced by the limited resolution of numerical dynamos are also shown to produce a similar amplification, with the same exponential rate. Exploring various possible scaling laws, we demonstrate that the growth rate is mainly proportional to an advection timescale. To better understand the mechanism responsible for the error amplification, we next compare these growth rates with two other dynamo outputs which display a similar dependence on advection: the inverse τ −1 SV of the secular-variation timescale, characterizing the secular variation of the observable field produced by these dynamos; and the inverse (τ mag diss) −1 of the magnetic dissipation time, characterizing the rate at which magnetic energy is produced to compensate for Ohmic dissipation in these dynamos. The possible role of viscous dissipation is also discussed via the inverse (τ kin diss) −1 of the analogous viscous dissipation time, characterizing the rate at which kinetic energy is produced to compensate for viscous dissipation. We conclude that τ e tends to equate τ mag diss for dynamos operating in a turbulent regime with low enough Ekman number, and such that τ mag diss < τ kin diss. As these conditions are met in the Earth's outer core, we suggest that τ e is controlled by magnetic dissipation, leading to a value τ e = τ mag diss ≈ 30 yr. We finally discuss the consequences of our results for the practical limit of predictability of the geodynamo.
Document type :
Journal articles
Complete list of metadata

Cited literature [40 references]  Display  Hide  Download
Contributor : Eva Fareau Connect in order to contact the contributor
Submitted on : Tuesday, December 6, 2016 - 2:45:00 PM
Last modification on : Friday, October 21, 2022 - 3:32:40 PM
Long-term archiving on: : Thursday, March 23, 2017 - 1:02:35 AM


Geophys. J. Int.-2011-Lhuillie...
Publisher files allowed on an open archive




Florian Lhuillier, Julien Aubert, Gauthier Hulot. Earth's dynamo limit of predictability controlled by magnetic dissipation. Geophysical Journal International, 2011, 186 (2), pp.492-508. ⟨10.1111/j.1365-246X.2011.05081.x⟩. ⟨insu-01410155⟩



Record views


Files downloads