P. Meakin, Fractals, Scaling and Growth Far from Equilibrium , Cambridge Nonlinear Science Series, 1998.

M. Matsushita, J. Wakita, H. Itoh, I. , T. Matsuyama et al., Interface growth and pattern formation in bacterial colonies, Physica A: Statistical Mechanics and its Applications, vol.249, issue.1-4, p.517, 1998.
DOI : 10.1016/S0378-4371(97)00511-6

C. P. Zollikofer and J. D. Weissmann, A bidirectional interface growth model for cranial interosseous suture morphogenesis, Journal of Anatomy, vol.291, issue.2, p.100, 2011.
DOI : 10.1111/j.1469-7580.2011.01386.x

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3162232

A. Barabasi and H. E. Stanley, Fractal concepts in surface growth, 1995.
DOI : 10.1063/1.2808215

J. Merikoski, J. Maunuksela, M. Myllys, J. Timonen, and M. J. Alava, Temporal and Spatial Persistence of Combustion Fronts in Paper, Physical Review Letters, vol.90, issue.2, p.24501, 2003.
DOI : 10.1103/PhysRevLett.90.024501

E. G. Flekkøy and D. H. Rothman, Fluctuating Fluid Interfaces, Physical Review Letters, vol.75, issue.2, p.260, 1995.
DOI : 10.1103/PhysRevLett.75.260

S. Atis, A. Kumar-dubey, D. Salin, L. Talon, P. L. Doussal et al., Experimental Evidence for Three Universality Classes for Reaction Fronts in Disordered Flows, Physical Review Letters, vol.114, issue.23, p.234502, 2015.
DOI : 10.1103/PhysRevLett.114.234502

URL : http://arxiv.org/abs/1410.1097

T. Halpin-healy and K. A. Takeuchi, A KPZ Cocktail-Shaken, not Stirred..., Journal of Statistical Physics, vol.94, issue.4, p.794, 2015.
DOI : 10.1007/s10955-015-1282-1

R. Toussaint, G. Løvoll, Y. Méheust, K. J. Måløy, and J. Schmittbuhl, Influence of pore-scale disorder on viscous fingering during drainage, Europhysics Letters (EPL), vol.71, issue.4, p.583, 2005.
DOI : 10.1209/epl/i2005-10136-9

URL : https://hal.archives-ouvertes.fr/hal-00110562

M. Kardar, G. Parisi, and Y. Zhang, Dynamic Scaling of Growing Interfaces, Physical Review Letters, vol.56, issue.9, p.889, 1986.
DOI : 10.1103/PhysRevLett.56.889

V. G. Miranda and F. D. Reis, Numerical study of the Kardar-Parisi-Zhang equation, Physical Review E, vol.77, issue.3, p.31134, 2008.
DOI : 10.1103/PhysRevE.77.031134

]. C. Dasgupta, J. M. Kim, D. M. , and S. Sarma, Instability, intermittency, and multiscaling in discrete growth models of kinetic roughening, Physical Review E, vol.55, issue.3, p.2235, 1997.
DOI : 10.1103/PhysRevE.55.2235

C. Lam and F. G. Shin, Anomaly in numerical integrations of the Kardar-Parisi-Zhang equation, Physical Review E, vol.57, issue.6, p.6506, 1998.
DOI : 10.1103/PhysRevE.57.6506

T. J. Newman and A. J. Bray, Strong-coupling behaviour in discrete Kardar - Parisi - Zhang equations, Journal of Physics A: Mathematical and General, vol.29, issue.24, p.7917, 1996.
DOI : 10.1088/0305-4470/29/24/016

URL : http://arxiv.org/abs/cond-mat/9604071

A. L. Chua, C. A. Haselwandter, C. Baggio, and D. D. Vvedensky, Langevin equations for fluctuating surfaces, Physical Review E, vol.72, issue.5, p.51103, 2005.
DOI : 10.1103/PhysRevE.72.051103

H. Risken, The Fokker-Planck Equation, 1996.

D. B. Abraham and B. J. Upton, Dynamics of Gaussian interface models, Physical Review B, vol.39, issue.1, p.736, 1989.
DOI : 10.1103/PhysRevB.39.736

J. Krug, P. Meakin, and T. Halpin-healy, Amplitude universality for driven interfaces and directed polymers in random media, Physical Review A, vol.45, issue.2, p.638, 1992.
DOI : 10.1103/PhysRevA.45.638

E. Villermaux and J. Duplat, Coarse Grained Scale of Turbulent Mixtures, Physical Review Letters, vol.97, issue.14, p.144506, 2006.
DOI : 10.1103/PhysRevLett.97.144506

URL : https://hal.archives-ouvertes.fr/hal-00098351

J. Bear, Dynamics of Fluids in Porous Media, Soil Science, vol.120, issue.2, 1972.
DOI : 10.1097/00010694-197508000-00022

P. Wang, A. M. Tartakovsky, and D. M. Tartakovsky, Probability Density Function Method for Langevin Equations with Colored Noise, Physical Review Letters, vol.110, issue.14, p.140602, 2013.
DOI : 10.1103/PhysRevLett.110.140602