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incompatible) with the pdf s(u) (given by [7]), the corresponding
{(#;, s:)} (computed by setting & = w; in [9]) will be statistically
compatible (respectively incompatible) with a uniform distribution
in the unit square [0, 1] x [0, 1]. 2-D uniformization of the original
2-D statistical distribution in S is thus again achieved.

The above reasoning can be applied (together with the uni-
formization formulae [9]) to any 2-D statistical distribution in S,
provided it is unimodal and smooth enough. In fact, it can also
be applied to multimodal distributions, albeit in a slightly different
way. One can again take advantage of the fact that a vicinity of
the absolute maximum u,, of the pdf can always be defined within
which any iso-probability line s!(y) is a closed one-component
curve. Within this vicinity, a smooth curve I' (starting from u,,
and transverse to any iso-probability curve) can again be found and
formulae (9) applied (with appropriate renormalization of 7 to the
maximum value it may take in this vicinity, which is when 1 is lying
on the iso-probability line bounding the vicinity), to achieve 2-D
uniformization of the original 2-D statistical distribution within this
vicinity. More generally, one may then also define similar vicinities
for all secondary maxima of the pdf in S, apply the same proce-
dure to each vicinity, and finally repeat this also for minima (in
which case the definition of 7 needs another slight change to sum
iso-probabilities smaller, rather than larger, than the iso-probability
corresponding to ), to achieve what may then be referred to as
piecewise 2-D uniformization of the original 2-D statistical distri-
bution.

2.3 2-D uniformization of palaecomagnetic
directional distributions

We now turn to the more specific case of palacomagnetic directional
distributions. Consider a given site at the Earth’s surface where di-
rectional measurements are available ({uy, ... w;, ...} distributed on
the unit sphere S?), that we wish to use to test a given GGP model.
As already noted, the directional distribution predicted at such a site
by such a GGP model for error-free data is an Angular Gaussian
probability distribution of the form s(u) as defined by (7), the pa-
rameters of which depend on both the GGP model parameters (mean
Gauss coefficients (G, Gl,..., G ... H!, H}, ..., H" ...}, and
covariance matrix Cov(k, K) = [cov(k;, k;)]), and the site location.
If the data were perfect, 2-D uniformization of this data set would
thus simply consist in applying the procedure described in Sect-
ion 2.2 for Angular Gaussian distributions.

However, the data are not perfect, and errors must be taken into
account. Furthermore, some data may have larger errors than others.
Finally, we may want to consider data coming from different sites.
It thus is important that each datum is considered individually.
Assuming directional errors to be Fisherian, as is usually considered
appropriate, this means that for each datum u; characterized by a
Fisherian error with concentration parameter K;, this datum must
be compared to the pdf considering all possibilities of drawing a
value w from s,;(w) defined by (7) at the site where these data were
collected, and next drawing a value u from the Fisher distribution
£, (u, w) centred on w and defined by

K

Ku-w. 1
27 (K —eF)° (19)

tx(u,w) =

As discussed in Khokhlov ef al. (2006), this amounts to compare u;
to the pdf p;(u) defined by

p:(u) = jfsi(w)EK, (u, W) dw. (11)
SZ

It is important to note that K in (10) is the concentration param-
eter defining the error affecting the directional datum, and not the
one defining the dispersion of the samples used to estimate this
datum. For practical applications, this concentration parameter can
be inferred from the a9s parameter, usually provided with the data,
using formulae such as (A4) in Khokhlov et al. (2006). This is the
formula we use when referring to a5 values in our software and in
the examples provided below.

Even though there may be only one datum u; to compare to each
pdf p;(u) at a time, 2-D uniformization can now be used to collect,
without any loss of information, the statistical information brought
by the entire data set {u;,...w;, ...} for comparison against the
background GGP statistical model. For each directional datum wu;
in 2, one just needs to compute the uniformized pair of values (%;,
s;), using the same rules as established in Section 2.2 (recall [9]),
but corresponding to the relevant pdf p;(u):

. fL[(A,’,u‘) |grad pi(u)l_ldl
/‘L,(u‘) |grad pi(u)|7ldl

where L;(u;) is the entire (closed) iso-probability line p; (w) = p;(u;)
on which u; lies, and L;(4;, u;) is the portion of this iso-probability
line between its intersection A4; with a reference curve I'; and u;.
In principle the reference curve I'; can be chosen independently for
each datum u;. However, it is important that some simple common
rule be used for all data to keep a useful meaning to the new quantity
s;. In what follows, we will thus systematically define I'; in the same
way as the I' curve shown in Fig. 2, that is, as the curve starting
from the maximum of p;(u), moving up in the Down/North plane.
Similarly, s; will be computed using (12), with L;(4;, u;) counted
clockwise when looking at the distribution on the unit sphere from
the outside (as is the case in Fig. 2), so that small values of s;
correspond to w; pointing slightly westwards of the Down/North
plane, and values close to unit correspond to u; pointing slightly
eastwards of this plane.

Then, testing if the sequence of directional measurements
{u;, u,, ...} is a random population that is statistically compati-
ble with the GGP model (assumed as a background process), given
the known individual Fisherian errors £x,, is equivalent to testing
that the population {(#, s1), (f2, 52), . . . } is statistically compatible
with a uniform distribution in the unit square [0, 1] x [0, 1]. 2-D
uniformization of the palacomagnetic directional data distribution
has been achieved.

b= [ pwdu s,

{ulp;(w)=p;(u;)}

. (12

3 APPLICATIONS TO REAL
PALAEOMAGNETIC DATA

To illustrate the usefulness of 2-D uniformization, we now apply it
to real palacomagnetic data. The database Q94 we will use is that
of Quidelleur et al. (1994), to ease comparisons with the studies of
Khokhlov et al. (2001, 2006).

We start with Brunhes normal polarity data from sites 17 (data
selected from Bohnel e al. 1987) and 18 (selected from Bohnel
et al. 1982), which we will test against the normal polarity GGP
model C1 of Quidelleur & Courtillot (1996) (their preferred model,
empirically built to fit the Q94 database, to which we will refer as
the QC model and which we will use up to degree 7, as in Khokhlov
et al. 2006, where the model parameters are fully specified). The
reason for this choice is that the combined data from these two sites,
which share the same location of 50°N, 7°E, have been shown to be
marginally compatible with this model when only 1-D uniformiza-
tion is applied (Khokhlov et al. 2006). Yet, these data plot in a way
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Figure 3. Combined data from sites 17 and 18 of the Q94 database, at 50°N, 7°E, Lambert-projected, the centre point (pointing downwards through the page)
corresponding to the direction produced by a pure axial dipole at this location; North towards the top of the page, East towards the right. Angular distances
with respect to the centre of the plot are shown every 5° (green circles). Isovalues of a common p; (u) pdf (computed from (11), using the predicted pdf for the
QC model at the site location and a common Fisher distribution, assuming an error of wgs = 3.72° for all data) are shown as red ellipses. Those correspond
to the bounds within which, respectively, 10 per cent, 30 per cent, 50 per cent, 70 per cent, 90 per cent of the data points should plot. (a) Real data; (b) equal

amount (88) of synthetic data (see text for details).

that strongly suggests that they do not at all comply with the QC
model.

To see this, we use the same plotting convention as in fig. 3
of Khokhlov ef al. (2006, see our Fig. 3). As noted earlier, each
datum u; having a different error estimate, must be tested against
its own p;(u) pdf. However, and as in Khokhlov ef al. (2006), to be
able to plot all the data against a single p;(u) pdf (and only for the
specific purpose of showing such a figure), we plot the p;(u) pdf
computed from (11), using the pdf predicted by the QC model at the
site location, and the Fisher distribution corresponding to the mean
a9s = 3.72° of the errors of all the data plotted (Fig. 3a). A second
similar plot with synthetic data is also shown for reference (Fig. 3b).
These data are generated one at a time, with p;(u) adjusted at each
draw to exactly match the assumed error of one true datum for each
datum generated. This second plot illustrates how the same number
of synthetic data intrinsically compatible with the QC model, and
affected by the same individual errors as the true data, generally
plot.

Fig. 3 clearly suggests that compared to the synthetic data plot, too
many data are to be found eastwards and southwards of the expected
distribution in the real data plot, even though both plots display
roughly the same proportion of data within each iso-probability
lines. As we shall now see, 2-D uniformization of the data makes it
possible to confirm this.

After 2-D uniformization into {(¢;, 1), (2, 52), . .. } (each data
now being assigned its individual error), the data {u;, uy, ...} that
were plotted in Fig. 3 may first be plotted in the unit square [0, 1] x
[0, 1], where they are now expected to be uniformly distributed.
Fig. 4 clearly shows that this is not the case for the real data plot,
which displays voids and a tight cluster around = 1 and s = 0.5
(corresponding to the south-eastward excess of data in Fig. 3a).

To ease the interpretation of these voids and clusters, we may
next recognize that whereas #; can be interpreted as a renormalized

distance of u; to the most likely direction u,, on the unit sphere, s;
reflects a renormalized angular measure of the distance of u; from
the Down/North plane along the iso-probability line p;(w;). This
suggests that we also plot the uniformized data on a disc of unit ra-
dius, using (#;, 27 s;) as polar coordinates. The result of this is shown
in Fig. 5. Note that the data plotted in this way are not expected to
be uniformly distributed in the disc (the pdf being inversely pro-
portional to the radial distance for such a representation, as one can
easily check). However, it is expected to be equally distributed in all
radial directions. Fig. 5 makes it clear that this is not the case and
that the real data are unlikely to be compatible with the QC model,
even when data errors are taken into account, because too many data
plot in a single sector. This prompts us to turn to more quantitative
tests. Indeed, plenty of tests are available to test the compatibility
of a 2-D data set against a uniform distribution in the unit square.

We first repeat a test already carried out in Khokhlov et al. (2006),
where 1-D uniformization was already used. In this previous study,
the {#} as defined by (12), were indeed already considered, and their
expected uniform distribution in the unit segment [0, 1] tested. This
was achieved by using two classical tools, the Kolmogorov—Smirnov
test (KS-test) and the Anderson—Darling test (AD-test). These two
tests rely on the fact that, if a given data set {x;},i=1,...Nis
compatible with a uniform distribution over [0, 1], its empirical
cumulative distribution function (cdf) Fy(x) should fluctuate within
known limits about the theoretical cdf value F(x) = x. The tested
hypothesis should then be rejected if the empirical cdf Fy(x) departs
too much from x. The KS-test and AD-test differ in the measure
chosen to assess how distant Fy(x) is from x over [0, 1]:

(i) the KS-test uses the maximum value My of |Fy(x) — x| over
[0, 11, and is therefore most sensitive to departures of the {x;} from
a uniform distribution towards the middle of the segment [0, 1];
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Figure 4. Same data as in Fig. 3, but plotted in 7 (abscissa) and s (ordinate) coordinates in the unit square [0, 1] x [0, 1] after 2-D uniformization. (a) Real
data; (b) synthetic data. Highlighted in grey are the quadrants identified by the FF test (see text for details).

0’ 0

Figure 5. Same data as in Figs 3 and 4, but plotted in polar (z, 27rs5) coordinates in a disc of unit radius. Origin for the angular coordinate 275 is taken at the top
of the disc, corresponding to North in Fig. 3, and isovalues for 7 are plotted with 0.1 steps, to allow comparison with Fig. 3 and ease identification of matching
data points. This figure may be seen as an unfolded version of Fig. 3, taking into account the topology imposed by the p;(u) pdfs. (a) Real data; (b) synthetic
data.

(i) the AD-test uses the integral quantity Iy =
N [} (Fy(x) —x)*[x(1 —x)]"'dx. Because of the weight
[x(1 — x)]"%, it is much more sensitive to the behaviour of {x;} at
both extremes of the segment [0, 1].

To apply these tests, one just needs to compute the values of M)y
and Iy from the dataset {x;},i =1, ... Nto be tested, and infer (from
known software, e.g. Marsaglia & Marsaglia 2004; Press et al. 2007)
the probabilities P(My) and P(Iy) for the null hypothesis to have
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possibly produced such large, or even larger, values for, respectively,
My and Iy. Then, if P(My) or P(ly) is found to take a value very close
to 0 (typically 0.05 or less), the tested hypothesis can be rejected at
the corresponding level of confidence (here 95 per cent).

Applying these tests to the 1-D uniformized data {#,} from the
combined sites 17 and 18 (N = 88 data), leads to My = 0.118 and
Iy = 3.25 with probabilities P(My) = 0.16 and P(Iy) = 0.02. (Note
that these values differ slightly from the values My = 0.16 and Iy =
3.20 with probabilities P(My) = 0.17 and P(Iy) = 0.02 provided
by Khokhlov et al. (2006) for the same test, because we now use a
different numerical scheme to compute the convolution involved in
(11), based on a computation on the spherical grid, using a fast SHT
transform spherical convolution, see the Appendix). These results
confirm the conclusion of Khokhlov et al. (2006) that if only the
1-D uniformized data {#;} are investigated, the data shown in Fig. 3
are only very marginally consistent with the QC GGP model. The
most stringent AD-test indeed rejects the compatibility of these
data with the QC model at the 98 per cent level of confidence.
This reflects the slight trend seen in both Figs 3 and 5 for the data
to plot towards the margin of the predicted pdf. As expected, no
such trend is visually seen in the companion synthetic data plots
shown for reference in Figs 3 and 5. Running the same tests on the
corresponding 1-D uniformized data {#} leads to My = 0.122 and
Iy = 2.35 with probabilities P(My) = 0.14 and P(Iy) = 0.06, within
perfectly acceptable ranges.

The power of 2-D unifomization is that it now allows us to also
test the angular distribution of the data, and more generally its 2-D
distribution.

First consider testing the angular distribution as defined by the
second set of uniformized data {s;}. Such tests can be carried out
with exactly the same tools, that is, the KS and AD tests. However,
precisely because the uniformized variable s can be seen as a renor-
malized angle (recall Fig. 5), one additional test turns out to be even
more useful. This test, due to Kuiper (1960), also measures the way
the empirical cdf Fy(x) differs from the expected theoretical cfd
F(x) = x, but in yet another way, particularly appropriate for testing
variables on a circle:

Probability uniformization, directional data 117

(iii) the Kuiper-test uses the sum Vy = D, + D_ of the two
maxima D, = max (Fy(x) — x) and D_ = max (x — Fy(x)) over [0,
1], and is therefore insensitive to the change of the starting point
(as can easily be checked, D, and D_ change individually, but their
sum Vy remains constant).

To apply this test, one just needs to compute the value of Vy from
the data set {x;}, i = 1, ... N to be tested, and infer (from known
software, e.g. Press et al. 2007) the probabilities P(Vy) for the null
hypothesis to have produced such large, or even larger, values for
V.

Fig. 6(a) shows the cdf built from the uniformized data {s;} to be
tested. Also shown is the cdf built from the companion synthetic data
shown for reference in Figs 3 and 5. Building these cdfs amounts
to count the number of data found as one rotates anticlockwise in
the plots shown in Fig. 5. Not surprisingly, Fig. 6(a) again testifies
for the contrast between the deficit of data West of the Down/North
plane and the presence of a sector with a strong concentration of
data East of this plan, as seen in Figs 3(a) and 5(a). As expected, far
less contrast is to be found in the cdf of the companion synthetic
data (Fig. 6 b). Applying the KS, AD and Kuiper tests to these cdfs
confirms the statistical significance of these impressions. For the
real uniformized data {s;} from the combined sites 17 and 18 (N =
88 data), this now leads to My = 0.156, Iy = 2.62 and V) = 0.240
with probabilities P(My) = 0.02, P(Iy) = 0.04 and P(Vy) = 0.0012.
Both the KS and AD tests thus already consider the combined data
of sites 17 and 18 to be incompatible with the QC model at the
98 per cent and 96 per cent levels of confidence. The Kuiper test,
however, is clearly the most stringent of all tests, confirming this
at the very high 99.88 per cent level of confidence. This sharply
contrasts with the results of the same tests applied to the synthetic
data, which lead to My = 0.085, Iy = 0.87 and Vy = 0.12 with
probabilities P(My) = 0.52, P(Iy) = 0.43 and P(Vy) = 0.66, all
within reasonable ranges.

Simultaneously testing the two dimensions of the data distribu-
tion in the [0, 1] x [0, 1] unit square can also be done thanks
to a 2-D generalization of the KS test (Fasano & Franceschini
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Figure 6. Empirical cumulative distribution function of the uniformized data {s;} corresponding to the combined data from sites 17 and 18 (shown in Fig. 3)

tested against the QC model. (a) Real data; (b) synthetic data.
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1987). This test, to which we will refer here as the FF test, is less
straight-forward than the 1-D KS test. Unfortunately, it is also based
on an empirical and approximate approach, since, as pointed out
by Press et al. (2007, to which the reader is referred for more
details) no universal cumulative probability distribution can be
properly defined in more than one dimension. Nevertheless, this
test can provide useful insight. When considering N data dis-
tributed in the unit square: the FF-test consists in (1) comput-
ing the empirical linear correlation coefficient » (Pearson’s ») be-
tween the ¢ and s coordinates, (2) defining a point Q of coordi-
nates (tp, Sp), (3) using Q to divide the unit square in quadrants
(Q being their common edge), (4) comparing the empirical inte-
grated probability (i.e. fraction of data found) in each quadrant
with that expected from a uniform distribution and (5) identify-
ing the quadrant with the largest difference (denoted Dy) between
the empirical and expected integrated probabilities, when Q ex-
plores all locations in the unit square. The probability of find-
ing such a discrepancy can then be assessed, and is here denoted
P(Dy, r).

This test was applied to the uniformized data of sites 17 and 18,
and this led to P(Dy;, ) = 0.10 corresponding to (fp = 0.982, s =
0.525) because of the lower left quadrant being slightly underpop-
ulated (see Fig. 4 a). The same test was applied to the synthetic
data in Fig. 4(b) and led to P(Dy, ) = 0.09, now corresponding to
(to = 0.466, sp = 0.224) because of the upper left quadrant being
slightly overpopulated. This result is interesting in several ways. It
first shows that data from sites 17 and 18 cannot be considered as
incompatible with the QC model based on this FF test alone, even
though the test did spot an issue related to the cluster close to t =
1 and s = 0.5 we already mentioned. This cluster is detected as the
cause of the lower left quadrant being slightly underpopulated, but
not identified as unusually tight, even though this tightness clearly
makes the distribution in Fig. 4(a) much more unusual than that
in Fig. 4(b) (rightfully measured as not remarkably unusual). This
is because the FF test restricts attention to the data distribution in
four quadrants that may vary in size (depending on the location of
), but must always share a corner with the unit square. This test
is thus unable to spot the unusualness of a tight cluster away from
any of the four corners of the unit square. This simply illustrates
the well-known fact that no statistical test can singlehandedly test
a given data set against a statistical distribution. In the present in-
stance, we are thus led to conclude that the best test to detect the
angular biases we are interested in is the Kuiper test applied to the
{s;} uniformized data (see Table 1, which provides a summary of all
tests carried out with the 2-D uniformized data of sites 17 and 18).

In closing this discussion about sites 17 and 18, it should finally
be stressed that none of the above tests can tell which, of the data
or the model (or both), should be rejected. As a matter of fact,
data from sites 17 and 18 are likely to have serial correlations that
could be responsible for the cluster discussed (see Khokhlov et al.
2006, for a detailed discussion). The important point, though, is
that provided an appropriate test is being used, 2-D uniformization
clearly makes it possible to spot mismatches between the data and

the distribution predicted by a GGP model and the Fisherian errors
assumed to affect these data.

‘We now turn to our second and final example application of the
2-D uniformization procedure to palacomagnetic data. As already
noted, one advantage of this procedure is that it makes it possible
to collectively test the statistical behaviour of a large data set, even
though each data may be expected to locally behave differently. This
is exactly the case when one wants to test GGP models against a
database with palaeomagnetic directional data coming from differ-
ent sites worldwide.

To illustrate this situation, we generalize the tests carried out with
the combined data of sites 17 and 18, to test all Brunhes data avail-
able in the Q94 database against the same QC model. This database,
with 990 Brunhes data coming from 36 sites all over the world, was
already investigated by Khokhlov ez al. (2006), to test a series of
GGP models. They already relied on the 1-D uniformized data {7;}
as defined by (12), and tested the expected uniform distribution of
these {#;} in the unit segment [0, 1]. Using the AD and KS tests
then led them to reject all GGP models, except the QC model. This
model, however, involves symmetries that cannot account for data
trends such as the right-handed effect (Wilson 1970, 1972), which
corresponds to a slight trend towards positive declination in the
directional data, that is, towards East when the data are plotted in
the same way as in Fig. 3, where this effect is particularly obvious.
Quidelleur et al. (1994) noted that this effect collectively affects
most normal data in their database (see their fig. 4). To test if this
effect (whether linked to a bias in the data or not) is strong enough
that the QC model should also be rejected can now easily be done
by also taking advantage of 2-D uniformization.

Fig. 7(a) shows a plot of the 990 2-D uniformized data {(#, 1),
(2, 52), - . . } (each data having been assigned its individual error),
computed from the Brunhes data of the Q94 database, using the QC
model. These data are plotted in the disc of unit radius as in Fig.
5(a), and could have also been plotted in the unit square as in Fig.
4(a). Note, however, that no single plot analogous to Fig. 3 can now
be shown, since such plots depend on the location of the site from
which the data come. Just as in Fig. 5, Fig. 7(b) also shows a plot
of the same amount (990) of 2-D uniformized data, corresponding
to a set of 990 synthetic data produced from the QC GGP model,
one datum at a time with p;(u) adjusted at each draw to exactly
match the site location and assumed error of one true datum for
each datum generated. Just like Fig. 5(b), this plot illustrates how
the same number of synthetic data, intrinsically compatible with the
QC model, with the same site distribution, and affected by the same
individual errors as the true data, generally plot.

It is clear from Fig. 7 that if a right-handed effect is affecting
the real data in a way incompatible with the QC model, this effect,
which would translate in more data on average in the right half
disc of the plot in Fig. 7(a) (as was the case in Fig. 5a) remains
weak: Figs 7(a) and (b) could easily be confused with each other.
However, the eye can easily be misled. Indeed, if one now plots
the cdf built from the angular uniformized data {s;} (Fig. 8), a
clearer picture emerges, with a slight overrepresentation of s values

Table 1. Results of the AD, KS, Kuiper and FF tests applied to the uniformized {(#;,
s;)} combined real data from sites 17 and 18 of Q94 and to synthetic data, for testing
against the QC model. Probabilities of less than 0.05 are highlighted in bold.

Data[N] ~ P(My[])  PUN[ED  P(My[sl)  PUn[sh  P(VwIsD)  P(Dy,r)

Real [88] 0.16 0.02 0.02 0.04 0.0012 0.1
Synt [88] 0.14 0.06 0.52 0.43 0.66 0.07

9T0Z ‘T Jequedaq uo siue|d oljqig e /Bio'sfeuinolpioxor1fb//:dny wouy papeojumoq


http://gji.oxfordjournals.org/

Probability uniformization, directional data 119

Figure 7. (a) 2-D uniformized data computed from the 990 Brunhes data of the Q94 database, using the QC model, plotted in polar (¢, 27s) coordinates in a
disc of unit radius; (b) same, but for synthetic data (see text for details). Same plotting convention as in Fig. 5.
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Figure 8. Empirical cumulative distribution function of the uniformized data {s;} corresponding to the 990 Brunhes data of the Q94 database tested against

the QC model. (a) Real data; (b) synthetic data.

between 0.7 and 0.9 in Fig. 8(a). This overrepresentation turns out
to be statistically significant.

Just as in the case of our previous investigation of the data from
sites 17 and 18, we can again apply the KS, AD and Kuiper tests
to the cdfs of both the {¢;} and {s;} uniformized data, and the FF
to the entire 2-D distribution. As already stated, the case of the {¢;}
data was already investigated by Khokhlov ef al. (2006), and the
corresponding cdf found to show no significant departure from the
expected behaviour. We repeated these tests with our new, more
accurate, numerical scheme to compute the convolution involved
in (11). This led to the same conclusion (see Table 2) that the QC
model could not be considered incompatible with these Brunhes
data, based on the {#;} uniformized data alone. 2-D uniformization,

however, provides critical additional information, in particular the
second uniformized data {s;}. Although the KS, AD and even the
FF tests do not reveal more reasons to reject the tested hypothesis,
the Kuiper test does, at the already strong level of 99 per cent (see
Table 2). As expected, no such strong conclusion is reached when
testing the 990 synthetic data plotted in Figs 7(b) and 8(b) (see also
Table 2).

4 CONCLUSION

In this paper, following an approach similar to that of Rosenblatt
(1952), we introduced the concept of 2-D probability uniformiza-
tion, which allows the conversion of any 2-D probability distribution
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Table 2. Results of the AD, KS, Kuiper and FF tests applied to the uniformized {(z;, s;)}
data from the 990 Brunhes data of the Q94 database and to synthetic data, for testing
against the QC model. Probabilities of less than 0.05 are highlighted in bold.

Data [N] P(My[f]) — PUN[D)  P(My[sD)  PUn[sD  P(VN[sD  P(Dw, 1)

Real [990] 0.30 0.26
Synt [990] 0.80 0.71

0.07 0.01 0.07
0.11 0.17 0.20

into an equivalent uniform distribution in the unit square [0, 1] x [0,
1]. This concept is particularly useful for the purpose of testing data
sets that have to be tested against different expressions of a common
background statistics. This situation is typically encountered when
testing so-called GGP models of the Earth’s magnetic field against
palaeomagnetic directional data collected from different geograph-
ical sites. We explained the way this approach could be applied to
the 2-D distributions expected for such palaecomagnetic directional
data, if these are to be consistent with a GGP model while affected
by some Fisherian error.

We provided some example applications to real palacomagnetic
data. In particular, we showed how the significance of subtle in-
homogeneities in the distribution of the data, such as the so-called
right-handed effect in palacomagnetism, could be tested. This ef-
fect, whether of geomagnetic origin or not, was already known to
affect the Brunhes data, particularly that of the Quidelleur et al.
(1994) database. Our probability uniformization approach allowed
us to show that this right-handed effect indeed affects these data in
such a way that they cannot easily be reconciled with the QC model
[the preferred model C1 of Quidelleur & Courtillot (1996), which is
rejected at the 99 per cent level of confidence, recall Table 2], even
though this model was originally built with the help of these data.
This approach was also applied at the level of single sites [sites 17
and 18 of the Quidelleur ez al. (1994) database] to confirm that data
that one could intuitively see as affected by the same effect (this time
in a strong way, recall Fig. 3), also could not be reconciled with this
same model (this time at a much higher level of confidence, recall
Table 1).

These results show that 2-D probability uniformization could be
systematically used to both test data at the site level (to possibly
identify issues with the data themselves), and test GGP models of
the mean palacomagnetic field and palacosecular variation against
well-controlled palacomagnetic data sets, such as those carefully put
together within the context of the TAFI project (see e.g. Johnson
et al. 2008), and archived in the Magnetic Information Consortium
(MaglC) archiving system (http://earthref.org/MAGIC/). It is our
hope, and opinion, that this procedure could help in building more
accurate GGP models. The software designed in the course of this
study is available upon request from the authors. It can also be
downloaded from http://geomag.ipgp.fr/download/PSVT.tgz.
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APPENDIX

The exact choice of the spherical grid to be used is important for
the uniformization procedure on the unit sphere S. Numerical in-
tegrations over spherical domains are needed twice: in (11) when
convolving a Fisher distribution with the local Angular Gaussian
distribution to compute the p,;(u) pdf, and in (12) when comput-
ing t; from p,. Such integrations can be realized along the lines of
Press et al. (2007). However, since we lack an explicit formula for
p;(u), the computational cost is rapidly increasing with the number
of gridpoints. A proper choice of grid, however, can significantly
reduce this cost. The idea is to use an analogue of the known ‘Con-
volution using Fast Fourier Transform’ procedure appropriate for
scalar functions of one variable (Press ef al. 2007). Here we use
the fast discrete Legendre transform and the fast discrete Fourier
transform from Healy ef al. (1996). The corresponding grid is fully
determined by its ‘bandwidth’ parameter B: in usual 6, ¢ spherical
coordinates, the 2B x 2B gridpoints w; ;, 0 < k,j < 2B are

7k+1) nj
u ;= {91“(/?‘/} = {743 Ak

The construction of such a fast transform involves a lot of computer
code, and we therefore rely (with only minor changes) on the S2Kit
C-subroutines by Peter J.Kostelec and Daniel N. Rockmore avail-
able from http://www.cs.dartmouth.edu/~geelong/sphere/. For the
statistical analysis presented in this paper, we tried several values
of the bandwidth parameter B between 180 and 1440. The results
presented in Tables 1 and 2 were computed with B = 720, which
was found to be appropriate enough.

[6//:dny wouy papeojumoq

9T0Z ‘T Jequea uo seued oljgig e /Bio's


http://www.nr.com
http://magician.ucsd.edu/essentials/WebBook.html
http://magician.ucsd.edu/essentials/WebBook.html
http://www.cs.dartmouth.edu/geelong/sphere/
http://gji.oxfordjournals.org/

