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The forthcoming Swarm satellite mission is a constellation of three satellites dedicated to the study of the
geomagnetic field. The orbital characteristics of the mission, which includes a pair of satellites flying side by
side, has prompted new efforts in data processing and modeling. A consortium of several research institutions
has been selected by the European Space Agency (ESA) to provide a number of Level-2 data products which
will be made available to the scientific community. Within this framework, specific tools have been tailor-made
to better recover the lithospheric magnetic field contribution. These tools take advantage of gradient properties
measured by the lower pair of Swarm satellites and rely on a regional modeling scheme designed to better detect
signatures of small spatial scales. We report on a processing chain specifically designed for the Swarm mission.
Using an End-to-End simulation, we show that the tools developed are operational. The chain generates a model
that meets the primary scientific objectives of the Swarm mission. We also discuss refinements that could also
be implemented during the Swarm operational phase to further improve lithospheric field models and reach
unprecedented spatial resolution.
Key words: Lithospheric magnetic field, space magnetometry, Swarm.

1. Introduction
Large magnetic anomaly field features with spatial di-

mensions of more than a few hundred kilometers can be
inferred from Low Earth Orbiting (LEO) satellites. These
length scales are typically dominated by the magnetic field
created by the spatial variation in structure and composi-
tion of the Earth’s crust and upper mantle (Thébault et al.,
2010 for a review). The previous CHAMP (Reigber et
al., 2002) satellite mission allowed impressive progress to-
wards mapping the Earth’s lithospheric magnetic field (e.g.,
Maus et al., 2008), understanding their geological sources
(e.g., Hemant and Maus, 2005), and inferring other phys-
ical quantities such as the equivalent global Curie depth
(Purucker et al., 2002) or the heat flow anomalies of the
Earth’s crust in remote regions (e.g., Fox-Maule et al.,
2005). The Earth’s lithospheric field at large wavelengths
(>400 km) is conceptually simple because mostly static in
time (e.g., Thébault et al., 2009). Unfortunately, it is also
one of the weakest detectable sources at satellite altitudes
and is masked by all other constituents of the total Earth’s
magnetic field (e.g., Hulot et al., 2007). For instance, it
represents about 0.01% of the total Earth’s magnetic field
strength at 400 km height (with a root mean square of about
3.8 nT using the NGDC-720 model; Maus, 2010) and its
magnitude rarely exceeds 20 nT.

Planetary magnetic fields are often expressed in terms of
a finite series of spherical harmonics (SH) to a maximum
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expansion degree. After ten years of the CHAMP mission,
the most recent models describing the magnetic field of the
lithosphere, such as the MF7 model (an upgrade of Maus et
al., 2008; http://geomag.org/models/MF7.html) expanded
to SH degree 133, and the CHAOS-4 model (an upgrade of
Olsen et al., 2010a) expanded to SH degree 100, agree rea-
sonably well up to degree 85, thus providing a robust bound
of about 470 km on the maximum horizontal spatial reso-
lution. The geometrical attenuation with altitude and the
prominence of external fields at satellite level are the two
main factors limiting our ability to reach higher SH degrees
and thus to detect smaller scale structures. However, for
equivalent altitude datasets, the differences between MF7
and CHAOS-4 mainly lie in the way the different mod-
els deal with source field separation and, more specifically,
with the rapidly time-varying external fields.

Two approaches can indeed be followed for the analysis
of magnetic field measurements from space. The first one,
referred to as the comprehensive inversion (CI) approach,
attempts to solve for all known magnetic field contributions
through a grand inversion (e.g., Sabaka and Olsen, 2006;
Sabaka et al., 2013; Olsen et al., 2010a). This approach
requires some assumptions about the geometry of the dom-
inant source fields to guide the model parameterization. Be-
cause of the time needed to properly sample the Earth’s sur-
face and because of the satellite orbital precession through
local time (LT), the CI approach relies on mathematical
models describing the sources only on average in space and
time. For the recent CHAMP mission, the complete cov-
erage in space and LT was achieved after about 130 days
(Olsen et al., 2010b, figure 8). As a result, in such mod-
els the external magnetic fields with higher time frequen-
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1258 E. THÉBAULT et al.: SWARM SCARF DEDICATED LITHOSPHERIC FIELD INVERSION CHAIN

cies may overlap with the small scale and weak lithospheric
fields so that both contributions can be difficult to identify
without ambiguity (e.g., Olsen et al., 2010c).

One may follow a second approach, referred to as the
sequential approach, and focus on one specific constituent
such as the lithospheric magnetic field (e.g., Maus et al.,
2008). The ambiguity with respect to internal and external
field separation can then be partly removed by adding prior
information or by selecting measurements in a way that is
more optimum. This is a complex and subjective proce-
dure where the investigator’s decisions are needed all along
the way to isolate the corresponding contributions. This ap-
proach successfully led to a suite of lithospheric field mod-
els with unprecedented spatial resolution (SH degree 133
for the MF7 model). Even though specific problems re-
lated to spectral leakage can arise (Sabaka and Olsen, 2006;
Thébault et al., 2012), implying that all SH coefficients are
not necessarily well resolved, these models clearly revealed
striking regional correlations between magnetic anomalies
and continental geological bodies at small spatial scales.

One of the primary goals of the European Swarm satel-
lite mission (Friis-Christensen et al., 2006) is to unveil the
lithospheric field signal to the highest possible horizontal
spatial resolution. We therefore decided to develop a pro-
cessing chain dedicated to the production of a lithospheric
field model. This so-called ‘Dedicated Lithospheric Field
Inversion Chain’ was proposed within the Swarm SCARF
(Satellite Constellation Application and Research Facility,
see Olsen et al., 2013) set up by a consortium of sev-
eral research institutions and selected for implementation
by ESA. It will be operated during the mission as one of
more than a dozen Level 2 processing chains, which will
also include a Comprehensive Inversion chain (producing
an independent lithospheric field model, see Sabaka et al.,
2013) and two other chains: the Swarm SCARF Dedicated
Ionospheric Field Inversion chain (Chulliat et al., 2013) and
the Swarm SCARF equatorial electric field inversion chain
(Alken et al., 2013) developed by IPGP or in collaboration
with NOAA.

Whichever the chosen modeling approach, the general
idea is to carefully represent the selected and corrected data
by a single set of parameters that allows computing the
lithospheric magnetic field values outside the dominion of
data. The common approach relies on the SH series ex-
pansion that is the most natural solution of the Laplace’s
equation in the geocentric reference frame. Here we favor
a regional modeling scheme which has several advantages.
First, it makes it possible to bypass the problem of trun-
cated spherical harmonics that can arguably be suboptimal
for the purpose of highlighting small magnetic field wave-
lengths. Indeed, splitting the global problem into subre-
gions allows high regional spatial resolution to be reached
with a manageable number of parameters. Second, correc-
tion errors result mostly from transient external magnetic
fields that contaminate the data in a different way depend-
ing on the location. Regional modeling can adjust to this
by treating the noise regionally; it also offers the possibility
of constraining the inverse problem depending on how well
the regional model parameters are resolved (e.g., Lesur and
Maus, 2006). Finally, computing regionally the covariance

matrices of the errors for a better understanding of their cor-
relation in space and in time is also possible, something that
is demanding in terms of computer resources when building
high degree SH models.

We report below on the Dedicated Lithospheric Field
Chain as it was implemented during the preparation phase
of the Swarm satellite mission. The block processes were
duly tested in the course of the development and we do not
discuss the details of the closed-loop simulations that were
successfully completed. Rather, we focus on the end-to-
end simulation and describe in some details the algorithm,
its advantages but also its shortcomings. Because the ded-
icated techniques rely on the operator’s judgment rather
than unequivocal scientific observations (which often raises
some contentious issues), we describe the difficulties we
met and the compromises we decided to make. We finally
show that the chain is able to produce a lithospheric field
model that reaches the Swarm performance criteria (Swarm
Level 2 Processing System Consortium, 2013).

2. Theoretical Background
Different regional modelling techniques are currently

used or under development in the field of geomagnetism
(see Schott and Thébault, 2011, for a review). These are
based, for instance, on frames of Poisson wavelets (e.g.,
Maier and Mayer, 2003), slepian functions (e.g., Beggan et
al., 2013), combination of band-limited spherical harmon-
ics (e.g., Lesur, 2006), spherical tesselation (e.g., Stockman
et al., 2009), or equivalent dipole source distributions (e.g.,
Langlais et al., 2004). We choose to rely on the Revised
Spherical Cap Harmonic Analysis (R-SCHA, Thébault et
al., 2006) technique as this approach was successfully used
with the CHAMP magnetic data to build a global model of
the Earth’s lithospheric field (Thébault, 2006). We briefly
restate the basic properties of the modelling strategy we
follow. A complete description of the Revised Spherical
Cap Harmonic Analysis technique can otherwise be found
in Thébault et al. (2004, 2006).

The solution is obtained within a conical domain
bounded by two spherical caps of aperture θ0 at altitudes
ε1 and ε2; the surface being closed by the lateral boundary
of the cone (see figure 1 in Thébault et al., 2006). The solu-
tion for the potential VSCHA can be expressed in a spherical
coordinate system as a sum of two infinite series

VSCHA(r, θ, ϕ) = a
∞∑

m=0

( ∞∑
k=1

G
m
k ψ

m
k (r, θ, ϕ)

+
∞∑

p=1

G
m
p �

m
p (r, θ, ϕ)

)
, (1)

where ψ
m
k = Rk(r)eimϕ Pm

nk
(cos θ) are the complex spheri-

cal cap harmonics of order m involving the Legendre func-
tion Pm

nk
(cos θ) of real nk (see Haines, 1985) and Rk(r) their

radial functions, while �
m
p = Rp(r)eimϕ K m

p (cos θ) are the
complex harmonics expressed in terms of the conical, or
Mehler, functions and Rp(r) the real-valued radial func-
tions (see Thébault et al., 2006, equations (18)–(19)), a is
the Earth’s mean radius and θ , ϕ, and r are respectively the
colatitude, the longitude and the radius (in a reference frame
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whose axis is aligned with the axis of the cone), and G
m
. the

regional parameters for each order m written in their com-
plex form. There are many ways of numerically defining
the basis functions, one of which being to impose homo-
geneous boundary conditions on each of the three surfaces.
In the present work, we apply the formalism described in
Thébault et al. (2004), where the boundary value problem
is solved with Neumann homogeneous boundary conditions
on all three surfaces. In practice, the complete solution re-
quires a second potential that is added to the one defined in
Eq. (1)

VSH(r, θ, ϕ) = a
∞∑

n=1

(a

r

)n+1
G0

nψ
0
n , (2)

with ψ0
n = P0

n (cos θ) the real-valued zonal spherical har-
monic of integer degree n, the axis of which coincides with
the cone’s axis, and G0

n the zonal SH Gauss coefficients
in the cone’s reference frame. This second potential is re-
quired to bypass a problem of incompleteness of the poten-
tial expressed in Eq. (1) when the geomagnetic field is to be
represented (see Thébault et al., 2004). The solution for the
magnetic field B is then obtained considering the gradient
of the two potentials

B = −� (VSCHA + VSH) . (3)

Empirically, we observe that a solution defined by the
Neumann boundary conditions converges fast for the vector
magnetic field components. This is a desired property when
dealing with anomaly fields still possibly containing large
spatial scales magnetic field contaminations, which is usu-
ally the case when processing real satellite measurements
or realistic synthetic Swarm datasets built from SH models.
The spherical and spherical cap harmonics both allow an
exact representation of any poloidal magnetic field so that
the two solutions converge in norm to each other. How-
ever, some representation errors invariably occur when the
infinite series (Eqs. (1) and (2)) are truncated to finite ex-
pansion indices. A regional solution converging fast can
represent the magnetic field B with fewer parameters than
a slow converging series expansion. It guarantees a better
comparison with the benchmark model during the synthetic
validation of the algorithm as it mitigates the problem of
truncation errors. There are some disadvantages, though,
of combining the Eq. (1) with (2). In particular, the ba-
sis functions are not mutually orthogonal within the conical
domain (Thébault et al., 2004). This leads to a non-diagonal
design matrix where cross-talking between parameters im-
plies some reorganization of their estimated values when
changing the series truncation. In general, this is not ideal
for carrying out spectral analysis of the magnetic field sig-
nal or for isolating a single model parameter. For the pur-
pose of this work, this is a minor issue because we do not
aim at interpreting the values of each regional parameter
independently and because we only deal with high spatial
density satellite data. In such a case, the design matrix, al-
though not diagonal, is never dense. The inverse problem is
numerically stable.

Each type of functions (Mehler or Legendre) has spe-
cific properties (Thébault et al., 2006). In particular, the

maximum expansion index kmax of series in Eq. (1) can
be asymptotically related to the degree nk of the Legendre
functions (Haines, 1985; Thébault et al., 2006)

nk ≈ (2kmax − m − 1/2)
180

2θ0
− 1

2
, (4)

which may be expressed in terms of the minimum length
scale γ of the magnetic signal (Backus et al., 1996, section
3.6.3)

γ � 2π(a + ε)

nk + 1/2
, (5)

where ε is the considered altitude. For kmax = 15 and
θ0 = 8◦, for example, we find γ � 130 km at 400 km alti-
tude; these parameters are the ones selected for the present
regional modeling.

3. The Dedicated Lithospheric Field Inversion
(DLFI) Chain

The full chain is represented in Fig. 1. The Swarm
Level 1b data are first selected according to specific crite-
ria and are corrected for various sources fields. As already
discussed, this step is crucial for deriving the lithospheric
model. It involves four processes (Process 1 to Process 4 in
Fig. 2) that require auxiliary information and operator’s de-
cisions. The selected and corrected measurements are then
iteratively processed with the R-SCHA modeling. The data
are distributed into geographical bins (Process. 5.1) corre-
sponding to each spherical cap covering the Earth’s sur-
face and transformed into the cap’s reference frame (Pro-
cess 5.2). The inverse problem is solved, and the regional
parameters stored, after building the design matrix (Process
6.1) and solving the system by Singular Value Decompo-
sition (SVD in Process 6.2). Once the regional inversions
are completed for all caps, the regional parameters are used
to predict the lithospheric vector field values on the nodes
of a Gauss-Legendre grid (Process 7) covering the Earth’s
surface at a constant altitude. These grid values are finally
converted into a unique set of spherical harmonics Gauss
coefficients either by a fast spherical transform of the verti-
cal magnetic field component or by a linear inversion of the
horizontal and vertical components (Process 8). The ded-
icated lithospheric field model is the output product of the
sequence of these numerical processes. Each process is de-
scribed in more details in the following.
3.1 Data selection

For this simulation, we use only the vector Level 1b
data simulated for the lowest pair of satellites Swarm A
and Swarm B (Olsen et al., 2013) since the third satellite,
Swarm C, is expected to be too high to detect the fine
lithospheric field structures. Nevertheless, its data could
prove useful for the chain in case of a failure of Swarm A or
B and all data selection and correction procedures described
below were also made operational for processing Swarm
C magnetic field measurements. Considering that vector
magnetometers may suffer from malfunctions, the chain
was also adapted to ingest scalar magnetic measurements
if required.

More than four years of simulated vector Swarm A and B
data are selected between a simulated time period extend-
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Fig. 1. General flowchart of the six main processes run to generate a lithospheric field model from the Level 1b magnetic field measurements of the
simulated Swarm satellite mission.

Fig. 2. This flow chart provides the sequence of the processing steps allowing to isolate the magnetic field contributions from the Earth’s lithosphere.
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ing from July 1998 to December 2002. These data are sub-
sampled every 10 seconds, corresponding to a spacing of
about 70 km along the satellite track at 400 km altitude.
This ensures that no aliasing occurs because of magnetic
field contributions at small wavelengths (recall that the min-
imum spatial wavelength detected by the regional model
is 130 km with the current setting). Although the syn-
thetic data do not contain toroidal external fields from field
aligned currents, we account for the different behavior of
the external field with latitudes by separating the vector data
in two sets, one for mid-latitudes (−52◦ to 52◦ magnetic
latitudes), and one for polar regions (>52◦ and <−52◦). In
addition, we allow an overlap of 10◦ between mid and polar
latitude regions (see also Maus et al., 2008, for instance)
so that the provisional selected data for both sets range be-
tween −57◦ to 57◦ magnetic latitude for the mid-latitude set
and above |±47| for the polar set. As discussed below, this
overlap is introduced to reduce correction errors caused by
dedicated corrections applied along the satellite tracks. The
mid-latitude data are further selected at 21:00 to 5:00 local
time (LT) in order to minimize the contributions from the
ionospheric Sq field. All LT are considered for the polar
data, provided they are outside the sunlit area (−10◦ below
horizon). We use the Dst index to lower the effect of the
magnetic field generated by the ring current and select the
data corresponding to Dst values lower than ±20 nT and to
Dst variations smaller than 10 nT over the previous three
hours. We also apply a selection criterion based on the Kp
index to keep data corresponding to a global low level of
geomagnetic activity. The data corresponding to a Kp in-
dex larger than 2, and to Kp variations larger than 2 over
the previous three hours, are rejected. For this study, the
selected Dst threshold is relatively large. We argue that re-
jecting many satellite data because of a high level of mag-
netic activity does not necessarily reduce the noise in the
final model, as the data error variance is proportional to the
ratio v/M , where v is the variance of the external field and
M the number of available orbits over a given longitude
(e.g., Lesur et al., 2013). It is important to define an ac-
ceptable trade-off between the number of available satellite
tracks and the level of external field activity, more particu-
larly when processing the data on regional scales because
the local functions require a dense data coverage in space.

The selection procedure we applied is not exhaustive.
The process 1.2 (see Fig. 2) contains more data selec-
tion modules than the ones activated for this simulation.
Among other selection criteria we included a processing
block based on the measure of the Interplanetary Magnetic
Field (IMF), whose value is related to the solar wind ac-
tivity. We included also a selection block based on the ap
index, which measures the general magnetic activity at the
planetary scale, and a selection block based on quality flags
such as the on/off status of the star camera. Other selec-
tion blocks are likely to be added as more and more ex-
perience is gained on the Swarm satellite data during the
calibration/validation and operational phases.
3.2 Data correction for the main and external fields

We developed two families of magnetic field corrections
for the selected vector data. The first family relies on ex-
plicit models for the main field, its secular variation, and the

magnetospheric field, (processes 2 and 3 in Fig. 2), all ex-
panded in spherical harmonics. These input models are pro-
vided by the other Swarm processing chains (see Olsen et
al., 2013). Note that the data are not corrected for the iono-
spheric field, which is assumed minimum at night-times
(see Chulliat et al., 2013). The second family of correc-
tion is based on more empirical processes, performed either
at the global scale, or along the satellite orbits (process 4).
The settings of this suite of corrections depend on the anal-
ysis of the data residual after the completion of processes 2
and 3.

Within the overall process proposed by the consortium
(see Olsen et al., 2013), the dedicated lithospheric field
chain is initiated as soon as the models for other source
fields are available for use. The main field correction can
be performed using either the output of the comprehensive
inversion chain (Sabaka et al., 2013) or that of the dedi-
cated core field chain (Rother et al., 2013). In principle,
there is a better consistency between the data selection de-
tailed in the previous section and the data selection applied
in the dedicated chain for the core field (Lesur et al., 2010;
Rother et al., 2013), particularly at night times. This con-
sistency is important if one keeps in mind that differences
in data selection are acknowledged to be one of the major
sources of discrepancies between main field models yet pa-
rameterized in similar ways (e.g., Finlay et al., 2010). In the
course of the Swarm preparation phase, we tested the influ-
ence of each of the input main field models and the results
were similar. In this paper, the solution is obtained with the
vector data corrected with the MCO SHAi2D (the output of
the core field dedicated inversion, see Fig. 2) for the main
field model and its secular variation up to SH degree 15.
Since the synthetic Swarm vector measurements were gen-
erated using a secular variation model up to SH degree 20
(Olsen et al., 2013), the secular variation is only partly cor-
rected for. The corrections for the external magnetospheric
sources are made using the MMA SHAi2C model (Sabaka
et al., 2013; see also Fig. 2). This model provides coeffi-
cients for the primary magnetospheric field to SH degree 3
and a maximum order 1 with a time step of 1.5 hours. The
induced counterpart is also defined every 1.5 hours but to
maximum degree and order 5. This space and time reso-
lution is lower compared to the benchmark magnetospheric
field model used to generate the synthetic data. This repre-
sents another source of significant correction error.

Figure 3 displays the residual field for the radial com-
ponent after correcting explicitly for the main and mag-
netospheric fields (the known synthetic lithospheric field
are removed in this picture for the purpose of illustration).
Thanks to the availability of the benchmark model used to
compute the synthetic data, we know that these large-scale
residuals are dominated by residual magnetospheric contri-
butions. Another important source of errors comes from
the ionospheric field at night-times (particularly its induced
counterpart), which was not corrected. The secular varia-
tion error of the main field is of secondary importance. In
total, the correction errors accumulated using SCARF sci-
entific products reach almost ±20 nT in two lobes located
near the South geographic pole.

We next identify the Swarm A and B data with the com-



1262 E. THÉBAULT et al.: SWARM SCARF DEDICATED LITHOSPHERIC FIELD INVERSION CHAIN

Fig. 3. Radial component of the residual field after correction of the Swarm A and B simulated measurements for a main and a magnetospheric field
model. The known lithospheric field is removed for this illustration. Projection is Mollweide.

mon reading times and built up a set of so-called gradient
data. The terminology of gradient is misleading here as it
refers to a point to point difference between the measured
data across the two orbits of the lowest pair of satellites
(Swarm A and B). This difference is expressed in the same
units as the vector measurements (in nT), which avoids the
unnecessarily complication of solving the inverse problem
with different data types (the true gradients are in nT/km
or nT/degree). Considering the nature of the residuals, and
their variations in space and in time, taking the difference
between the data from the lower pair of satellites in the
East-West direction, spaced about 1.4 degree apart (at the
geographic equator, see Friis-Christensen et al., 2006), ap-
pears to be an efficient way to mitigate the contributions of
large-scale non-lithospheric fields. This gradient however
is incomplete since the across difference between the two
satellite measurements approximates only the three gradient
components along the East-West direction. There is no re-
dundancy with the vector measurements that are still needed
to recover the lithospheric field and to stabilize the inverse
problem.

The gradient data are not corrected further and we re-
move the duplicate gradient data that were introduced by
considering an overlap of 10◦ between the mid and the po-
lar areas. In contrast, three additional dedicated corrections
are applied to the vector data. Dedicated corrections applied
only to portions of the sphere are necessary to filter out the
large-scale residuals shown in Fig. 3. However, such along-
track corrections require some care as they suffer from spec-
tral leakage due to the impossible separation of the vari-
ous source fields (see Sabaka and Olsen, 2006; Olsen et al.,
2010c). This difficulty is illustrated, for instance, by the ex-
pression of the zonal external field coefficient q̃0

l that would
be estimated from the magnetic field vector data measured

only along a complete meridian and that would then be used
to correct the data along this meridian. It can be shown that
(Thébault et al., 2012)

q̃0
l (ϕ, r) = q0

l + 1

2l + 1

∞∑
n=1

n∑
m=0

bm,l
n (ϕ, r), (6)

where q0
l is the true external coefficient, and bm,l

n is a combi-
nation of all internal and external residual fields (expressed
in SH) that contribute to the magnetic field values along
the meridian at longitude ϕ and radius r . The use of the
coefficient q̃0

l estimated along a single orbit for correct-
ing the magnetic field measurements for the zonal external
field is inaccurate and risky depending on the magnitude of
bm,l

n (ϕ, r). A reduction of this bias is achievable by per-
forming a maximum of prior analysis over the entire globe
in order to minimize all internal and external field contri-
butions along all satellite orbits. The along-track correction
on the residual data is then applied as a final step.

The first additional block process aims at correcting glob-
ally for the large spatial scale error of reduction, be it of in-
ternal or external origin. The internal and external Gauss
coefficients are estimated to SH degree 8 in the inclined
dipole reference frame with a one year knot-spacing over
the full simulated mission duration. We also scale the mea-
surements by the F10.7 solar radio flux values in order to
account for the dependence of the ionospheric field on the
solar activity. The improvement brought by this scaling is
rather marginal but reduces the offsets between close satel-
lite encounters. Note that the internal and external Gauss
coefficients estimated by the dedicated corrections have lit-
tle scientific value as they contain numerous sources of
magnetic fields. They are not intended to be interpreted but
they remain useful for better understanding the origin of the
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large scale field residuals. There is no major technical limit
for this processing block to accept more sophisticated pa-
rameterization or improved time resolution. For instance, it
could be fine-tuned to absorb most of the remaining large
scale magnetic fields in case we lack the explicit models for
the main and the magnetospheric fields described above.

A second dedicated correction in spherical harmonics is
next applied along the satellite orbits separately for the mid
and the polar latitude data. This along-track correction is
an important step (e.g., Maus et al., 2006) because the ex-
ternal field perturbations that contain relatively long wave-
lengths along a satellite track (during magnetically quiet
times) change from one orbit to the next. It is worth stress-
ing that some errors are due to uncertainties and changes in
the Dst baseline (see Olsen (2002) and Thomson and Lesur
(2007) for instance). These introduce lateral spatial oscil-
lations that overlap with the high degree lithospheric field
and distort mostly the sectoral harmonics (degrees n = m).
Fortunately, one can further lessen such bias along satel-
lite tracks (Eq. (6)) by applying the correction on large por-
tions of orbits (Thébault et al., 2012). Therefore, all satel-
lite tracks containing segments longer than about 2000 km
without data are rejected. Then, an auxiliary lithospheric
field model (AUX LIT 2 in Fig. 2; taken here from the se-
ries of MF models, e.g., Maus et al., 2008) is subtracted
from the remaining data. These precautions mitigate the
problem of spectral leakage and avoid filtering out too much
genuine lithospheric field signals (although this is generally
not guaranteed; see figure 5 in Maus et al., 2006). In a syn-
thetic simulation, Sabaka and Olsen (2006; their figures 10
and 11) illustrated the difficulty of recovering all magne-
tospheric field coefficients up to degree 3 and order 1 at a
high time frequency. We exploit this a priori information
for tailoring the along-track correction module and we es-
timate the coefficients of an external field to degree 3 and
order 1 plus its induced internal part along each track us-
ing simultaneously Swarm A and B measurements. Note
that the co-estimation for Swarm A and B represents a sig-
nificant improvement over estimating the correction along
Swarm A and B separately (the bias bm,l

n (ϕ, r) being longi-
tude dependant in Eq. (6), it does not leak in a similar way
along the Swarm A and B orbits). This estimated external
field is then applied as a second correction.

The final dedicated correction is performed via a Fast
Fourier Transform along the satellite tracks. The tech-
nique of high-pass filtering along the tracks dates back to
the 1980’s (Langel and Hinze, 1998, section 4.4). The in-
convenience of this procedure is that there is no clear cut-
off frequency in the signal to isolate the contributions of
the lithospheric field without ambiguities (see for instance
Wang, 1987 for a discussion). Also, it can only be applied
independently on the three magnetic field components. This
has much less physical justification than methods based on
SH representation. However, the along-track Fourier filter-
ing has interesting convergence properties. When the data
are properly tapered, it significantly filters the remaining in-
termediate wavelengths while producing little edge effect.
We use this processing block to further reduce the magnetic
field contributions with length-scales larger than 10◦ in arc-
length along the satellite orbit using a Butterworth filter

with a sharp cutoff (filter of order 20). The overlapping data
at the junction between mid and polar areas are then used
to confine possible edge effects outside the effective data
geographic intervals. It is worth stressing that this process-
ing block must be used with extreme care as it cannot dis-
criminate between perturbation and lithospheric fields. In
particular, the cut-off frequency must be adjusted depend-
ing on how well the AUX LIT 2 model values temporarily
removed from the data agree with the measurements in the
filtered waveband.

Finally, the redundant data that were kept to improve the
continuity between the processing in mid and polar latitudes
(see Subsection 3.1) are removed from the dataset. Then,
the standard deviation and the mean of the residuals are
computed for each vector component. All values outside
the 3σ range are considered as outliers and thus rejected
and the auxiliary lithospheric field model values subtracted
before the series of dedicated corrections are added back.

Figure 4 shows the residual map for the vertical com-
ponent after all corrections (where, again, the lithospheric
field contributions have been subtracted for the purpose of
illustration). The processing applied to the vector data is
heavy but successful (compare Figs. 3 and 4). However, the
corrected measurements now contain a certain amount of
artifacts caused by the ad hoc corrections we applied. This
shows how important the gradient data are to balance the
correction errors made when correcting the vector data for
other contributions than those from the lithospheric field.
Still, the corrected data can be assumed to reflect mainly
the lithospheric field contributions and are now ready to be
used for modelling purposes.
3.3 Regional iterative modelling of the pre-processed

data
The selected and corrected vector data, with their East-

West gradients, are processed regionally (Processes 5 and
6 in Fig. 1). The first step consists in distributing the data
within each of the 600 spherical cones that patch the Earth
at the Swarm A and B altitudes. Then, the inverse problem
is solved for each region. The cones have 8◦ aperture, are
centered on the nodes of an equal area grid (Saff and Kui-
jlaars, 1997) about 8.5◦ spaced apart, and therefore overlap
with each other. The lower and upper radii are automati-
cally defined by the minimum and maximum altitudes of
the available data within each cap. The estimated maxi-
mum likelihood regional parameters of each type G

m
. (see

Eqs. (1) and (2)) are stored for each region. The maximum
horizontal spatial resolution is about 130 km (see Eq. (5)
with kmax = 15).

The R-SCHA technique, initially set up for processing
the CHAMP satellite data (Thébault, 2006), was further
developed to ingest the Swarm satellite vector and scalar
data. This required the implementation of specific tools to
deal also with the magnetic field satellite track differences
(referred to as gradient data), with the inversion procedure,
its weighting, and its regularization.

Indeed, the gradient and vector data have (here) the same
units but they do not have the same statistics. We imple-
mented the possibility of incorporating data error covari-
ance in the inversion. Formally, the noise distribution in the
gradient data results from the addition (or subtraction) of
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Fig. 4. Vertical component of the residuals after the completion of process 4. The benchmark lithospheric field values have been subtracted for the
purpose of this illustration. Mollweide projection.

Fig. 5. Vertical component of the difference between the gradient (estimated by finite difference between Swarm A and Swarm B data, see the text for
details) that would be estimated using lithosphere only data and the gradient obtained from the data imperfectly corrected for the main internal and
external source fields. Projection is Mollweide.

noise in the Swarm A and B measurements. If this noise
is Gaussian with a standard deviation of σv , the gradient
noise would also be Gaussian with a standard deviation of
σg = √

2 σv . For the synthetic simulation, the level of in-
strumental noise added to the synthetic measurements was
low enough to neglect this statistical difference. However,
it illustrates why we should not expect noise in the gradient

and vector data to behave similarly. In addition, the longitu-
dinal distance of 1.4◦ between the parallel orbits of Swarm
A and B was devised to maximize the gain of the gradient
data for SH degrees 120–130 (figure 4 in Friis-Christensen
et al., 2006). The counterpart is that they have a low gain for
low SH degrees. But since the lithospheric field signal mea-
sured from space is dominated by the low SH degree contri-
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Fig. 6. Geographical distribution of the misfit after completion of the block processing dedicated to the regional inversions. Mollweide projection.

Fig. 7. Spherical Cap Correlation Analysis. The correlation coefficient ρnk (Eq. (9)) between the regional parameters estimated with lithosphere
magnetic field data only and the parameters estimated with all source measurements for each spherical cap degree nk is shown for each band of
geographic latitude.

butions (large spatial scales), the root mean square (RMS)
of the gradient data is reduced compared to the RMS of the
vector data. In terms of the inverse problem, this is an im-
portant statement since the functional to be minimized in a
least-squares sense is

χ2 =
Nv∑

n=1

δB2 + α

Nv/2∑
n=1

(
δ∇ϕ B

)2
, (7)

where δB and δ∇ϕ B are the differences between the re-
gional model and the vector and gradient data, respectively
(in the east-west direction), and α is a real positive param-
eter. The parameter α can be tuned to increase the rela-

tive weight of gradient data in order to balance the fact that
their RMS is lower than the RMS of the vector data and
that their number is on average half the number of vector
data. However, one must also keep in mind that in principle
the vector measurements carry all the lithospheric field in-
formation whereas the gradient, being incomplete (we only
estimate the East-West gradient), do not. In a thorough
prospective work investigating the benefits of gradiometry
from space, Kotsiaros and Olsen (2012) indeed illustrate
that the East-West gradient data poorly constrain the low
SH orders m at all SH degree n (figure 2 in Kotsiaros and
Olsen, 2012) showing that vector data are essential to con-
strain the model. Too much down-weighting of the vector
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data can lead to an ill-posed inverse problem. From a prac-
tical viewpoint, it can be seen in Fig. 5 that the corrections
for the explicit main and external field models being imper-
fect, the gradient of the lithospheric field is also affected by
correction errors (note the similarity between the structures
seen in Figs. 3 and 5). These correction errors are differ-
ent from those seen in the vector data (Fig. 4). It thus ap-
pears that both corrected datasets have different and maybe
contradictory information contents. The issue, difficult to
address, is to assess which of the contamination affecting
the gradient data, and of the reduction errors affecting the
vector data, is the largest.

These formal and experimental differences will need to
be considered carefully on a case by case basis when the
Swarm mission will be in operation. For these reasons, the
block processes 6.1 and 6.2 (Fig. 1) solve the least-squares
inverse problem independently for each spherical cap

G = (
AT C−1

d A + λR
)

AT d (8)

where G is the column matrix of the regional parameters to
be recovered (Eqs. (1) and (2)) A the matrix of basis func-
tions for the vector and gradient data, C−1

d the covariance
matrix of the vector and gradient data, d the vector of mag-
netic field measurements and their gradients, and R a regu-
larization matrix multiplied by a scalar Lagrange parameter
λ. Finding the best trade-off between mitigating the data
noise, rejecting the correction errors, and exploiting the in-
formation content of each dataset is not trivial. We did not
try to tackle this problem in the present simulation. We set
the covariance matrix to identity and neglect the fact the
gradient and the vector data errors could be correlated. The
regularization matrix R can take various forms, depending
on the a priori information one would like to exploit region-
ally, but was left empty. A solution could also be reached
in a L1-norm sense by applying an iteratively re-weighted
least-squares algorithm with Huber weights in order to ob-
tain a robust solution by iteratively weighting the effect of
outlier data in the parameter estimation. We performed sev-
eral tests and came to the conclusion that this option should
be handled with care at the regional scale when processing
lithospheric magnetic field measurements. Applying one
iteration appears to be sufficient in many cases to reach an
optimum solution while not smoothing genuine lithospheric
field signal too much. Figure 6 shows the geographical dis-
tribution of the residual mean square after completion of the
dedicated regional inversion block (Fig. 1). As can be seen
most errors are to be found near the polar gaps and around
the transitions between mid and polar latitudes that intro-
duce discontinuities in the magnetic field values.
3.4 Conversion to a SH model and assessment

For comparison with other lithospheric field models and
a more stable continuation of the predictions to the Earth’s
surface, it is convenient to represent the final lithospheric
field model in the form of a set of SH Gauss coefficients.
Before we convert the local models into a set of global
Gauss coefficients, it is interesting to analyze statistically
how close the estimated regional models are to their ex-
pected values. By analogy with the spherical harmonics,
the degree correlation between two spherical cap harmonic
analyses can be estimated by (e.g., Langel and Hinze, 1998;

section 4.5.2)

ρnk

=

Kmax∑
m=0

(
Gm

k G̃m
k + H m

k H̃ m
k

)
{[

Kmax∑
m=0

(
Gm

k

)2 + (
H m

k

)2

] [
Kmax∑
m=0

(
G̃m

k

)2 + (
H̃ m

k

)2

]}1/2

(9)

with
(
G̃m

k , H̃ m
k

)
and

(
Gm

k , H m
k

)
the estimated and ‘true’ lo-

cal parameters of the Legendre basis function. A similar
correlation analysis could be performed with the two other
sets of coefficients (The Mehler and the SH ones, see Eqs.
(1) and (2)) and, strictly speaking, the quality information
provided by this indicator is incomplete. However, only
the coefficients of the Legendre basis functions can be re-
lated to an equivalent SH degree nk (Eq. (4)) and to a mini-
mum horizontal spatial wavelength (Eq. (5)). The ‘true’ lo-
cal parameters are obtained by inverting perfect lithospheric
magnetic field measurements containing SH contributions
to degree 180. Figure 7 shows the degree per degree cor-
relation analysis sorted in geographic latitude. The corre-
lation is often better than 0.8 up to equivalent SH degree
ranging between 130 and 140 but it degrades more rapidly
in the region where mid and high-latitude data were sepa-
rated (between |40◦| and |60◦| latitude). Note also that the
correlations are in general lower for the R-SCHA degrees
between 10 and 30 as a result of the large-scale residual ex-
ternal fields overlapping with the lithospheric field (these
large scale fields are visible in the gradient data, see Fig. 5).
The message conveyed here is that the regional parameters
could be in some places, mostly at mid-latitudes, reliably
estimated to a high equivalent spatial degree nk .

We finally convert the regional models into a set of Gauss
SH coefficients. The most efficient way to do this is to ex-
ploit the sampling theorem on the Earth’s sphere (see for
instance Schaeffer, 2013 and references therein). We first
compute the forward problem for each regional model on
the nodes of a Gauss-Legendre grid in the geocentric ref-
erence frame (see process 7 in Fig. 1) at 400 km altitude
(this corresponds to the median altitude of the considered
dataset). This grid satisfies the sampling theorem to SH
degree 300. To ensure that the numerical solution is not
affected too much by the lack of measurements in the po-
lar gap, we rely on a final module. Indeed, large errors, or
lack of data, near the geographic pole have a clear adverse
effect on the recovery of some constituents of the litho-
spheric field. The zonal SH coefficients (of order m = 0)
are mostly constrained by the magnetic field vector com-
ponents (mostly the horizontal ones) at high latitudes. The
Swarm orbital configuration tested in this study has a polar
gap of about 5.2◦. This represents a diameter of about 615
km at 400 km altitude. Discontinuities caused by the polar
gaps introduce ringing when local functions are used. This
problem is addressed using a post-processing based on an
iterative regional modelling of the vector values computed
on the Gauss-Legendre grid above the two polar gaps. The
vector data outside the Northern (respectively the Southern)
polar gap are first used to derive a low spatial resolution
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Fig. 8. Residual map of the vertical component between the ‘true’ and the estimated lithospheric field model at the Earth’s mean radius. The models
are calculated to SH degree 150. Projection is Mollweide.

regional model (i.e., with a minimum spatial wavelength
larger than the size of the polar gap). Synthetic data are
then generated from this low resolution model on the Gauss-
Legendre points located within the Northern (respectively
the Southern) polar gap areas and a new set of model pa-
rameters is estimated at the next iteration to a higher spatial
resolution. The process stops when the spatial resolution
of the model over the polar gaps reaches the same resolu-
tion as in other regions. This iterative procedure could have
been implemented directly in the block dedicated to the re-
gional inversions (Fig. 1). However, implementing it as a
post-processing step offers a better control because the ra-
tio between the number of gridded data inside and outside
the polar gaps is then the same from one simulation to the
other.

Finally, we cast the spatial vector data computed on the
Gauss-Legendre grid into the SH using a fast spherical
transform of the vertical component (process 8 in Fig. 1).
This is generally done up to SH degree 300 to provide a the-
oretical spatial resolution for the model in agreement with
the one provided by the local basis functions. The trans-
formation into SH Gauss coefficients could also be done
by a slower module that computes the problem in a least-
squares sense. This process would allow considering the
three vector field components, some global scale regular-
ization to be introduced if needed, and to double check the
model obtained by the fast spherical transform. The official
and final results will then be provided as a set of Gauss co-
efficients up to SH degree 150 (MLI SHA 2D, see Fig. 1).
However, recognizing that some regions are better repre-
sented than others (see Fig. 6), a similar set up to SH 200
(MLI SHA 2E) will also be provided. This latter model,
however, should not be downward continued to the Earth’s
surface unless otherwise stated (for this reason, we call it a
map in Fig. 1).

The performance of the lithospheric field model ex-
pressed in SH can be evaluated through four different cri-
teria defined during the preparation of the Swarm mission
(Swarm Level 2 Processing System Consortium, 2013).
The first one shown in Fig. 8, relies on a geographic map
showing the residuals between the true and the estimated
lithospheric field models to SH degree 150 at the Earth’s
mean radius. As can be seen most of the errors are found
near the polar gaps and at the mid to high-latitude transi-
tions. More quantitatively, the performance can be esti-
mated using the three complementary criteria in the spectral
domain (Fig. 9-left): the spatial power spectrum (Lowes,
1966) of the difference between the ‘true’ and the estimated
lithospheric field model, the spherical harmonic correlation
analysis between both models as defined by Eq. (9) for in-
teger degrees n (Fig. 9-middle), and the azimuthal power
spectra that provide information about the energy distribu-
tion along the orders m (Fig. 9-right). The power spectra
and the correlation analysis are presented with the litho-
spheric field model estimated prior and after the implemen-
tation of the post-processing in the polar gaps. As can
be seen, this simple expedient significantly improves the
model around the order m = 0. Finally, the resolution ma-
trix between the ‘true’ and the model estimated with the
post-processing for the spectral gaps can also be computed.
It tells us that the error is not distributed along a preferred
direction except along order m = 0 (Fig. 10). This is no sur-
prise since neither the vector nor the gradient data are able
to constrain these spherical harmonic contributions (see the
discussion above). The synthesis of these quality indica-
tors suggests that the model was reliably recovered at least
up to SH degree 133, which was the target of this Swarm
end-to-end simulation.
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Fig. 9. Power spectral analysis and degree coherence between the ‘true’ and the estimated lithospheric field models. Left: power spectrum of the ‘true’
model (black), the estimated model without polar gap treatment (red), and the estimated model with the polar gap processing (blue). The spatial
power spectrum of the difference between both types of models and the ‘true’ one are also shown. Middle: Spherical Harmonic Correlation Analysis
between the ‘true’ model and the model estimated with (blue) and without (red) polar gap post-processing. The dashed vertical line indicate SH degree
133. Right: Azimuthal power spectrum of the ‘true’ model (black) and the model estimated with (blue) and without (red) polar post-processing.

Fig. 10. Sensitivity matrix between the ‘true’ model and the model estimated after a polar gap processing.

4. Conclusions
In this paper we presented the Swarm SCARF Dedicated

Lithospheric Field Inversion chain, which will be used to
process the magnetic data of the forthcoming Swarm satel-
lite mission and to produce a model for the Earth’s litho-
spheric field. This approach differs significantly from the
comprehensive approach (Sabaka et al., 2013) as it heavily
relies on data selection, corrections, and visual inspections.
It also uses a modeling scheme based on local functions
that were designed to better detect the small scales of the
lithospheric field. During the operational phase, the criteria
discussed in this paper will be subject to changes and will
therefore be described in a companion report of the Swarm
SCARF dedicated lithospheric field model. With the cur-
rent setting, the algorithm provides a model that meets the

required performance at least up to SH degree 133 when
considering and the synthetic data provided to us for the
full mission duration. This is a better spatial resolution than
achieved so far by single satellite missions at comparable
altitudes. This result confirms that we are able to develop
strategies for recovering the lithospheric magnetic field to a
high spatial resolution in a favorable situation when high
quality vector magnetic field measurements are available
for the two lower Swarm A and B satellites. This simulation
was realistic in the sense that it was realized with a math-
ematical method different from the one used to synthesize
the simulated data, with a separation into regions that in-
evitably introduces discontinuities, with imperfect main and
external field models for correcting the synthetic measure-
ments for non-lithospheric magnetic fields, and with real
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proxies for selecting the data for quiet magnetic days along
the entire simulated mission duration. However, in the op-
erational phase, the performance of this chain will depend
on our ability to estimate the real quality of the input mag-
netic field measurements and the accuracy of the scientific
products used to correct for the main and the external fields.
For instance, complementary simulations (not shown) per-
formed with the same parameters as the ones described in
this paper suggest that a small bias of 0.3 nT affecting inter-
mittently Swarm A or B vector measurements, would de-
grade the overall performance down to about SH degree
110–120. It is worth stressing that even this degraded per-
formance remains impressive compared to those achieved
by single satellite missions, which based on the experience
with CHAMP are of the order of SH degree 85 (this it the
maximum SH degree for which models start being in sig-
nificant disagreement). An improvement from n = 85 to
n = 120 means that twice as many SH Gauss coefficients
would be recovered (the number of Gauss coefficients is
n(n + 2)). This spatial resolution limit may not be a hard
bound but it shows that the recipe we followed may need to
be revised and fine-tuned when real data will become avail-
able.

The Swarm calibration/validation phase will be a valu-
able learning experience to better control the intrinsically
different information content and contamination errors of
the vector and the gradient data. Some tools have been de-
veloped to account for the statistical differences between
these two types of datasets. In this paper, we did not try
to optimize the weights or to regularize the inverse problem
but this possibility was left open on both the regional (Pro-
cess 6.2) and the global scales (Process 8). More theoreti-
cal work will be needed to define the most relevant physical
norms to be used for the lithospheric field and fully benefit
from this possibility. We may also select the spectral band
corresponding to the highest information content for each
type of data to constrain the model with vector data at the
low SH degrees and with gradient data at high SH degrees
(see Kotsiaros and Olsen, 2012 for a discussion). This is
an option we did not consider at present because the gra-
dient estimated from the Swarm lower pair of satellites is
not complete. Its implementation is not necessarily com-
plex but it adds another level of subjectivity concerning the
respective spectral bands that are better constrained by each
data type.

A major issue we did not address is that of the impact on
the East-West gradient of undesired magnetic signals due
to electric currents that would cross the two orbits of the
lower pair of satellites. At present, the R-SCHA technique
is efficient for processing poloidal magnetic field measure-
ments but cannot handle toroidal fields without some signif-
icant amount of development. This is the main shortcom-
ing of the Dedicated Lithospheric Field Inversion chain in
its present form. But we may still exploit the information
provided by the East-West gradient to at least estimate the
amount of current crossing the Swarm A and B mesocenter
(see Kotsiaros and Olsen, 2012, equation (3.8); or Shen et
al., 2012, for instance) and to use this as a selection crite-
rion. We could then use the gradient at times (and location)
of negligible estimated currents. We note that, as it stands,

the chain could also readily be used with scalar gradient
data only that are in general less affected by toroidal fields.

One key advantage of the Dedicated Lithospheric Field
Inversion chain is that it is based on a regional modeling
approach. This allows the inverse problem to be solved in-
dependently for each region. Depending on the available
computer resources, the process divided in as many inde-
pendent jobs is intrinsically fast. For the present simula-
tion, a few hours were necessary to select and process more
than five million out of more than 250.106 available vector
synthetic measurements of the Swarm A and B satellites. A
fast algorithm is advantageous considering the chosen phi-
losophy. Isolating the lithospheric field relies on a careful
selection of data and on compromises made in correcting
the data more or less empirically. Therefore, fast processes
open an avenue for computing parades of statistically equiv-
alent models in order to estimate the variability of each SH
degree part depending on the applied selections and correc-
tions. An immediate application of this principle would be
to play with the boundary separating mid and polar regions
as it introduces one of the largest source of errors in this
simulation (see Fig. 8).

The algorithm is also highly modular. Complementary
processing blocks could be included as more and more ex-
perience is gained with the real Swarm satellite measure-
ments. Preprocessing blocks based on quality indicators,
flags, and star camera switches could be useful to account
for instrumental failures or malfunctions. The algorithm is
therefore not frozen and will benefit from the scientific ad-
vances prompted by the Swarm mission along its entire du-
ration. Finally, we note that the median altitude of Swarm
A and B measurements was about 400 km for the simula-
tions we discussed. An extension of the mission to lower
altitudes would amplify the small-scale signals, which are
currently strongly attenuated at 400 km altitude, and would
possibly allow us to derive lithospheric field models to even
higher resolution.
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Thébault, E., K. Hemant, G. Hulot, and N. Olsen, On the geographical
distribution of induced time-varying crustal magnetic fields, Geophys.
Res. Lett., 36, L01307, doi:10.1029/2008GL036416, 2009.
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