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S U M M A R Y
We introduce and apply the concept of 2-D probability uniformization to palaeomagnetic direc-
tional data. 2-D uniformization belongs to a very general class of probability transformations
that map multivariate probability distributions into multivariate uniform distributions. Our goal
is to produce joint tests of directional data sets assumed generated by a common statistical
model, but with different sampling distributions. This situation is encountered when testing
so-called Giant Gaussian Process (GGP) models of the Earth�s magnetic �eld against palaeo-
magnetic directional data collected from different geographical sites, the predicted sampling
distributions being site-dependent. To introduce the concept, we �rst consider 2-D Gaussian
distributions in the plane R2, before turning to Angular Gaussian and more general 2-D dis-
tributions on the unit sphere S2. We detail the approach when applied to the 2-D distributions
expected for palaeomagnetic directional data, if these are to be consistent with a GGP model
while affected by some Fisherian error. We �nally provide some example applications to real
palaeomagnetic data. In particular, we show how subtle inhomogeneities in the distribution
of the data, such as the so-called right-handed effect in palaeomagnetism, can be detected.
This effect, whether of geomagnetic origin or not, affects the Brunhes data in such a way that
they cannot easily be reconciled with GGP models originally built with the help of these data.
2-D probability uniformization is a powerful tool which, we argue, could be used to build and
test better GGP models of the mean palaeomagnetic �eld and palaeosecular variation. The
software designed in the course of this study is available upon request from the authors. It can
also be downloaded from http://geomag.ipgp.fr/download/PSVT.tgz.

Key words: Spatial analysis; Probability distributions; Magnetic �eld; Palaeomagnetic
secular variation.

1 I N T RO D U C T I O N

It is a well-known fact that the main geomagnetic �eld exhibits
a wide range of temporal variations and, at a particular time, de-
pends continuously on spatial coordinates (see Hulot et al. 2010,
for a recent review). Accurately reconstructing the spatiotemporal
behaviour of this �eld requires that observations are regularly be-
ing made all over the globe. Such good spatiotemporal coverage
can now be achieved thanks to satellites (e.g. Olsen et al. 2010),
which nicely complement the ground-based network of observato-
ries (e.g. Matzka et al. 2010). These, together with historical data,
already provided enough data to reconstruct much of the Earth�s
magnetic �eld behaviour over the past few centuries (e.g. Jackson
et al. 2000). Reconstructing the large scales of the �eld over the
past few millennia is also possible, thanks to archeomagnetic data
(e.g. Donadini et al. 2010), but going further back in time requires
the use of palaeomagnetic data, that is, of palaeomagnetic �eld

estimates reconstructed from rocks magnetized in the palaeo�eld.
Unfortunately, age control of these rocks rarely ensures that data
collected at various locations at the Earth�s surface are synchronous
enough (compared to the typical timescales involved in the �eld
evolution, see, e.g. Lhuillier et al. 2011) that spatiotemporal recon-
struction of the palaeomagnetic �eld remains possible. Important
statistical properties of the palaeomagnetic �eld can nevertheless be
recovered at the level of single sites (e.g. Love & Constable 2003),
or more globally, by relying on general statistical representations
of the palaeomagnetic �eld, such as the now widely used family of
Giant Gaussian Process (GGP) models introduced by Constable &
Parker (1988), and generalized by Hulot & Le Mou¤el (1994), Kono
& Tanaka (1995), Tauxe & Kent (2004) and Hulot & Bouligand
(2005).

These GGP models assume that during epochs of stable polar-
ity, the main �eld behaved as a multidimensional stationary ran-
dom Gaussian process with a short correlation time (a reasonable
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Probability uniformization, directional data 111

assumption, see, e.g. Hongre et al. 1998; Bouligand et al. 2005).
Under such circumstances, palaeo�eld estimates recovered from
rock samples collected with a large enough time step at different
locations can be considered as providing independent local (both in
time and space) realizations of the underlying GGP.

De�ning a GGP model then consists in providing a set of pa-
rameters de�ning the statistical behaviour of the magnetic vec-
tor at any geographical location: a set of Gauss coef�cients
{G0

1, G1
1, . . . , Gm

l . . . H 1
1 , H 1

2 , . . . , Hm
l . . .} that de�nes the mean

(or time-averaged) �eld about which the �eld �uctuates, and an
(often simpli�ed) covariance matrix Cov(k, k) =

�
cov(ki , k j )

�
, that

de�nes the way the �eld �uctuates about this mean �eld (where the
k = {k1, . . .} are the Gauss coef�cients describing the time varying
component of the �eld).

As explained in, for example, Constable & Parker (1988) or
Khokhlov et al. (2001, 2006), such GGP models imply that vec-
tor samples x = (x1, x2, x3) of the palaeo�eld at a given site at the
Earth�s surface will behave as if drawn from a 3-D Gaussian distri-
bution de�ned by a mean vector m = (m1, m2, m3) (in local carte-
sian coordinates) and a covariance matrix Cov(x, x) =

�
cov(xi , x j )

�
,

the details of which depend on the site location, the mean �eld Gauss
coef�cients {Gm

l , Hm
l } and the covariance matrix Cov(k, k) of the

GGP model (see, e.g. Khokhlov et al. 2001, 2006, for detailed for-
mulae, which need not be made explicit here). If one introduces
� = [�i j ], the inverse (hence, also symmetric) matrix of Cov(x, x),
this means that the �eld at the site location is expected to follow the
3-D-Gaussian probability density function (pdf)

g(x) =

�
det �
(2� )3 e� 1

2 (x�m,x�m)� , (1)

where we make use of the �-inner product (x, y)� = (�x, y) =�3
i, j=1 �i j xi y j .
In principle, testing whether a GGP model is compatible with

palaeomagnetic data simply consists in testing such pdfs against
data at each site where data have been collected. However, these data
are often sparse and only relatively few data can be tested against
the corresponding distribution (1) for a given site (the parameters
m and � of which depend on the site location, as already noted). In
addition, these data are always measured and archived with some
information about their errors, and this too needs to be taken into
account.

When the data are vectorial, dealing with such issues is relatively
straightforward. Vector errors can �rst be considered as independent
Gaussian vectorial increments added to the error-free vector value.
The corresponding 3-D-Gaussian error pdf can then be convolved
with the 3-D-Gaussian pdf (1) to produce yet another 3-D-Gaussian
pdf to be tested against the data from a given site. At such a single
site, and for such a classical comparison, numerous statistical tests
are available (e.g. Press et al. 2007). Simultaneously testing data
from different sites (to test the regional or global compatibility of a
GGP model against such data, assuming the data from different sites
are independent) is then also possible. It just requires some prelimi-
nary data transformation to ensure that the local pdfs are reduced to
a common standard isotropic 3-D-Gaussian distribution. This trans-
formation is a linear coordinate change in the local (site) cartesian
frame. Regional or global tests can then easily be performed by
comparing the transformed data against the common 3-D-Gaussian
pdf, again using standard tests. This possibility, however, is linked
to the fact that all local data satisfy 3-D-Gaussian pdfs.

Unfortunately, most palaeomagnetic data are not 3-D-vectorial
but directional-only. Such data no longer consist of x = (x1, x2, x3)

local cartesian coordinate values but of unit vectors u = x/|x|, de-
�ned by inclination and declination {I, D} values. Local tests against
a GGP-model can no longer be done with the help of (1), but require
the explicit form of the local pdf predicted by the GGP model in
terms of the directional vector u on the unit sphere S2. This pdf
can be derived from (1) and takes the form of an Angular Gaussian
distribution (Khokhlov et al. 2001, 2006). Errors in palaeomagnetic
directional measurements are commonly treated as Fisherian (Fisher
1953; Fisher et al. 1987; Tauxe 2009). To test a given GGP model
against a given directional data set with associated errors, one thus
has to convolve a Fisher distribution with the local Angular Gaus-
sian distribution (Khokhlov et al. 2006). Finally, simultaneously
testing data from different sites also requires some preliminary data
transformation. This is not as simple as in the case of vectorial data.
In Khokhlov et al. (2001, 2006), we showed how a so-called 1-D
uniformization could be used to transform all local Angular Gaus-
sian directional distributions into a uniform distribution common to
all sites. This procedure, however, converted the local 2-D Angu-
lar Gaussian distributions into just a 1-D distribution, ignoring the
second dimension. This weakened the possibility of discriminating
GGP models. In particular, it did not make it possible to statistically
identify angular biases such as the well-known �right-handed effect�
�rst identi�ed by Wilson (1970, 1971, 1972).

In this paper we therefore introduce a 2-D uniformization that
generalizes and overcomes the limitations of the 1-D uniformization
we previously used to test GGP models against data coming from
different locations. This 2-D uniformization belongs to a very gen-
eral family of multivariate probability transformations (e.g. L·evy
1937; Rosenblatt 1952; O�Reilly & Quesenberry 1973). However,
our approach speci�cally takes the geometry of the problem into
account. It is both very general and particularly well suited to test
possible angular biases.

To illustrate the geometrical nature of this transformation, we
introduce 2-D uniformization (Section 2) �rst for simple 2-D Gaus-
sian distributions (Section 2.1), next for Angular Gaussian (and
more general ) distributions on the unit sphere (Section 2.2). We
then apply this approach to the 2-D sampling distributions of palaeo-
magnetic directions generated by a GGP model while affected by
some Fisherian error (Section 2.3). We �nally illustrate the useful-
ness of 2-D uniformization using real palaeomagnetic data (Sect-
ion 3), and conclude (Section 4).

2 2 - D U N I F O R M I Z AT I O N

2.1 2-D Gaussian distributions

We start from a simple geometrical construction in R2. Consider a
unimodal random distribution that possesses rotational symmetry,
for instance a centred Gaussian distribution with isotropic variances,
that is, with pdf

g(x) =

�
det �
(2� )2 e� 1

2 (x,x)� =
�

det �
2�

exp

�

��
1
2

2�

i, j=1

�i j xi x j

	


 ,

� =
1
� 2

�
1 0
0 1

�
(2)

analogous to (1), except for the fact that we now deal with two
dimensions, a zero mean and a much simpli�ed axisymmetric �
matrix.

We may de�ne neighbourhoods of the most likely point (the origin
here) in the following way: to a given �x we assign a neighbourhood
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112 A. Khokhlov and G. Hulot

consisting of vectors x such that g(x) � g(�x). In the present case,
this neighbourhood is nothing else than the disc of radius |�x|. We
may next compute the probability �t that random data drawn from
such a process appears in this neighbourhood:

�t = P{x|g(x) � g(�x)} =
�

{x|g(x)�g(�x)}

g(x) dx. (3)

By construction, this probability takes all its values in [0, 1]. More
generally, to any value xi of a population {xi } in R2 we may assign a
value ti = P{x|g(x) � g(xi )} in [0, 1]. Then, again by construction,
if the population {xi } is statistically compatible with the pdf g(x)
in R2, the image population {ti} will be compatible with a uniform
distribution in [0, 1]. This, in essence, is the principle of what
we referred to as 1-D uniformization in Khokhlov et al. (2001,
2006). It makes it possible to test the radial distributions of the {xi }
population in R2. However, it does not allow the angular distribution
of this population along the iso-probability lines g(x) = g(�x) to be
tested. This is the limitation we now aim at overcoming, using
a probability transformation akin to those initially introduced by
Rosenblatt (1952), but speci�cally suited to the angular variable we
are now interested in.

In the present example, since we consider a pdf (2) that possesses
rotational symmetry, all iso-probability lines in R2 are circles (see
Fig. 1). To assign a second, �angular�, statistical variable to �x (in
addition to the �radial� variable �t just discussed), we �rst choose
some arbitrary reference line � starting from the point of maxi-
mum probability (the origin, in the present instance) and crossing
all iso-probability lines, for instance, here, a straight radial line
(see Fig. 1). We next de�ne A as the point of intersection of this

Figure 1. Uniformization of a 2-D Gaussian probability distribution func-
tion g(x) in R2 (as de�ned by [2]). Shown are iso-probability lines (in the
present case, circles), de�ning neighbourhoods of the origin, within which
a randomly drawn point has a probability of (starting from the centermost)
10 per cent, 30 per cent, 50 per cent, 70 per cent and 90 per cent to lie. Also
shown is a reference curve � (here a straight line going upwards) starting
from the maximum at the centre of the distribution, intersecting at a point A
the iso-probability line on which a typical realization xi of the variable �x lies,
to which we wish to assign realizations (ti, si) of the uniformized variables
(�t, �s). This is done by assigning to ti the value of the probability associated
with the neighbourhood limited by the iso-probability line on which xi lies
(the grey area corresponding here to ti = 0.70 = 70 per cent), and assign-
ing to si the ratio of the arc length joining A to xi (counted anticlockwise,
circular arrow) to the entire length of this (closed) iso-probability line.

reference line with the iso-probability line on which �x lies, and
consider the arc length from A to �x along this iso-probability line
(moving, say, anticlockwise). We �nally introduce the ratio �s of
this arc length to the entire length of this (closed) iso-probability
line. In the present instance, this geometrical construction simply
amounts to dealing with trivial arc length measurements on the cir-
cle, the new variable �s being equivalent to an angle normalized to
take values in [0, 1]. However, it points at the general possibility
of assigning in geometrical terms (just using the pdf and its iso-
lines) a pair of independent statistical variables (�t, �s) to the initial
�x variable, (�t, �s) taking values in [0, 1] × [0, 1], that is, in the unit
square.

Then, if we are given a random population {xi } in R2 that is
statistically compatible with the pdf g(x), the corresponding (ti,
si) will be statistically compatible with a uniform distribution in
the unit square [0, 1] × [0, 1]. However, now also, if the random
population {xi } is statistically incompatible with the pdf g(x), then
the (ti, si) also will be statistically incompatible with a uniform
distribution in the unit square. This example illustrates the main idea
of 2-D uniformization: transforming of a 2-D statistical distribution
into an equivalent uniform 2-D statistical distribution in the unit
square.

Let us now consider a slightly more general unimodal case with-
out rotational symmetry, for instance, a Gaussian distribution with
anisotropic variances:

g(x) =

�
det �
(2� )2 e� 1

2 (x,x)� , � =
�

1/� 2
1 0

0 1/� 2
2

�
. (4)

We may again construct a �radial� variable �t using (3), even though
neighbourhoods are now elliptical. In contrast, the de�nition of
the �angular� variable �s needs some improvement because the
probability implied by (4) to have data in an angular sector is
no more proportional to the corresponding angular measure, and
must be corrected for the variations of the gradient of the pdf
g(x) along the iso-probability line g(x) = g(�x). To see this, con-
sider the point �x + dr, next to �x, where dr is an in�nitesimal
vector perpendicular to the iso-probability line g(x) = g(�x). De-
note dr = |dr| and n = grad g(�x)/|grad g(�x)|. Then dr = drn.
Also, �x + dr lies on the iso-probability line g(x) = g(�x + dr) and
therefore dr = dg/|grad g(�x)|, where dg = g(�x + dr) � g(�x). Next
de�ne dl, an in�nitesimal displacement starting from �x perpendic-
ular to n and therefore along the iso-probability line g(x) = g(�x).
Finally, consider the in�nitesimal rectangle de�ned by the vector
product of dr with dl, of surface dr dl. The probability of �nd-
ing a point x in this rectangle, based on the pdf g(x), is then
g(�x)dr dl = g(�x)dg|grad g(�x)|�1dl.

Now, just as in the previous case, we may choose some arbi-
trary reference line starting from the point of maximum proba-
bility (again the origin, in the present instance) and crossing all
iso-probability lines (note that this can again be a straight radial
line). We may also again de�ne A as the point of intersection of this
reference line with the iso-probability line g(x) = g(�x) which we
will denote L(�x), and consider the arc L(A, �x) from A to �x along
this iso-probability line (moving again anticlockwise). Finally, we
may sum (integrate) the probabilities of �nding a point x in the
surface included between this arc and the adjacent in�nitesimally
close arc along the iso-probability line g(x) = g(�x + dr). This leads
to



L(A,�x) g(x)dg|grad g(x)|�1dl. Normalizing this quantity by its

maximum value, corresponding to the circular integration along the
(closed) iso-probability line L(�x), and taking into account the fact
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that both g(x)(= g(�x)) and dg take constant values in the integrals,
we may �nally introduce the quantity:

�s =



L(A,�x) |grad g(x)|�1dl



L(�x) |grad g(x)|�1dl
, (5)

which takes values in [0, 1] and generalizes the de�nition we previ-
ously introduced for �s in the axisymmetric case. For this previous
axisymmetric case, indeed, |grad g(x)| takes a constant value in
both integrals, and �s reduces to �s =



L(A,�x) dl/



L(�x) dl.

Then by construction, and as in this previous case, if we are
given a random population {xi } in R2 that is statistically compatible
(respectively incompatible) with the pdf g(x) (now given by [4]),
the corresponding {(ti, si)} (computed by setting �x = xi in [3] and
[5]) will be statistically compatible (respectively incompatible) with
a uniform distribution in the unit square [0, 1] × [0, 1]. 2-D uni-
formization of the original 2-D statistical distribution into a uniform
2-D statistical distribution in the unit square is thus again achieved.

It is important to note that, whereas a linear coordinate transform
can be used to reduce a general Gaussian distribution to a standard
one (for instance, to reduce the pdf given by [4] to that given by [2]),
the above geometric construction now directly relies on integrations
of the pdf to be tested (for the implementation, see the Appendix).
This characteristic of the 2-D uniformization approach makes it
readily applicable to the stable polarity palaeomagnetic case we
will later focus on, where data no longer consist of 2-D-vectors
x � R2 but of unit directional vectors u � S2 � R3.

2.2 Angular Gaussian distributions and 2-D distributions
on the unit sphere

We now consider the case of Angular Gaussian distributions. These
correspond to distributions of directional vectors u = x/|x| on the
unit sphere S2 when the 3-D vectors x in R3 follow a 3-D-Gaussian
distribution of the most general form given by (1), with mean vec-
tor m and covariance matrix Cov(x, x) = ��1. If we introduce the
spherical coordinates (u, �) of the vector x (where � = |x|), then
the pdf associated with the direction u on S2 is given by:

s(u) =
� �

0
g(�u) d�, (6)

where g(�u) = g(x) is de�ned by (1). Eq. (6) de�nes the Angular
Gaussian distribution associated with the 3-D-Gaussian distribution
(1). Note that this Angular Gaussian distribution thus results from
integration over all lengths � of the 3-D-Gaussian distribution and
is different from the Bingham distribution (Bingham 1964; Love
2007), which results from intersecting the 3-D-Gaussian distribu-
tion by the unit sphere S2 � R3. As shown by Khokhlov et al. (2001,
2006) (see also Bingham 1983, for series expansions in the case of
an Angular Gaussian distribution corresponding to an isotropic 3-
D-Gaussian distribution)), eq. (6) can be integrated into the explicit
formula:

s(u)=e
� 1

2 m2

•
�

det �
4� |u|3�

�

z
�

2
�

+e
1
2 z2

(1+z2)
�
1+Erf

� z
�

2

���

,

(7)

where (making use of the �-norm |x|� =
�

(x, x)�)

z =
(m, u)�

|u|�
, m = |m|�, (8)

correspond to, respectively, the �-projection of m on the direction
u and the �-norm of m. Note that since � is positive, �m � z � m.

Figure 2. Example of an Angular Gaussian probability distribution function
s(u) on the unit sphere S2 (as de�ned by [7]). Here the QC GGP model (see
de�nition in Section 3) has been used for a site at 50�N, 7�E. O is the
centre of the unit sphere; D and N respectively point Down and North at the
local site. Shown are iso-probability lines de�ning neighbourhoods of the
most likely direction uM , within which a randomly drawn direction has a
probability of, respectively, 10 per cent, 30 per cent, 50 per cent, 70 per cent
and 90 per cent to lie. The reference curve � needed for 2-D uniformization
(see text) has been de�ned as the curve starting from uM , moving up in the
Down/North plane.

Such distributions can be quite complex. However, if |m| is large
enough compared to the square roots of the entries of the matrix
Cov(x, x), then the corresponding Angular Gaussian distribution
will be unimodal, such as the one shown in Fig. 2. This will be the
case when considering Angular Gaussian distributions predicted by
the most plausible GGP models at the Earth�s surface (see Khokhlov
et al. 2001, 2006).

Consider now the direction uM � S2 for which s(u) takes it global
maximum value sMax. Then there exists a value s0 < sMax such
that any iso-probability line s�1(y), y � (s0, sMax) is a closed one-
component curve. Furthermore, if we happen to know that s(u)
is unimodal, then the only other extremum point of s(u) is where
it takes its minimum value sMin, in which case we may set s0 =
sMin and all iso-probability lines on S2 are known to be closed
one-component curves, analogous to the circles and ellipses in R2

encountered in the previous section. Under such circumstances, we
may again choose a smooth curve � starting from uM and transverse
to any iso-probability curve (see Fig. 2). Then, to any direction �u
on S2, we may again assign a pair of two variables (�t, �s) such that:

�t =
�

{u|s(u)�s( �u)}

s(u) dU, �s =



L(A, �u) |grad s(u)|�1dl



L( �u) |grad s(u)|�1dl
, (9)

where L( �u) is the entire (closed) iso-probability line s(u) = s( �u) on
which �u lies, and L(A, �u) is the portion of this iso-probability line
between its intersection A with the curve � and �u (some common
orientation being chosen for all iso-probability lines). Indeed, since
all values s( �u) are regular (except sMax and sMin, both of which
correspond to isolated critical points), |grad s(u)| is never zero in
the integrals de�ning �s, and �s is thus always de�ned. It can then
readily be checked that the reasonings that led to (3) and (5) can
be repeated here to show that if we are now being given a random
population {ui } in S2 that is statistically compatible (respectively
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incompatible) with the pdf s(u) (given by [7]), the corresponding
{(ti, si)} (computed by setting �u = ui in [9]) will be statistically
compatible (respectively incompatible) with a uniform distribution
in the unit square [0, 1] × [0, 1]. 2-D uniformization of the original
2-D statistical distribution in S2 is thus again achieved.

The above reasoning can be applied (together with the uni-
formization formulae [9]) to any 2-D statistical distribution in S2,
provided it is unimodal and smooth enough. In fact, it can also
be applied to multimodal distributions, albeit in a slightly different
way. One can again take advantage of the fact that a vicinity of
the absolute maximum uM of the pdf can always be de�ned within
which any iso-probability line s�1(y) is a closed one-component
curve. Within this vicinity, a smooth curve � (starting from uM

and transverse to any iso-probability curve) can again be found and
formulae (9) applied (with appropriate renormalization of �t to the
maximum value it may take in this vicinity, which is when �u is lying
on the iso-probability line bounding the vicinity), to achieve 2-D
uniformization of the original 2-D statistical distribution within this
vicinity. More generally, one may then also de�ne similar vicinities
for all secondary maxima of the pdf in S2, apply the same proce-
dure to each vicinity, and �nally repeat this also for minima (in
which case the de�nition of �t needs another slight change to sum
iso-probabilities smaller, rather than larger, than the iso-probability
corresponding to �u), to achieve what may then be referred to as
piecewise 2-D uniformization of the original 2-D statistical distri-
bution.

2.3 2-D uniformization of palaeomagnetic
directional distributions

We now turn to the more speci�c case of palaeomagnetic directional
distributions. Consider a given site at the Earth�s surface where di-
rectional measurements are available ({u1, . . . ui , . . .} distributed on
the unit sphere S2), that we wish to use to test a given GGP model.
As already noted, the directional distribution predicted at such a site
by such a GGP model for error-free data is an Angular Gaussian
probability distribution of the form s(u) as de�ned by (7), the pa-
rameters of which depend on both the GGP model parameters (mean
Gauss coef�cients {G0

1, G1
1, . . . , Gm

l . . . H 1
1 , H 1

2 , . . . , Hm
l . . .}, and

covariance matrix Cov(k, k) = [cov(ki , k j )]), and the site location.
If the data were perfect, 2-D uniformization of this data set would
thus simply consist in applying the procedure described in Sect-
ion 2.2 for Angular Gaussian distributions.

However, the data are not perfect, and errors must be taken into
account. Furthermore, some data may have larger errors than others.
Finally, we may want to consider data coming from different sites.
It thus is important that each datum is considered individually.
Assuming directional errors to be Fisherian, as is usually considered
appropriate, this means that for each datum ui characterized by a
Fisherian error with concentration parameter Ki, this datum must
be compared to the pdf considering all possibilities of drawing a
value w from si (w) de�ned by (7) at the site where these data were
collected, and next drawing a value u from the Fisher distribution
kKi (u, w) centred on w and de�ned by

kK (u, w) =
K

2� (eK � e�K )
eKu•w. (10)

As discussed in Khokhlov et al. (2006), this amounts to compare ui

to the pdf pi (u) de�ned by

pi (u) =
�

S2

si (w)kKi (u, w) dw. (11)

It is important to note that K in (10) is the concentration param-
eter de�ning the error affecting the directional datum, and not the
one de�ning the dispersion of the samples used to estimate this
datum. For practical applications, this concentration parameter can
be inferred from the �95 parameter, usually provided with the data,
using formulae such as (A4) in Khokhlov et al. (2006). This is the
formula we use when referring to �95 values in our software and in
the examples provided below.

Even though there may be only one datum ui to compare to each
pdf pi (u) at a time, 2-D uniformization can now be used to collect,
without any loss of information, the statistical information brought
by the entire data set {u1, . . . ui , . . .} for comparison against the
background GGP statistical model. For each directional datum ui

in S2, one just needs to compute the uniformized pair of values (ti,
si), using the same rules as established in Section 2.2 (recall [9]),
but corresponding to the relevant pdf pi (u):

ti =
�

{u|pi (u)�pi (ui )}

pi (u) dU, si =



Li (Ai ,ui )

|grad pi (u)|�1dl



Li (ui )
|grad pi (u)|�1dl

, (12)

where Li (ui ) is the entire (closed) iso-probability line pi (u) = pi (ui )
on which ui lies, and Li (Ai , ui ) is the portion of this iso-probability
line between its intersection Ai with a reference curve �i and ui .
In principle the reference curve �i can be chosen independently for
each datum ui . However, it is important that some simple common
rule be used for all data to keep a useful meaning to the new quantity
si. In what follows, we will thus systematically de�ne �i in the same
way as the � curve shown in Fig. 2, that is, as the curve starting
from the maximum of pi (u), moving up in the Down/North plane.
Similarly, si will be computed using (12), with Li (Ai , ui ) counted
clockwise when looking at the distribution on the unit sphere from
the outside (as is the case in Fig. 2), so that small values of si

correspond to ui pointing slightly westwards of the Down/North
plane, and values close to unit correspond to ui pointing slightly
eastwards of this plane.

Then, testing if the sequence of directional measurements
{u1, u2, . . .} is a random population that is statistically compati-
ble with the GGP model (assumed as a background process), given
the known individual Fisherian errors kKi , is equivalent to testing
that the population {(t1, s1), (t2, s2), . . . } is statistically compatible
with a uniform distribution in the unit square [0, 1] × [0, 1]. 2-D
uniformization of the palaeomagnetic directional data distribution
has been achieved.

3 A P P L I C AT I O N S T O R E A L
PA L A E O M AG N E T I C DATA

To illustrate the usefulness of 2-D uniformization, we now apply it
to real palaeomagnetic data. The database Q94 we will use is that
of Quidelleur et al. (1994), to ease comparisons with the studies of
Khokhlov et al. (2001, 2006).

We start with Brunhes normal polarity data from sites 17 (data
selected from B¤ohnel et al. 1987) and 18 (selected from B¤ohnel
et al. 1982), which we will test against the normal polarity GGP
model C1 of Quidelleur & Courtillot (1996) (their preferred model,
empirically built to �t the Q94 database, to which we will refer as
the QC model and which we will use up to degree 7, as in Khokhlov
et al. 2006, where the model parameters are fully speci�ed). The
reason for this choice is that the combined data from these two sites,
which share the same location of 50�N, 7�E, have been shown to be
marginally compatible with this model when only 1-D uniformiza-
tion is applied (Khokhlov et al. 2006). Yet, these data plot in a way
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Probability uniformization, directional data 115

Figure 3. Combined data from sites 17 and 18 of the Q94 database, at 50�N, 7�E, Lambert-projected, the centre point (pointing downwards through the page)
corresponding to the direction produced by a pure axial dipole at this location; North towards the top of the page, East towards the right. Angular distances
with respect to the centre of the plot are shown every 5� (green circles). Isovalues of a common pi (u) pdf (computed from (11), using the predicted pdf for the
QC model at the site location and a common Fisher distribution, assuming an error of �95 = 3.72� for all data) are shown as red ellipses. Those correspond
to the bounds within which, respectively, 10 per cent, 30 per cent, 50 per cent, 70 per cent, 90 per cent of the data points should plot. (a) Real data; (b) equal
amount (88) of synthetic data (see text for details).

that strongly suggests that they do not at all comply with the QC
model.

To see this, we use the same plotting convention as in �g. 3
of Khokhlov et al. (2006, see our Fig. 3). As noted earlier, each
datum ui having a different error estimate, must be tested against
its own pi (u) pdf. However, and as in Khokhlov et al. (2006), to be
able to plot all the data against a single pi (u) pdf (and only for the
speci�c purpose of showing such a �gure), we plot the pi (u) pdf
computed from (11), using the pdf predicted by the QC model at the
site location, and the Fisher distribution corresponding to the mean
�95 = 3.72� of the errors of all the data plotted (Fig. 3a). A second
similar plot with synthetic data is also shown for reference (Fig. 3b).
These data are generated one at a time, with pi (u) adjusted at each
draw to exactly match the assumed error of one true datum for each
datum generated. This second plot illustrates how the same number
of synthetic data intrinsically compatible with the QC model, and
affected by the same individual errors as the true data, generally
plot.

Fig. 3 clearly suggests that compared to the synthetic data plot, too
many data are to be found eastwards and southwards of the expected
distribution in the real data plot, even though both plots display
roughly the same proportion of data within each iso-probability
lines. As we shall now see, 2-D uniformization of the data makes it
possible to con�rm this.

After 2-D uniformization into {(t1, s1), (t2, s2), . . . } (each data
now being assigned its individual error), the data {u1, u2, . . .} that
were plotted in Fig. 3 may �rst be plotted in the unit square [0, 1] ×
[0, 1], where they are now expected to be uniformly distributed.
Fig. 4 clearly shows that this is not the case for the real data plot,
which displays voids and a tight cluster around t = 1 and s = 0.5
(corresponding to the south-eastward excess of data in Fig. 3a).

To ease the interpretation of these voids and clusters, we may
next recognize that whereas ti can be interpreted as a renormalized

distance of ui to the most likely direction uM on the unit sphere, si

re�ects a renormalized angular measure of the distance of ui from
the Down/North plane along the iso-probability line pi (ui ). This
suggests that we also plot the uniformized data on a disc of unit ra-
dius, using (ti, 2�si) as polar coordinates. The result of this is shown
in Fig. 5. Note that the data plotted in this way are not expected to
be uniformly distributed in the disc (the pdf being inversely pro-
portional to the radial distance for such a representation, as one can
easily check). However, it is expected to be equally distributed in all
radial directions. Fig. 5 makes it clear that this is not the case and
that the real data are unlikely to be compatible with the QC model,
even when data errors are taken into account, because too many data
plot in a single sector. This prompts us to turn to more quantitative
tests. Indeed, plenty of tests are available to test the compatibility
of a 2-D data set against a uniform distribution in the unit square.

We �rst repeat a test already carried out in Khokhlov et al. (2006),
where 1-D uniformization was already used. In this previous study,
the {ti} as de�ned by (12), were indeed already considered, and their
expected uniform distribution in the unit segment [0, 1] tested. This
was achieved by using two classical tools, the Kolmogorov�Smirnov
test (KS-test) and the Anderson�Darling test (AD-test). These two
tests rely on the fact that, if a given data set {xi}, i = 1, . . . N is
compatible with a uniform distribution over [0, 1], its empirical
cumulative distribution function (cdf) FN(x) should �uctuate within
known limits about the theoretical cdf value F(x) = x. The tested
hypothesis should then be rejected if the empirical cdf FN(x) departs
too much from x. The KS-test and AD-test differ in the measure
chosen to assess how distant FN(x) is from x over [0, 1]:

(i) the KS-test uses the maximum value MN of |FN(x) � x| over
[0, 1], and is therefore most sensitive to departures of the {xi} from
a uniform distribution towards the middle of the segment [0, 1];
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116 A. Khokhlov and G. Hulot

Figure 4. Same data as in Fig. 3, but plotted in t (abscissa) and s (ordinate) coordinates in the unit square [0, 1] × [0, 1] after 2-D uniformization. (a) Real
data; (b) synthetic data. Highlighted in grey are the quadrants identi�ed by the FF test (see text for details).

Figure 5. Same data as in Figs 3 and 4, but plotted in polar (t, 2�s) coordinates in a disc of unit radius. Origin for the angular coordinate 2�s is taken at the top
of the disc, corresponding to North in Fig. 3, and isovalues for t are plotted with 0.1 steps, to allow comparison with Fig. 3 and ease identi�cation of matching
data points. This �gure may be seen as an unfolded version of Fig. 3, taking into account the topology imposed by the pi (u) pdfs. (a) Real data; (b) synthetic
data.

(ii) the AD-test uses the integral quantity IN =
N


 1
0 (FN (x) � x)2 [x(1 � x)]�1 dx . Because of the weight

[x(1 � x)]�1, it is much more sensitive to the behaviour of {xi} at
both extremes of the segment [0, 1].

To apply these tests, one just needs to compute the values of MN

and IN from the data set {xi}, i = 1, . . . N to be tested, and infer (from
known software, e.g. Marsaglia & Marsaglia 2004; Press et al. 2007)
the probabilities P(MN) and P(IN) for the null hypothesis to have
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possibly produced such large, or even larger, values for, respectively,
MN and IN. Then, if P(MN) or P(IN) is found to take a value very close
to 0 (typically 0.05 or less), the tested hypothesis can be rejected at
the corresponding level of con�dence (here 95 per cent).

Applying these tests to the 1-D uniformized data {ti} from the
combined sites 17 and 18 (N = 88 data), leads to MN = 0.118 and
IN = 3.25 with probabilities P(MN) = 0.16 and P(IN) = 0.02. (Note
that these values differ slightly from the values MN = 0.16 and IN =
3.20 with probabilities P(MN) = 0.17 and P(IN) = 0.02 provided
by Khokhlov et al. (2006) for the same test, because we now use a
different numerical scheme to compute the convolution involved in
(11), based on a computation on the spherical grid, using a fast SHT
transform spherical convolution, see the Appendix). These results
con�rm the conclusion of Khokhlov et al. (2006) that if only the
1-D uniformized data {ti} are investigated, the data shown in Fig. 3
are only very marginally consistent with the QC GGP model. The
most stringent AD-test indeed rejects the compatibility of these
data with the QC model at the 98 per cent level of con�dence.
This re�ects the slight trend seen in both Figs 3 and 5 for the data
to plot towards the margin of the predicted pdf. As expected, no
such trend is visually seen in the companion synthetic data plots
shown for reference in Figs 3 and 5. Running the same tests on the
corresponding 1-D uniformized data {ti} leads to MN = 0.122 and
IN = 2.35 with probabilities P(MN) = 0.14 and P(IN) = 0.06, within
perfectly acceptable ranges.

The power of 2-D unifomization is that it now allows us to also
test the angular distribution of the data, and more generally its 2-D
distribution.

First consider testing the angular distribution as de�ned by the
second set of uniformized data {si}. Such tests can be carried out
with exactly the same tools, that is, the KS and AD tests. However,
precisely because the uniformized variable s can be seen as a renor-
malized angle (recall Fig. 5), one additional test turns out to be even
more useful. This test, due to Kuiper (1960), also measures the way
the empirical cdf FN(x) differs from the expected theoretical cfd
F(x) = x, but in yet another way, particularly appropriate for testing
variables on a circle:

(iii) the Kuiper-test uses the sum VN = D+ + D� of the two
maxima D+ = max (FN(x) � x) and D� = max (x � FN(x)) over [0,
1], and is therefore insensitive to the change of the starting point
(as can easily be checked, D+ and D� change individually, but their
sum VN remains constant).

To apply this test, one just needs to compute the value of VN from
the data set {xi}, i = 1, . . . N to be tested, and infer (from known
software, e.g. Press et al. 2007) the probabilities P(VN) for the null
hypothesis to have produced such large, or even larger, values for
VN.

Fig. 6(a) shows the cdf built from the uniformized data {si} to be
tested. Also shown is the cdf built from the companion synthetic data
shown for reference in Figs 3 and 5. Building these cdfs amounts
to count the number of data found as one rotates anticlockwise in
the plots shown in Fig. 5. Not surprisingly, Fig. 6(a) again testi�es
for the contrast between the de�cit of data West of the Down/North
plane and the presence of a sector with a strong concentration of
data East of this plan, as seen in Figs 3(a) and 5(a). As expected, far
less contrast is to be found in the cdf of the companion synthetic
data (Fig. 6 b). Applying the KS, AD and Kuiper tests to these cdfs
con�rms the statistical signi�cance of these impressions. For the
real uniformized data {si} from the combined sites 17 and 18 (N =
88 data), this now leads to MN = 0.156, IN = 2.62 and VN = 0.240
with probabilities P(MN) = 0.02, P(IN) = 0.04 and P(VN) = 0.0012.
Both the KS and AD tests thus already consider the combined data
of sites 17 and 18 to be incompatible with the QC model at the
98 per cent and 96 per cent levels of con�dence. The Kuiper test,
however, is clearly the most stringent of all tests, con�rming this
at the very high 99.88 per cent level of con�dence. This sharply
contrasts with the results of the same tests applied to the synthetic
data, which lead to MN = 0.085, IN = 0.87 and VN = 0.12 with
probabilities P(MN) = 0.52, P(IN) = 0.43 and P(VN) = 0.66, all
within reasonable ranges.

Simultaneously testing the two dimensions of the data distribu-
tion in the [0, 1] × [0, 1] unit square can also be done thanks
to a 2-D generalization of the KS test (Fasano & Franceschini

Figure 6. Empirical cumulative distribution function of the uniformized data {si} corresponding to the combined data from sites 17 and 18 (shown in Fig. 3)
tested against the QC model. (a) Real data; (b) synthetic data.
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1987). This test, to which we will refer here as the FF test, is less
straight-forward than the 1-D KS test. Unfortunately, it is also based
on an empirical and approximate approach, since, as pointed out
by Press et al. (2007, to which the reader is referred for more
details) no universal cumulative probability distribution can be
properly de�ned in more than one dimension. Nevertheless, this
test can provide useful insight. When considering N data dis-
tributed in the unit square: the FF-test consists in (1) comput-
ing the empirical linear correlation coef�cient r (Pearson�s r) be-
tween the t and s coordinates, (2) de�ning a point Q of coordi-
nates (tQ, sQ), (3) using Q to divide the unit square in quadrants
(Q being their common edge), (4) comparing the empirical inte-
grated probability (i.e. fraction of data found) in each quadrant
with that expected from a uniform distribution and (5) identify-
ing the quadrant with the largest difference (denoted DN) between
the empirical and expected integrated probabilities, when Q ex-
plores all locations in the unit square. The probability of �nd-
ing such a discrepancy can then be assessed, and is here denoted
P(DN, r).

This test was applied to the uniformized data of sites 17 and 18,
and this led to P(DN, r) = 0.10 corresponding to (tQ = 0.982, sQ =
0.525) because of the lower left quadrant being slightly underpop-
ulated (see Fig. 4 a). The same test was applied to the synthetic
data in Fig. 4(b) and led to P(DN, r) = 0.09, now corresponding to
(tQ = 0.466, sQ = 0.224) because of the upper left quadrant being
slightly overpopulated. This result is interesting in several ways. It
�rst shows that data from sites 17 and 18 cannot be considered as
incompatible with the QC model based on this FF test alone, even
though the test did spot an issue related to the cluster close to t =
1 and s = 0.5 we already mentioned. This cluster is detected as the
cause of the lower left quadrant being slightly underpopulated, but
not identi�ed as unusually tight, even though this tightness clearly
makes the distribution in Fig. 4(a) much more unusual than that
in Fig. 4(b) (rightfully measured as not remarkably unusual). This
is because the FF test restricts attention to the data distribution in
four quadrants that may vary in size (depending on the location of
Q), but must always share a corner with the unit square. This test
is thus unable to spot the unusualness of a tight cluster away from
any of the four corners of the unit square. This simply illustrates
the well-known fact that no statistical test can singlehandedly test
a given data set against a statistical distribution. In the present in-
stance, we are thus led to conclude that the best test to detect the
angular biases we are interested in is the Kuiper test applied to the
{si} uniformized data (see Table 1, which provides a summary of all
tests carried out with the 2-D uniformized data of sites 17 and 18).

In closing this discussion about sites 17 and 18, it should �nally
be stressed that none of the above tests can tell which, of the data
or the model (or both), should be rejected. As a matter of fact,
data from sites 17 and 18 are likely to have serial correlations that
could be responsible for the cluster discussed (see Khokhlov et al.
2006, for a detailed discussion). The important point, though, is
that provided an appropriate test is being used, 2-D uniformization
clearly makes it possible to spot mismatches between the data and

the distribution predicted by a GGP model and the Fisherian errors
assumed to affect these data.

We now turn to our second and �nal example application of the
2-D uniformization procedure to palaeomagnetic data. As already
noted, one advantage of this procedure is that it makes it possible
to collectively test the statistical behaviour of a large data set, even
though each data may be expected to locally behave differently. This
is exactly the case when one wants to test GGP models against a
database with palaeomagnetic directional data coming from differ-
ent sites worldwide.

To illustrate this situation, we generalize the tests carried out with
the combined data of sites 17 and 18, to test all Brunhes data avail-
able in the Q94 database against the same QC model. This database,
with 990 Brunhes data coming from 36 sites all over the world, was
already investigated by Khokhlov et al. (2006), to test a series of
GGP models. They already relied on the 1-D uniformized data {ti}
as de�ned by (12), and tested the expected uniform distribution of
these {ti} in the unit segment [0, 1]. Using the AD and KS tests
then led them to reject all GGP models, except the QC model. This
model, however, involves symmetries that cannot account for data
trends such as the right-handed effect (Wilson 1970, 1972), which
corresponds to a slight trend towards positive declination in the
directional data, that is, towards East when the data are plotted in
the same way as in Fig. 3, where this effect is particularly obvious.
Quidelleur et al. (1994) noted that this effect collectively affects
most normal data in their database (see their �g. 4). To test if this
effect (whether linked to a bias in the data or not) is strong enough
that the QC model should also be rejected can now easily be done
by also taking advantage of 2-D uniformization.

Fig. 7(a) shows a plot of the 990 2-D uniformized data {(t1, s1),
(t2, s2), . . . } (each data having been assigned its individual error),
computed from the Brunhes data of the Q94 database, using the QC
model. These data are plotted in the disc of unit radius as in Fig.
5(a), and could have also been plotted in the unit square as in Fig.
4(a). Note, however, that no single plot analogous to Fig. 3 can now
be shown, since such plots depend on the location of the site from
which the data come. Just as in Fig. 5, Fig. 7(b) also shows a plot
of the same amount (990) of 2-D uniformized data, corresponding
to a set of 990 synthetic data produced from the QC GGP model,
one datum at a time with pi (u) adjusted at each draw to exactly
match the site location and assumed error of one true datum for
each datum generated. Just like Fig. 5(b), this plot illustrates how
the same number of synthetic data, intrinsically compatible with the
QC model, with the same site distribution, and affected by the same
individual errors as the true data, generally plot.

It is clear from Fig. 7 that if a right-handed effect is affecting
the real data in a way incompatible with the QC model, this effect,
which would translate in more data on average in the right half
disc of the plot in Fig. 7(a) (as was the case in Fig. 5a) remains
weak: Figs 7(a) and (b) could easily be confused with each other.
However, the eye can easily be misled. Indeed, if one now plots
the cdf built from the angular uniformized data {si} (Fig. 8), a
clearer picture emerges, with a slight overrepresentation of s values

Table 1. Results of the AD, KS, Kuiper and FF tests applied to the uniformized {(ti,
si)} combined real data from sites 17 and 18 of Q94 and to synthetic data, for testing
against the QC model. Probabilities of less than 0.05 are highlighted in bold.

Data [N] P(MN[t]) P(IN[t]) P(MN[s]) P(IN[s]) P(VN[s]) P(DN, r)

Real [88] 0.16 0.02 0.02 0.04 0.0012 0.1
Synt [88] 0.14 0.06 0.52 0.43 0.66 0.07
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Figure 7. (a) 2-D uniformized data computed from the 990 Brunhes data of the Q94 database, using the QC model, plotted in polar (t, 2�s) coordinates in a
disc of unit radius; (b) same, but for synthetic data (see text for details). Same plotting convention as in Fig. 5.

Figure 8. Empirical cumulative distribution function of the uniformized data {si} corresponding to the 990 Brunhes data of the Q94 database tested against
the QC model. (a) Real data; (b) synthetic data.

between 0.7 and 0.9 in Fig. 8(a). This overrepresentation turns out
to be statistically signi�cant.

Just as in the case of our previous investigation of the data from
sites 17 and 18, we can again apply the KS, AD and Kuiper tests
to the cdfs of both the {ti} and {si} uniformized data, and the FF
to the entire 2-D distribution. As already stated, the case of the {ti}
data was already investigated by Khokhlov et al. (2006), and the
corresponding cdf found to show no signi�cant departure from the
expected behaviour. We repeated these tests with our new, more
accurate, numerical scheme to compute the convolution involved
in (11). This led to the same conclusion (see Table 2) that the QC
model could not be considered incompatible with these Brunhes
data, based on the {ti} uniformized data alone. 2-D uniformization,

however, provides critical additional information, in particular the
second uniformized data {si}. Although the KS, AD and even the
FF tests do not reveal more reasons to reject the tested hypothesis,
the Kuiper test does, at the already strong level of 99 per cent (see
Table 2). As expected, no such strong conclusion is reached when
testing the 990 synthetic data plotted in Figs 7(b) and 8(b) (see also
Table 2).

4 C O N C LU S I O N

In this paper, following an approach similar to that of Rosenblatt
(1952), we introduced the concept of 2-D probability uniformiza-
tion, which allows the conversion of any 2-D probability distribution
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Table 2. Results of the AD, KS, Kuiper and FF tests applied to the uniformized {(ti, si)}
data from the 990 Brunhes data of the Q94 database and to synthetic data, for testing
against the QC model. Probabilities of less than 0.05 are highlighted in bold.

Data [N] P(MN[t]) P(IN[t]) P(MN[s]) P(IN[s]) P(VN[s]) P(DN, r)

Real [990] 0.30 0.26 0.10 0.07 0.01 0.07
Synt [990] 0.80 0.71 0.21 0.11 0.17 0.20

into an equivalent uniform distribution in the unit square [0, 1] × [0,
1]. This concept is particularly useful for the purpose of testing data
sets that have to be tested against different expressions of a common
background statistics. This situation is typically encountered when
testing so-called GGP models of the Earth�s magnetic �eld against
palaeomagnetic directional data collected from different geograph-
ical sites. We explained the way this approach could be applied to
the 2-D distributions expected for such palaeomagnetic directional
data, if these are to be consistent with a GGP model while affected
by some Fisherian error.

We provided some example applications to real palaeomagnetic
data. In particular, we showed how the signi�cance of subtle in-
homogeneities in the distribution of the data, such as the so-called
right-handed effect in palaeomagnetism, could be tested. This ef-
fect, whether of geomagnetic origin or not, was already known to
affect the Brunhes data, particularly that of the Quidelleur et al.
(1994) database. Our probability uniformization approach allowed
us to show that this right-handed effect indeed affects these data in
such a way that they cannot easily be reconciled with the QC model
[the preferred model C1 of Quidelleur & Courtillot (1996), which is
rejected at the 99 per cent level of con�dence, recall Table 2], even
though this model was originally built with the help of these data.
This approach was also applied at the level of single sites [sites 17
and 18 of the Quidelleur et al. (1994) database] to con�rm that data
that one could intuitively see as affected by the same effect (this time
in a strong way, recall Fig. 3), also could not be reconciled with this
same model (this time at a much higher level of con�dence, recall
Table 1).

These results show that 2-D probability uniformization could be
systematically used to both test data at the site level (to possibly
identify issues with the data themselves), and test GGP models of
the mean palaeomagnetic �eld and palaeosecular variation against
well-controlled palaeomagnetic data sets, such as those carefully put
together within the context of the TAFI project (see e.g. Johnson
et al. 2008), and archived in the Magnetic Information Consortium
(MagIC) archiving system (http://earthref.org/MAGIC/). It is our
hope, and opinion, that this procedure could help in building more
accurate GGP models. The software designed in the course of this
study is available upon request from the authors. It can also be
downloaded from http://geomag.ipgp.fr/download/PSVT.tgz.
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A P P E N D I X

The exact choice of the spherical grid to be used is important for
the uniformization procedure on the unit sphere S2. Numerical in-
tegrations over spherical domains are needed twice: in (11) when
convolving a Fisher distribution with the local Angular Gaussian
distribution to compute the pi (u) pdf, and in (12) when comput-
ing ti from pi . Such integrations can be realized along the lines of
Press et al. (2007). However, since we lack an explicit formula for
pi (u), the computational cost is rapidly increasing with the number
of gridpoints. A proper choice of grid, however, can signi�cantly
reduce this cost. The idea is to use an analogue of the known �Con-
volution using Fast Fourier Transform� procedure appropriate for
scalar functions of one variable (Press et al. 2007). Here we use
the fast discrete Legendre transform and the fast discrete Fourier
transform from Healy et al. (1996). The corresponding grid is fully
determined by its �bandwidth� parameter B: in usual � , 	 spherical
coordinates, the 2B × 2B gridpoints uk, j , 0 � k, j < 2B are

uk, j =
�
�k, 	 j

�
=

�
� (2k + 1)

4B
,
� j
B

�
.

The construction of such a fast transform involves a lot of computer
code, and we therefore rely (with only minor changes) on the S2Kit
C-subroutines by Peter J.Kostelec and Daniel N. Rockmore avail-
able from http://www.cs.dartmouth.edu/	geelong/sphere/. For the
statistical analysis presented in this paper, we tried several values
of the bandwidth parameter B between 180 and 1440. The results
presented in Tables 1 and 2 were computed with B = 720, which
was found to be appropriate enough.
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