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8 Abstract Conifers of the endemic species Araucaria

9 humboldtensis on Mont Humboldt in New Caledonia

10 exhibit extensive resin exudation. The resin flows of these

11 threatened trees are here shown to be induced by two beetle

12 species, which bore into branches and branchlets, leading

13 to abundant outpouring of resin, which gradually solidifies

14 into often drop-shaped resin bodies. The exudate is colo-

15 nized by a resinicolous and likely insect-vectored asco-

16 mycete, Resinogalea humboldtensis, which is only known

17 from Mont Humboldt. The fungus grows into fresh resin

18 and eventually develops ascomata on the surface of solid-

19 ifying resin. The solidified resin is also colonized by

20 another fungus, a dematiaceous hyphomycete. Based on

21 protein coding (CO1, CAD, ArgK) and ribosomal (LSU)

22 genes, the larger branch-boring beetle is a weevil of the

23 tribe Araucariini, which represents the sister group of all

24other cossonine weevils. The smaller beetle species

25belongs to the longhorn beetles (Cerambycidae). The

26strong host specificity of the Araucariini, along with the

27occurrence of two unique fungi, suggests that the resin-

28associated community is native and has evolved on the

29endemic conifer host. The formation of large amber

30deposits indicates massive resin production in the past, but

31the environmental triggers of exudation in Mesozoic and

32Cenozoic ecosystems remain unclear. Our observations

33from Mont Humboldt support the notion that the occur-

34rences of small drop-shaped amber pieces in Triassic to

35Miocene amber deposits were linked to ancient insect

36infestations. 37

38Keywords Amber � Araucaria humboldtensis �
39Araucariini � Coleoptera � Resinicolous fungi �
40Resinogalea � Weevils

41Introduction

42Some conifers and angiosperms produce large amounts of

43resin from wounds in the wood in order to seal injuries and

44to prevent microbial infections and infestations by arthro-

45pods (Farrell et al. 1991; Gershenzon and Dudareva 2007;

46Howe and Schaller 2008). Due to its compounds (ter-

47penoids or phenolics), resin not only provides a mechanical

48barrier but also protects plants through its toxic properties

49(Bednarek and Osbourn 2009; Rautio et al. 2011; Sipponen

50and Laitinen 2011).

51Fossilized plant resins (ambers) date back to the Car-

52boniferous 320 million years ago (Bray and Anderson

532009), but are found only in trace quantities until the Early

54Cretaceous (Schmidt et al. 2012). In contrast, massive

55amber deposits have been preserved in Cretaceous
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56 (Barremian-Campanian) and in Eocene to Miocene sedi-

57 ments (Penney 2010). Worldwide, accumulation of this

58 amber occurred in widespread Cretaceous and Cenozoic

59 forests with resinous tree species. However, it remains

60 uncertain why the trees produced so much resin at these

61 particular times. Climate changes, the advent of wood-in-

62 festing insects and microorganisms, and/or even the

63 appearance of certain conifer or angiosperm species might

64 have triggered the massive resin outpourings (Schmidt

65 et al. 2012; Labandeira 2014; Dal Corso et al. 2015).

66 Mesozoic resin-producing tree species typically include

67 conifers of the Araucariaceae and the extinct family

68 Cheirolepidiaceae (Langenheim 1995, 2003; Roghi et al.

69 2006a, b; Nohra et al. 2015). Later, probably since the Late

70 Cretaceous and early Cenozoic, angiosperms such as

71 Dipterocarpaceae (Rust et al. 2010) and Fabaceae (Lan-

72 genheim 1995, 2003) started to contribute significantly to

73 the amber fossil record. Among today’s gymnosperms,

74 many Pinaceae and Araucariaceae produce large quantities

75 of resin (Langenheim 1995, 2003). While species of the

76 former family are widespread in the Northern Hemisphere,

77 extant Araucariaceae are predominantly found in mid- and

78 southern latitudes (Borneo, Philippines, Chile, Argentina,

79 southern Brazil, New Caledonia, New Zealand, Norfolk

80 Island, Australia and New Guinea) with a major diversity

81 centre in New Caledonia (Eckenwalder 2009). The disjunct

82 extant distribution and the fossil record of the latter family

83 suggest that araucarian conifers were more widespread in

84 the past and probably represented a major component of

85 Mesozoic forest ecosystems in both hemispheres (e.g. Lele

86 1956; Miller 1977; Stockey 1982; Hill 1995; Kunzmann

87 2007).

88 Presently the island of Grande Terre in New Caledonia

89 has 19 Araucariaceae species of which 13 are endemic

90 (Jaffré 1995; Gaudeul et al. 2012), and it has often been

91 termed a Gondwanan refuge (Holloway 1979; Morat

92 1993a, b). However, recent studies suggest that the species

93 richness of New Caledonia’s araucarians is rather a result of

94 adaptive radiation in the post-Eocene era, mainly forced by

95 unusual edaphic conditions, i.e. the widespread occurrence

96 of ultramafic soils (Setoguchi et al. 1998; Gaudeul et al.

97 2012; Escapa and Catalano 2013; Kranitz et al. 2014;

98 Grandcolas et al. 2015). Nevertheless, with an evolutionary

99 history of more than 200 million years, Araucariaceae are

100 among the oldest extant conifers (Kunzmann 2007). In this

101 respect, the conifer forests of New Caledonia offer an opti-

102 mal site for the study of plant–environment interactions that

103 are responsible for triggering resin production, past and

104 present.

105 Here we show that the widespread and substantial resin

106 exudation of Araucaria humboldtensis Buchholz 1949, an

107 endangered (IUCN red list status) endemic New Caledonian

108 mountain conifer, is induced by at least two species of beetles

109and that the exuded resin provides the habitat and nutrient

110source for at least two unique types of resinicolous fungi.

111Araucaria humboldtensis occurs sporadically in the montane

112forests of Mont Mou, Mont Kouakoué and Montagne des

113Sources, but only close to the summit of Mont Humboldt is it

114the dominant timberline species (Fig. 1a). Our analysis of

115the plant–animal–fungal interactions at this unique location

116indicates that the wood-boring beetles are not recently

117introduced species, but native to New Caledonia and eco-

118logically important in providing continuous substrate for two

119endemic, potentially ancient fungi. Our overall observations

120also provide insights into possible means of resin production

121and amber formation in earth history: for example, the sim-

122ilarity between the Mont Humboldt resin droplets and those

123preserved as Triassic amber is striking. We propose that not

124all ancient resin productions should necessarily be inter-

125preted as anomalies caused by specific triggers such as high

126humidity (Dal Corso et al. 2015) or fire, but may have

127accumulated over time in humid forest environments. There

128is some indication also that the ancient resin surfaces may

129have supported specialized communities rather similar to

130that now described from Mont Humboldt (McKellar et al.

1312011; Tuovila et al. 2013).

132Materials and methods

133Field work

134Resin flows of Araucaria humboldtensis on Mont Humboldt

135were examined and photographed in October 2005 and in

136November 2011. Samples of resin with fungi and wood-

137boring insects were taken on 9 November 2011 from trees

138close to the refuge (elevation 1345 m, coordinates

13921�52057.5200S, 166�24046.2000E), approximately 300 m

140north of the building (elevation 1320 m, coordinates

14121�52046.7900S, 166�24049.1700E), and along the summit trail

142approximately 300 m east of the shelter (elevation 1380 m,

143coordinates 21�52054.8900S, 166�24055.8500E). Fungi were

144stored dry in sealed containers, and insects were preserved in

14580% ethyl alcohol for storage and transport.

146Repository

147Specimens of Resinogalea humboldtensis are deposited in

148the herbaria at the MNHN Paris and in Helsinki (see Rikki-

149nen et al. 2016). Lumps of resin with the dematiaceous

150hyphomycete are housed in the Geoscientific Collections of

151the Georg August University Göttingen (GZG.BST.21894a–

152e). Beetle specimens are housed in the collection of the

153laboratory Géosciences Rennes (University Rennes I), col-

154lection numbers VP-NC-221 (Araucariini) and VP-NC-202

155(Cerambycidae).
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156 Microscopy and imaging

157 Samples were investigated under a Carl Zeiss Stereo Discovery

158 V8 dissection microscope, and under a Carl Zeiss AxioScope

159 A1 compound microscope, each equipped with a Canon EOS

160 5D digital camera. In some instances, incident and transmitted

161 light were used simultaneously. Figure 4a, c–e shows digitally

162 stacked photomicrographic composites of up to 150 individual

163 focal planes, obtained by using the software package Heli-

164 conFocus 6.0 (HeliconSoft, http://www.heliconsoft.com) for

165 an enhanced illustration of three-dimensional structures.

166Cultivation of resinicolous fungi

167For in vitro cultivation experiments, mycelia of the

168dematiaceous hyphomycete and spores from the mazae-

169dium of Resinogalea were extracted and transferred to

170diverse sugar-based media: malt yeast extract agar (MYA,

171Ahmadjian 1967), malt extract agar (MEA, Blakeslee

1721915) and potato dextrose agar (PDA, Roth). Additionally,

173Canada balsam and/or small pieces of Araucaria hum-

174boldtensis resin were provided as potential nutrient sources

175for the fungi.

Fig. 1 Resinous Araucaria humboldtensis on Mont Humboldt in

New Caledonia. a Cloud forest of Mont Humboldt with A.

humboldtensis as dominating tree species. b Tree with resin

outpourings on several branches. c Massive resin outpouring and

death of distal branch end after infestation by weevil larvae of the

Araucariini tribe

Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia
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176 DNA extraction and amplification

177 DNA was isolated using DNeasy Blood and Tissue Kit

178 (Qiagen) by following the manufacturer’s protocol for

179 tissue samples. For the beetles, we amplified and

180 sequenced fragments of the mitochondrial gene cyto-

181 chrome oxidase 1 (COI), the D2–D3 segment of the nuclear

182 large ribosomal subunit (28S), the nuclear protein arginine

183 kinase (ArgK) and carbamoyl-phosphate synthase 2—as-

184 partate transcarbamylase—dihydroorotase (CAD). The ITS

185 region of the resinicolous fungi was amplified using pri-

186 mers ITS1F and ITS4. All primers used in this study are

187 provided in supplementary information (Table S1). PCRs

188 were performed in a 25-ll volume containing final con-

189 centrations of 0.5 lM of each primer, 0.5 lM of each

190 dNTP, 1.25 units of GoTaq Hot Start DNA polymerase

191 (Promega), Green PCR buffer with a final concentration of

192 1.5 mM MgCl2 and 1–2 ll template DNA. A typical PCR

193 cycle consisted of 2 min initial heating to activate the DNA

194 polymerase and to ensure that the template DNA has

195 denatured, 40 cycles of 94 �C for 45–60 s of denaturation,

196 50–56 �C for 45–60 s of annealing, and 72 �C for 45–60 s

197 of elongation and a final elongation step at 72 �C for

198 10 min. PCR products were purified using Quick PCR

199 Purification Kit from Qiagen. PCR products were

200 sequenced in both directions with a MegaBACE 1000

201 automated sequencing machine and DYEnamic ET Primer

202 DNA Sequencing Reagent (Amersham Biosciences, Little

203 Chalfont, UK). All sequences were assembled and edited

204 using BioEdit version 5.0.9 (Hall 1999) and SeaView 4

205 (Gouy et al. 2010).

206 Phylogenetic analysis of the beetles

207 Since no adults of the two beetle species were available for

208 species identification, we substantiated morphological

209 diagnostics with comprehensive molecular phylogenetic

210 analysis. We combined our DNA sequence data obtained

211 from four genes (CO1, LSU, ArgK and CAD) of the large

212 beetle species and from the CO1 gene for the small beetle

213 species with data from the National Center for Biotech-

214 nology Information (NCBI). All accession numbers are

215 provided in supplementary notes (Table S2). Data sets for

216 each gene were aligned separately using MAFFT version 6

217 (Katoh and Toh 2008) with subsequent manual adjustment

218 to minimize the number of possible false homologies using

219 BioEdit 5.0.9. (Hall 1999) and SeaView 4 (Gouy et al.

220 2010). Unalignable regions and introns were excluded by

221 using the mask function in BioEdit 5.0.9. All genes were

222 subsequently combined in a super matrix using BioEdit

223 5.0.9. Bayesian analyses were performed using Markov

224 chain Monte Carlo (MCMC) in MrBayes 3.1.2 (Ronquist

225 and Huelsenbeck 2003). Evolutionary models with six

226substitution rates, gamma distributed rate variation and a

227proportion of invariable sites (GTR ? I ? G) were applied

228to each gene separately by allowing MrBayes to estimate

229specifications for the gamma shape parameter, proportion

230of invariance and rate matrix for each partition. Phyloge-

231netic analyses were performed using two parallel runs, each

232with four chains, for 10 million generations and sampling

233parameters every 1000 generations.

234Most likely trees were sampled by using a burn-in of

23525%, and a 50% majority rule consensus tree was gener-

236ated. All analyses were performed on the freely available

237computational resource CIPRES (Miller et al. 2010).

238Assessing convergence and sufficient chain mixing (ef-

239fective sample sizes [200) was observed using Tracer 1.5

240(Rambaut and Drummond 2009). Resulting trees were

241visualized using FigTree (Rambaut 2006–2009, http://tree.

242bio.ed.ac.uk/software/figtree/).

243Results and discussion

244Field observations

245A large proportion of Araucaria humboldtensis trees on

246Mont Humboldt exhibited conspicuous resin outpourings

247that were commonly associated with the death of branch-

248lets or sometimes even entire branches (Fig. 1b, c). There

249was no indication of damage caused by high winds or any

250other external mechanical impact. The Araucaria hum-

251boldtensis forest is located between approximately 1250

252and 1500 m elevation, a region with daily fog and rainfall

253ensuring constant high humidity year-round. Consequently,

254while wildfires are common on the lower slopes of Mont

255Humboldt, the timberline forest is not subjected to fire,

256which is another possible trigger of enhanced resin pro-

257duction (Scott 2000; Brasier et al. 2009; Najarro et al.

2582010). Instead, we observed that the resin outpourings

259consistently occurred on branches that had been infested by

260wood-boring beetles (Figs. 1, 2, 3).

261Two differently sized species of wood-boring beetles

262were identified from the resin-exuding branches and

263branchlets. Larvae of both species caused substantial

264damage to the interior of the branch. Larvae of the smaller

265beetle species were predominantly found in the distal thin

266green branchlets (Figs. 2a–c, 3e), whereas larvae and

267pupae of the larger species occurred in the wider woody

268parts of mature branches (Figs. 1c, 3a–d). The boring

269activity of the smaller species induced the production of

270abundant resin drops of predominantly 3–4 mm size that

271solidified on the leaves and branchlet tips. Borings of the

272larger species often led to the death of distal branch ends or

273of entire branches (Fig. 1c). This is likely because the

274maximum width of the mature larvae is only slightly

C. Beimforde et al.
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275 smaller than mature branches of Araucaria humboldtensis

276 so that both xylem and phloem are heavily damaged by the

277 insect larvae (Fig. 3a, b).

278 Resin flows induced by the larger beetle species were

279 drop-shaped to irregular, sometimes forming masses sur-

280 rounding an entire branch (Fig. 1c). These larger resin

281 outpourings commonly consist of several successive resin

282 flows and obviously persist over many months, possibly

283 even years (Figs. 1c, 4b).

284 Wood-boring beetles

285 The larger beetle species represents a weevil (family Cur-

286 culionidae). According to our Bayesian analysis (Fig. 5), it

287 belongs to the subfamily Cossoninae and likely represents

288 a member of the Araucariini group, a tribe erected by

289 Kuschel (1966) and presently accommodating the

290neotropical genus Araucarius Kuschel 1966, and the four

291Oceanian genera Coptocorynus Marshall 1947, Mastersi-

292nella Lea 1896, Xenocnema Wollaston 1973 and Inosomus

293Broun 1882 (Alonso-Zarazaga and Lyal 1999). The phy-

294logenetic analysis placed the smaller beetle species clearly

295outside the Curculionidae, and the morphological features

296of the larvae are characteristic for the family Cerambyci-

297dae. However, because of insufficient molecular data in

298public databases, we were not able to assign the smaller

299species to any group with any certainty.

300The phylogenetic relationships of the Cossoninae

301(Fig. 5) revealed by our analysis are congruent with the

302results of Jordal et al. (2011). The monophyletic Arau-

303cariini tribe forms the sister group to the remaining Cos-

304soninae, and the Mont Humboldt weevil constitutes the

305first-order sister clade to the remaining Araucariini.

306Although only ambiguously supported (0.79 pp, Fig. 5),

Fig. 2 Drop-shaped resin pieces on Araucaria humboldtensis (a–

c) and from Triassic and Eocene amber deposits (d, e). a Resin

droplets on branchlets exuded after infestation by small beetles. b,

c Small resin outpourings composed of several resin droplets.

d Amber droplets from the Triassic (Carnian) Heiligkreuz Formation

in the Italian Dolomites. e Drop-shaped piece of Eocene Baltic

amber. Scale bars 5 mm

Resin exudation and resinicolous communities on Araucaria humboldtensis in New Caledonia
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307 the affiliation of the weevil from Mont Humboldt to the

308 Araucariini group is conceivable because multiple inde-

309 pendent Bayesian analysis with different taxon samplings

310 for the Cossoninae all grouped the weevil from Mont

311 Humboldt to the Araucariini tribe (data not shown).

312 Jordal et al. (2011) recently confirmed that the sub-

313 family Cossoninae is monophyletic and includes the tribe

314 Araucariini. Within the Cossoninae, only members of the

315 monophyletic Araucariini are restricted to araucarian host

316 plants, while the remaining Cossoninae comprise lineages

317 feeding on angiosperms or Pinaceae. Both larvae and adults

318 of Araucariini live inside the bark and phloem of their

319 araucarian hosts (Mecke et al. 2005). Since mature bran-

320 ches of Araucaria humboldtensis were only slightly larger

321 in diameter than the larvae and pupae of the weevil spec-

322 imens within (Fig. 3a, b), it is difficult to deduce the pre-

323 ferred food of the larvae. However, phloem tissue was

324 certainly included in their diet.

325 New Caledonia’s Araucariaceae are believed to have

326 diversified in post-Eocene times, mainly in response to the

327 highly unusual edaphic conditions on the island (Setoguchi

328 et al. 1998; Kranitz et al. 2014; Grandcolas et al. 2015).

329 Not surprisingly, Mecke et al. (2005) also showed that New

330 Caledonia harbours a wide variety of largely undescribed

331weevil species that associate with different Araucaria

332species. Due to their specialization on araucarian hosts and

333basal position within the Cossoninae, the Araucariini are

334suspected to represent an archaic lineage within the Cos-

335soninae (Kuschel 1966, 2000; Sequeira and Farrell 2001;

336Sequeira et al. 2000). The extreme host specificity may in

337turn be related to the stable morphology and anatomy of its

338araucarian hosts. Fossil data demonstrate that the phloem

339anatomy of araucarians has not changed significantly since

340Cretaceous times (Stockey 1994), and the trees are also

341known to have produced resin by the mid-Cretaceous

342(Nohra et al. 2015). Concurrently, resin flows of araucarian

343conifers in humid forest ecosystems have existed for tens

344of millions of years and potentially allowed the evolution

345of highly specialized resinicolous organisms and associa-

346tions (see Mecke et al. 2005).

347Resinicolous fungi

348The semi-solid resin of Araucaria humboldtensis on Mont

349Humboldt provided suitable substrate for at least two

350unique species of resinicolous fungi (Fig. 4). The first

351fungus (Fig. 4a), a teleomorphic ascomycete, was recently

352described as new and named Resinogalea humboldtensis

Fig. 3 Beetle infestation in Araucaria humboldtensis. a Fragment of

a branch with branchlets died off after erosion of the branch’s interior

by weevil larvae. b Weevil larva feeding the tissue of a branch. c,

d Larva (c) and pupa (d) of a weevil of the Araucariini tribe. e Small

beetle larvae, a representative of the Cerambycidae, from the interior

of the branchlet. Scale bars 1 cm (a), 5 mm (b–d) and 1 mm (e)

C. Beimforde et al.
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353 Rikkinen et A. R. Schmidt 2016. The pale mycelium grows

354 immersed in semi-solidified resin of A. humboldtensis

355 (Fig. 4a, lower left), and ascomata are formed when the

356 substrate solidifies. As the mycelium grows entirely sub-

357 merged in the resin and because individual hyphae grow in

358 random orientations, the fungus seems to utilize resin as a

359 food source. For more details on the ecology, anatomy and

360 taxonomy of R. humboldtensis, see Rikkinen et al. (2016).

361 While ascomata of Resinogalea were found in only a

362 small minority of resin flows on Mont Humboldt, almost all

363 hardening and solidified resin surfaces were colonized by a

364 highly conspicuous dematiaceous hyphomycete (Fig. 4b–

365 e). The dark hyphae of the fungus grew only on the hard-

366 ened resin surface and did not penetrate into semi-solidified

367 resin. Synnemata consisting of aggregated hyphae produce

368simple acropetal chains of rounded to ovoid ornamented

369conidia 4–7 lm long (Fig. 4e). Sometimes the conidio-

370phores are reduced to mere conidiogenous cells with sim-

371ple acropetal chains of more rounded conidia (Fig. 4d). On

372the basis of ITS sequences, the fungus belongs to the

373Mycosphaerellaceae, but its closer affinities remain

374unresolved.

375Resinicolous fungi represent a polyphyletic ecological

376assemblage including, for example, many ascomycetes of the

377order Mycocaliciales (e.g. Rikkinen 1999, 2003a, b; Rikkinen

378et al. 2014, 2016; Tuovila et al. 2011a, b, 2012, 2013; Tuovila

3792013). Many resinicolous mycocalicioids are highly substrate

380specific, a feature most likely related to the unique chemical

381compositions of many plant exudates (Lagenheim 2003).

382Chaenothecopsis neocaledonica from Agathis ovata (C.

Fig. 4 Resinicolous fungi from Araucaria humboldtensis. a Ascoma

of Resinogalea humboldtensis exposing ascospores on top. Hyphae

inside the resin are visible in the lower left of the image. b Solidified

resin densely overgrown by a dematiaceous hyphomycete. C. Close-

up of (b) showing the dark hyphae. d Growing young colony of the

dematiaceous hyphomycete with formation of conidia. e Conidio-

phores of the dematiaceous hyphomycete arising forming aggregated

superficial hyphae and bearing simple acropetal chains of conidia.

Scale bars 200 lm (a), 1 mm (b), 100 lm (c, d) and 50 lm (e)
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383 Moore ex Vieill.) Warb. 1900 is the only resinicolous myco-

384 calicioid fungus so far known from araucarian exudates

385 (Rikkinen et al. 2014). However, considering the high diver-

386 sity of Araucariaceae in New Caledonia, many new resini-

387 colous fungi may still await discovery on the island.

388 A resinous community

389 Araucaria humboldtensis is the dominant tree species in

390 the timberline forest of Mont Humboldt. The trees produce

391 a steady supply of fresh resin induced by at least two wood-

392 boring beetle species. The phylogenetic placement of the

393 weevil species within the Araucariini tribe suggests a long-

394 lasting interaction between the narrow endemic conifer

395 host and the beetle species that has specialized to bore into

396 its branches and feed on their internal tissue. Interestingly,

397 the occurrence of Resinogalea further indicates that the

398 beetle-induced resin outpourings must have been common

399 and continuous enough to allow the evolution and contin-

400 ued existence of a unique ascomycete species specific to

401 this unusual substrate. It is also likely that Resinogalea

402 humboldtensis and possibly the dematiaceous hyphomycete

403are dispersed by adult beetles. The ascomata of Resino-

404galea have long and slender stalks and well-developed

405mazaedia (spore masses), which both represent typical

406calicioid features that are suspected to promote insect

407dispersal. Mature ascospores accumulate into the mazae-

408dium and are then easily attached to roaming insects

409(Rikkinen 1995, 2003a; Tuovila et al. 2011a; Prieto and

410Wedin 2013). Also, the widespread production of syn-

411nemata by the anamorphic stages of many ascomycetes

412(e.g. Seifert 1985) is undoubtedly partly explained by

413adaptations for animal dispersal. Thus, the two unique

414fungi on A. humboldtensis resin may depend on the wood-

415boring beetles, not only for the production of suitable sub-

416strate, but also in their dispersal.

417Despite repeated efforts, we could not induce the

418ascospores of Resinogalea humboldtensis to germinate and

419were thus unable to culture the fungus. The dematiaceous

420hyphomycete did grow, but very slowly and exclusively on

421the original substrate, i.e. small pieces of Araucaria hum-

422boldtensis resin. No growth was observed on sugar-based

423media or Canada balsam (Pinaceae resin). When small

424pieces of the natural substrate and sugar were provided,

Fig. 5 50% majority rule

consensus phylogram from

Bayesian analyses (MrBayes)

showing phylogenetic

relationships of the Cossoninae

based on nuclear ribosomal

(LSU) and protein coding (CO1,

ArgK, CAD) sequence data of

18 Cossoninae species and two

Cryptorhynchinae species used

as outgroup. Numbers at nodes

indicate posterior probabilities

(pp) for node support. Node

supports of 1.0 pp and less are

shown
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425 growth was restricted to the resin. This strongly suggests an

426 inability to metabolize sugar-based carbohydrates and

427 exemplifies the level of substrate specialization in resini-

428 colous fungi. The inability to use Pinaceae resin together

429 with the apparent narrow endemism in New Caledonia

430 suggests that the dematiaceous hyphomycete may only

431 occur on the resin of this one Araucaria species or that it is

432 at least restricted to New Caledonia.

433 A concurrent example of extreme substrate specificity of

434 a resinicolous fungus to a narrowly endemic conifer host

435 was previously reported from California, where Myco-

436 calicium sequoiae only lives on the resinous exudate that

437 issues from the exposed heartwood of fire-scarred but still

438 living trunks of Sequoiadendron giganteum (Bonar 1971).

439 Two collections of the fungus have also been reported from

440 Sequoia sempervirens, but their identity should be con-

441 firmed by molecular methods.

442 We conclude that the wood-boring beetles that cause

443 highly conspicuous resin flows on Araucaria humboldten-

444 sis are not introduced species and probably do not pose a

445 serious threat to the existence of the critically endangered

446 tree species. Conversely, they induce and maintain a con-

447 tinuum of substantial resin flows that apparently provide

448 the only substrate for two species of unique resinicolous

449 fungi. There is reason to believe that the ‘triangle associ-

450 ation’ between the endemic conifer host, the endemic

451 weevil and the two endemic fungi evolved in the humid

452 forests of New Caledonia and may be of considerable

453 antiquity. Divergence time estimates by Kranitz et al.

454 (2014) suggest that the New Caledonian Araucaria species

455 diversified in the Miocene–Pliocene between 19 and 3 Ma

456 and that A. humboldtensis appears to be approximately

457 5 Ma old, suggesting that the common history of the

458 association may date back to the early Pliocene or even

459 further.

460 Palaeoecological implications

461 We propose that the extant Araucaria humboldtensis forest

462 offers a model for a type of enhanced resin production in

463 ancient ‘amber forests’, i.e. past forest ecosystems from

464 which amber deposits derive.

465 The reasons for massive Mesozoic and Cenozoic amber

466 accumulations remain obscure. It has been suggested that

467 the evolution of certain wood-boring insect species and

468 subsequent large-scale insect outbreaks might have caused

469 substantial tree damage followed by enhanced resin release

470 (McKellar et al. 2011; Peris et al. 2015). Concurrently, it

471 has been suggested that Coleoptera were unlikely to have

472 been inducers for the resin outpourings that resulted in

473 early–middle Cretaceous ambers, based on the sparse

474 record of wood-boring beetle families such as Curculion-

475 idae, Cerambycidae or Buprestidae in these ambers (Peris

476et al. 2016). However, this is based on the scarcity of adult

477specimens preserved and does not consider the possibility

478of larval stages boring into branchlets, which would have a

479low probability of being engulfed by resin flows. Our

480current observations from Mont Humboldt show that even

481a moderate population of specialized insects can trigger

482and maintain the continuous production of considerable

483amounts of resin. Ambers are known to vary in size from

484tiny droplets to massive pieces of up to 10 kg (e.g. Weit-

485schat and Wichard 2002; Krumbiegel and Krumbiegel

4862005), and their primary shape depends on resin viscosity

487and how and where the resin was produced on the ancient

488source trees. The shape and size of the resin droplets pro-

489duced by Araucaria humboldtensis correspond closely to

490those of certain amber pieces, such droplets from the Tri-

491assic Heiligkreuz Formation in the Italian Dolomites

492(Fig. 2d, Roghi et al. 2006a, b; Schmidt et al. 2006, 2012),

493Late Cretaceous (Turonian-Santonian) of north-western

494and southern France (Saint Martin et al. 2013; Néraudeau

495et al. 2017) and from the Eocene of the Baltic area

496(Fig. 2e).

497The occurrence of Triassic amber exclusively in a nar-

498row Carnian-aged time horizon exemplifies a probable

499connection between enhanced resin production and climate

500change (Schmidt et al. 2012), and a connection to the

501Carnian Pluvial Event (Breda et al. 2009; Roghi et al.

5022010), a global episode of atmospheric perturbation with

503dramatic changes in a monsoonal climate due to massive

504volcanism (Roghi et al. 2010; Preto et al. 2010; Dal Corso

505et al. 2012). Previously, Langenheim (1994) suggested that

506resin production can be enhanced in response to increased

507water availability, and so on Mont Humboldt the continu-

508ous high atmospheric humidity may well promote resin

509exudation responses during insect infestations. We pre-

510sume, however, that massive resin productions during

511particular periods of Earth history were unlikely to be

512caused by any single event or trigger, but more likely

513reflect complex organismal interactions in humid forests,

514involving not only trees and wood-boring insects but

515potentially also many other resin-associated organisms,

516including resinicolous ascomycetes. This is supported by

517the fact that resinicolous Chaenothecopsis species have

518been found in Palaeogene ambers of Europe (Beimforde

519et al. 2014; Rikkinen and Poinar 2000; Tuovila et al. 2013),

520demonstrating that their special mode of nutrition was

521already developed at least 35 million years ago.
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