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S U M M A R Y
Tomographic inversions for large-scale structure of the earth’s mantle involve a forward
modelling step of wave propagation through 3-D heterogeneity. Until now, most investigators
have worked in the framework of the simplest theoretical assumptions, namely the in�nite
frequency ‘ray theory’ in the case of body wave traveltime inversions, or the ‘path-average’
approximation (PAVA) to normal mode perturbation theory, in the case of surface waves and
long-period waveforms. As interest is shifting to mapping shorter wavelength structures, the
need for a more accurate theoretical account of the interaction of seismic waves with mantle
heterogeneity, coupled with improvements in path coverage, has been realized.

Here we discuss different levels of approximations used in the context of normal mode
perturbation theory, when modelling time domain seismic waveforms. We compare the per-
formance of asymptotic approximations, which collapse the effects of 3-D structure onto the
great circle vertical plane: the 1-D PAVA and a 2-D approximation called non-linear asymp-
totic coupling theory (NACT), which both are zeroth order asymptotic approximations. We
then discuss how off-vertical plane effects can be introduced using higher order asymptotics.
These computationally ef�cient approximations are compared to the linear Born formalism
(BORN), which computes scattering integrals over the entire surface of the sphere. We point
out some limitations of this linear formalism in the case of spatially extended anomalies, and
show how that can be remedied through the introduction of a non-linear term (NBORN).
All these approximations are referenced to a precise 3-D numerical computation afforded by
the spectral element method. We discuss simple geometries, and explore a range of sizes of
anomalies compared to the wavelength of the seismic waves considered, thus illustrating the
range of validity and limitations of the various approximations considered.

Key words: Surface waves and free ascillations; Seismic tomography; Theoretical seismo-
logy; Wave propagation.

1 I N T RO D U C T I O N

Global seismic tomography involves an important forward mod-
elling step, where 3-D model predictions are compared to observ-
ables, such as traveltimes of body waves, surface wave dispersion,
normal mode spectra or time domain waveforms. It is the difference
between observations and predictions that forms the data vector, on
the right-hand side of the linearized inversion equation. While other
factors come into play, such as data coverage, model parametrization
(e.g. which physical parameters to consider?) and mathematical de-
scription of the model (e.g. blocks, local or global basis functions),
the quality of the 3-D model obtained depends, importantly, on the
validity of the approximations that are used in the forward compu-
tation step.

Until now, most investigators have relied on very simple, ‘ze-
roth order’, theoretical assumptions, such as in�nite frequency ray
theory in the case of body wave traveltimes, or the ‘path-average’
approximation (PAVA) in the case of surface waves and long period
waveforms. The advantage of these approaches is that they are com-
putationally very fast. They have served several generations of seis-
mic tomography efforts well, revealing �rst order features of mantle
3-D structure: for example, modelling based onP-wave traveltimes
has provided images of the deep structure of subduction zones,
whereas the two lower mantle broad low velocity regions often re-
ferred to as ‘superplumes’ were characterized through modelling
based on a combination of long periodSphases, normal modes and
surface waves (for a review, see Romanowicz 2003). As interest
has shifted to mapping shorter wavelength details (e.g. do hot spots
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plumes originate at the base of the mantle?), the need for a more
accurate theoretical treatment of the interaction of seismic waves
with mantle heterogeneity has been realized.

Investigators have approached this from two different directions:
on the long-period end, where the theoretical framework is gener-
ally that of normal mode theory, coupled mode formalisms and
asymptotic approximations have been considered, while on the
short-period end, where traveltimes of �rst arrivals are the cen-
trepiece, �nite frequency kernels have recently been introduced and
discussed extensively (e.g. Dahlenet al. 2000; Nolet & Dahlen
2000; Zhaoet al. 2000; Montelli et al. 2004; Zhouet al. 2004;
Takeuchi 2007). Here we will focus on the goal of modelling long
period time domain seismograms containing both body wave and
surface wave phases, arguing that the modelling of complete broad-
band seismograms, with interfering phases of different amplitudes,
is the ultimate objective of the next generations of tomographic
studies. The richness of phases with different paths in the mantle
provides coverage which compensates, to some extent, for the lack
of stations in some areas of the world, in particular, in the oceans
(e.g. Romanowicz 2008). Clearly, theoretical improvements need
to go hand in hand with efforts to �ll gaps in the distribution of
broad-band stations worldwide (e.g. Trampert & Spetzler 2006).

Until quite recently, an exact method for forward computation of
long period seismograms in a 3-D earth containing heterogeneity of
arbitrary wavelength was not available. This is now possible owing
to the development of powerful numerical methods such as the spec-
tral element method (SEM) and its application to global seismology
(Komatitsch & Vilotte 1998; Komatitsch & Tromp 1999). While
this approach is revolutionizing seismology, it remains very heavy
computationally, and its use for global tomography is still in the
developing stages (e.g. Trompet al. 2005; Lekic & Romanowicz
2007). For example, it currently takes�4 hr to compute the global
wave�eld for one event down to 60 s on a modest 32 cpu cluster,
while the entire forward part of the waveform modelling can be
achieved in that amount of time for 100 events using the PAVA.
While clusters are becoming cheaper and faster every day, the next
generation of global tomographic models will continue to rely, at
least partially, on approximations that render the computation of
several iterations of inversion feasible on modest size computers.

There is however, a powerful use that can be made of the SEM
capabilities: by comparison of the exact computations with approx-
imate ones, we can (1) test the limits of validity of various approxi-
mations and (2) gain physical insight on the role of successive terms
in these approximations.

In this paper, we focus on �rst order perturbation theory, in the
context of a normal mode formalism, and its asymptotic approxi-
mations. While the basic formalism was developed more than 20
yr ago (e.g. Woodhouse & Dahlen 1978; Woodhouse & Girnius
1982; Woodhouse & Dziewonski 1984), we focus here on zeroth-
and higher-order asymptotic approximations and compare them to
the full Born approximation. We give in the Appendix the complete
higher order asymptotic expressions that we use in the context of
modelling elastic effects on the amplitudes (e.g. Romanowicz 1987),
such as are important for the retrieval of 3-D anelastic structure of
the mantle (e.g. Gung & Romanowicz 2004; Dalton & Ekström
2006).

In what follows, we lead the reader through the different stages
of approximations to normal mode perturbation theory that are
commonly—or occasionally—used in global mantle tomography,
starting with the zeroth order, most standard ones and progressively
adding complexity. By comparing approximate and ‘exact’ synthetic
seismograms on some simple examples of structure, we illustrate

the physical meaning of the successive approximations and discuss
their limitations. We restrict our exercise to relatively long periods,
longer than are used in practice in real inversions, as the main goal
is to emphasize the physics of the interaction of seismic waves with
heterogeneity.

2 T H E O R E T I C A L F R A M E W O R K

Here, we compare various levels of asymptotic approximations in
the framework of �rst-order perturbation theory of normal modes.
The long period displacementu in a slightly aspherical earth is a
solution of the equation (e.g. Woodhouse 1983):

(H + �� 2
t )u = f , (1)

where� t denotes partial differentiation with respect to time,H is
the integro-differential operator representing the elastic and gravi-
tational effects,� is the density distribution andf = f (x, t) is the
body force equivalent of the seismic source.

In the reference spherical, non-rotating, elastic and isotropic
(SNREI) model, the corresponding equation is:

(H0 + � 0� 2
t )u0 = f . (2)

The solution can be expanded in terms of the free oscillations
|k> of the reference model, which are orthogonal in the sense:

�k |� 0|k�� =
�

V
|k > � ·� 0|k� > dv = � i j , (3)

where the integration is over the volume of the EarthV, and the
asterisk (�) indicates complex conjugation.

Using the notations of Woodhouse & Girnius (1982), the accel-
erationu0(t) in the SNREI reference earth model can be written
as:

u0(t) = Re
�

k

exp[(i � k Š � k)t ]
�

m

Rm
k Sm

k . (4)

Here the sum is taken over all multiplets|k>, described by three
integers: (n,l, m), wheren is the radial order,l the angular or-
der andm the azimuthal order (|m|< = l). In an SNREI earth,
multiplets are ‘degenerate’ and for a givenn, the corresponding
2l + 1 singlets all have the same eigenfrequency� k = n� l . The
complex degenerate frequency of multipletk is � k + i � k, where
� k accounts for anelastic attenuation. From now on, we will omit
the imaginary part of the eigenfrequency, which can be included
in the equations when considering anelastic attenuation, invoking
the correspondence principle.Rm

k and Sm
k are receiver and source

vectors, respectively, which can be written in the form (Woodhouse
& Girnius 1982):

Rm
k (� r , � r ) =

N=1�

N=Š1

RkNYNm
l (� r , � r )

Sm
k (� s, � s) =

M=2�

M=Š2

SkMYMm
l (� s, � s), (5)

whereYNm
l are the generalized spherical harmonics of Phinney &

Burridge (1972), (�r , � r ), (� s, � s) are the receiver and source
coordinates, respectively, andRkN, SkM are linear combinations of
moment tensor elements and spherical earth eigenfunctions, and are
given in table 1 of Woodhouse & Girnius (1982).

While higher order normal mode perturbation theory for an as-
pherical earth has been developed and tested (e.g. Lognonné &
Romanowicz 1990; Lognonné 1991; Cĺevéd́e & Lognonńe 1996;
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Clévéd́e et al. 2000), we will limit ourselves here to �rst order
perturbation theory. In this framework, the expression for the accel-
erationu(t) in a perturbed earth model is (Woodhouse 1983; Li &
Tanimoto 1993):

u(t) = Re
�

k,k�

�

m,m�

Rm
k

�
exp

�
i t (� k� kk� +

Zmm�

kk�

(� k + � k� )

�

Š exp(i � kt)Pmm�

kk�

�
Sm�

k� , (6)

where

Zmm�

kk� = Hmm�

kk� Š � 2Pmm�

kk� . (7)

Herek, k� denote two multiplets andm,m� are the azimuthal orders
of singlets within each of these multiplets, and the effect of lateral
heterogeneity is expressed through the splitting matrix elements:

Hmm�

kk� = Hi j = � i |H| j � =
�

V
|i > � H| j > dV

Pmm�

kk� = Pi j = � i |�� | j � =
�

V
|i > � �� | j > dV. (8)

It is common practice to neglect the term inPkk� in expression (6),
as it is a small amplitude perturbation due to density heterogeneity
and it does not evolve with time (it is different from the amplitude
perturbation due to focusing effects).

A convenient expression forZkk� can be obtained by introducing
the local frequency shift�� kk� resulting from coupling of multiplets
(k, k�) by heterogeneity, de�ned in terms of model perturbations at
a position (�, � ) on the earth’s surface, as follows:

�� kk� (� , � ) =
1

2� kk�

� � a

0
� m(r, � , � ) · Mkk� (r )r 2dr

�

Š

�
�

d

r 2
dhd(�, � )Hd

kk�

	

, (9)

where� kk� = (� k + � k� )/2. For volumetric heterogeneity, the model
perturbation vector at point (r, � , � ) in the Earth is� m (r , � , � ).
M kk� (r ) is the corresponding kernel vector, and the integral is taken
over radiusr from the centre of the earth to its surface at radiusa.
Likewise,hd(� , � ) is the perturbation to the position of discontinuity
d beneath the point (�, � ), and Hd

kk� is the corresponding kernel.
For completeness, perturbations due to rotation should be added
to eq. (9), as given by Dahlen (1968) and Woodhouse & Dahlen
(1978). In the isotropic case, expressions for the kernels in eq. (9)
have been derived by Woodhouse & Dahlen (1978) in the case of
self-coupling (k= k�), and extended by Romanowicz (1987) to the
case of coupling between different multiplets. Li & Romanowicz
(1996) give the corresponding expressions in the case of a radially
anisotropic model and other authors provide the means to compute
them in the general anisotropic case (Mochizuki 1986a; Tanimoto
1986; Romanowicz & Snieder 1988).

As shown in Woodhouse & Girnius (1982) for the self-coupling
case, and in Romanowicz (1987) and Romanowicz & Snieder (1988)
in a more general case:

Zmm�

kk� =
i =2�

i =0

� kk�

� �

	
�� kk� (� , � )(Š� 2)i



Ym�

l (� , � )Ym�

l � (� , � )
�

d	,

(10)

where integration is over the unit sphere	. Going back to eq. (6),
we thus obtain (e.g. Li & Tanimoto 1993):

u(t) = Re
�

i j

Ri exp
�

i
�
� i � i j +

Zi j

(� i + � j )

�
t
�

Sj , (11)

wherei = (k, m) andj = (k�, m�) are two individual singlets, andRi

andSj are the corresponding receiver and source vectors.
We note that expression (11) is uniformly valid at all times (Li

& Tanimoto 1993), that is, no short-term approximation has been
made yet.

In the ‘self-coupling’ case, which is widely used in the context of
normal mode data analysis, such as, for example, in the determina-
tion of mode splitting functions (e.g. Giardiniet al. 1988; Li et al.
1991), the sum is restricted to coupling of singlets within the same
multiplet, and expression (11) becomes:

u(t) = Re
�

k

�

mm�

Rm
k exp

�

i

�

� k +
Zmm�

kk

2� k




t

	

Sm�

k . (12)

A convenient intermediate observable in this case is the ‘splitting
function’ (Giardiniet al.1988):


 (� , � ) =
�

st

ct
sY

t
s (� , � ). (13)

The splitting coef�cientsct
s’s are de�ned through:

Zmm�

kk = � 0

s=2 l�

s=0

l=+s�

l=Šs


 mm�t
ls ct

s + m	�� mm� , (14)

where the second term represents the effect of rotation [	 is the
rate of rotation of the earth and� the rotation splitting parameter
(Dahlen 1968)]. Also

ct
s =

� a

0
� mst(r )Mss(r )r 2dr +

�

d

� hd
stH

d
ss. (15)

Here � mst(r ) is a spherical harmonics coef�cient of degree and
order (s,t) of the model pertubation at radiusr, and:


 mm�t
ls =

� 2�

0

� 2�

0
Ym�

l (� , � )Yt
s (� , � )Ym�

l (� , � ) sin(� ) d� d�. (16)

In this approximation, it can be shown that the seismogram depends
only on even order heterogeneity, that is, it is incomplete for the
purpose of study of Earth’s 3-D structure (e.g. Romanowicz & Roult
1986). For normal mode analysis, however, it is a reasonably good
�rst order approximation, given that a propagating seismic wave
travels many times around the great circle to form a standing mode,
and is therefore primarily sensitive to structure that is symmetric
with respect to the centre of the earth. However, the terms arising
from coupling between different multiplets need to be included to
recover sensitivity to the odd terms of the 3-D structure. Linearized
expressions for the perturbation to the seismogram, convenient for
the study of mode coupling can be found in Giardiniet al.(1988) and
have been used to obtain some information on odd structure from
the analysis of mode splitting (e.g. Resovsky & Ritzwoller 1995;
Durek & Romanowicz 1999; Kuo & Romanowicz 2002; Andrews
et al.2006).

When the focus is not the study of normal modes but that of long
period seismograms in the time domain or traveltimes of seismic
phases, as in most studies based on the �rst order Born approxi-
mation, expression (11) is linearized, assuming short times [t 	
2� ||Zi j /(� i + � j )||Š1], so that the acceleration seismogram then
becomes:

u(t) = u0(t) + � u(t) (17)

with

� u(t) = Re
�

kk�

exp(i � kt) Š exp(i � k� t )
� 2

k Š � 2
k�

× Akk� , (18)
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where

Akk� =
�

mm�

Rm
k Zmm�

kk� Sm�

k� . (19)

Using eq. (10) and the addition theorem for spherical harmonics,
Akk� can be written in the form (Romanowicz 1987; Li & Tanimoto
1993)

Akk� = Op1Op2

� �

	
�� kk� Y0

l (
) Y0
l � (� ) d	, (20)

whereOp1 andOp2 are two linear differential operators acting on
the epicentral and station coordinates, respectively. We see that the
computation of the scattering term (20) involves integration over
the surface of the whole sphere.

The linearization in eq. (18) introduces a secular term, indeed:

�

kk�

exp(i � kt) Š exp(i � k� t )
� 2

k Š � 2
k�

Akk�

=
�

k

�

�
�

k�=k

i t
2� k

Akk +
�

k� 
=k

exp(i � kt)
� 2

k Š � 2
k�

(Akk� + Ak�k)

�

� . (21)

The �rst term in eq. (21) represents coupling within the multiplet
k (otherwise known as ‘self-coupling’), the second term represents
coupling between multipletk and all other multiplets.

When both terms in eq. (21) are considered, we obtain the �rst
Born approximation (BORN), and the perturbation to the seismo-
gram (eq. 18) becomes (Woodhouse 1983; Tanimoto 1984):

� u(t) = Re
�

k

� �

k

i t
2� k

�

mm�

Rm
k Hmm�

kk Sm�

k

+
�

k� 
=k

exp(i � kt)
� 2

k Š � 2
k�

×
�

mm�

Rm
k Zmm�

kk� Sm�

k�

�
. (22)

This approximation is the basis for the ‘�nite-frequency’ theory
leading to the ‘banana–doughnut’ kernels. From eq. (10), we see
that the computation of the perturbation to the seismograms involves
an integration over the whole sphere of the local frequencies of all
the modes considered. This is heavy computationally, while valid
only for weak heterogeneity (single scattering) and short times (the
linear term int). In fact, the Princeton body wave approach does
not use a mode formalism in the calculation of the kernels, but
decreases the computational burden by using a paraxial far-�eld ray
approximation to more quickly determine the value of the integrand
in the Born approximation. This speed-up, of course, comes at the
cost of retaining some shortcomings of ray theory, in particular the
inability to model diffracted phases.

To avoid the drawbacks of the short time approximation, we can
linearize eq. (11) differently, as was done in Li & Romanowicz
(1995), by replacing� i andZi j by:

�̃ i = � i + � �̃ i

Z̃i j = Zi j Š 2� i � �̃ i � i j ,
(23)

where we de�ne the frequency shift� �̃ i as:

� �̃ i =
1
�

� R

S
�� i (s) ds (24)

and the integral is taken along the great circle path.
The perturbed seismogram can then be written:

u(t) =
�

k

Ak exp(i �̃ kt) + � u(t) (25)

with

Ak =
�

m

Rm
k Sm

k

� u(t) = Š
�

k

i t � �̃ k Ak exp(i �̃ kt) +
�

k

�

k�C� k

Dkk� (t)Akk� ,
(26)

where� k is the set of multiplets whose eigenfrequencies are higher
than or equal to� k, and (e.g. Li & Romanowicz 1995), and:

Dkk� (t) =
exp(i �̃ kt) Š exp(i �̃ k� t )
(� k + � k� )(�̃ k + �̃ k� )

(27)

The de�nition of � �̃ k is somewhat arbitrary. Instead of the inte-
gral along the path from the source to the receiver, one could also
choose to de�ne it as the great circle average of the local frequency,
which then relates more directly to the expressions introduced by
Woodhouse & Dziewonski (1984).

WhenAkk� in eq. (26) is computed exactly, the non-linear expres-
sion (25) represents a modi�cation to the single scattering Born ap-
proximation (eq. 22). It includes multiple forward scattering, which
is a better approximation in the case of long paths across relatively
homogeneous structure, such as de�ned by the long wavelength
part of the model (e.g. Panninget al. 2008). We call this modi�ed
Born approximation ‘non-linear Born formalism’ (NBORN). We
note that these scattering integrals are computationally very heavy.

When the wavelength of the elastic wave is short compared to the
wavelength of structure, the sensitivity of the wave is concentrated
along the great circle, and asymptotic approximations to the Legen-
dre functions give quite accurate results, away from the source, the
receiver and their antipodes. We will now consider these asymptotic
expressions.

2.1 Asymptotic approximations

The integrals over the sphere are computationally time consuming,
especially as there are many modes to couple, however, at angular
ordersl corresponding to wavelengths large compared to those of
lateral heterogeneity, it is possible to replace the expressions for
the spherical harmonicsYNM

l by their asymptotic approximations,
derived from those of the generalized Legendre polynomialPNM

l ,
which is, to order 1/l:

kl PM N
l (x) =

1

�
�

sin�
cos

�
kx +

(N + M)�
2

Š
�
4

+
1
k

� N M(x)
�

+ O
�

1
l 2

�
, (28)

where

� N M(x) =
�

(N2 + M2)
2

Š
1
8

�
cotx Š

M N
sinx

(29)

and

kl =

�
2l + 1

4�
. (30)

We can expressAkk� (eq. 19) in terms of generalized Legendre
polynomials (e.g. Li & Tanimoto 1993)

Akk� =
�

N

�

M

RkNSk� M

�

	
�� 2

kk� XN0
l (� )XM0

l � (
)

× exp
�
i
�
M� ps Š N� pr

��
d	, (31)
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� pr� ps

Figure 1. Source–receiver geometry and de�nition of angles used in the
text.

where, ifPN
l , PM

l � are associated Legendre functions, the normal-
ization is such that:

XN0
l = kl PN

l . (32)

The angles
, � , � ps and� pr are de�ned in Fig. 1, and

�� 2
kk� = 2� kk� �� kk� . (33)

2.1.1 Self-coupling

Introducing the ‘location parameter’ (Jordan 1978) corresponding
to multipletk

� k =

�
mm� Rm

k Zmm�

kk Sm�

k�
mm� Rm

k Sm�

k

(34)

the self-coupling seismogram (eq. 12) can be written as:

u(t) = Re
�

k

�

mm�

Rm
k Sm�

k exp[i (� k + � k)t ]. (35)

It can be shown that, asymptotically (Jordan 1978; Romanowicz &
Roult 1986)

� k = � �̂ k + O(1/ l ), (36)

where� �̂ k is the great circle average of the local frequency�� k(� ,
� ) corresponding to multipletk

� �̂ k =
1

2�

�

	
�� k(� , � ) d	. (37)

Thus, for high enough frequencies and correspondingly smooth
earth models, the effect of lateral heterogeneity on multipletk is a
frequency shift� �̂ k which depends only on the average structure
beneath the great circle containing the source and the station. This
allowed Masterset al. (1982) to meaningfully plot these frequency
shifts as a function of position of the poles of the corresponding
great circles, and discover the now well known ‘degree two pattern’
originating in the upper-mantle transition zone.

2.1.2 Complete Þrst-order seismograms

Let us now consider complete seismograms and �rst discuss the
asymptotic approximation of order zero in 1/l. We will distinguish
two cases.

(i) Along branch coupling only, in which we do not consider
coupling across different mode branches, that is, we only couple
modes which have the same overtone numbern.

(ii) Coupling both along and across mode branches.

2.1.3 The Ôpath averageÕ approximation

Case (i) was studied by Mochizuki (1986b) and Romanowicz
(1987), who showed that, by applying the stationary phase approx-
imation to order zero, this leads to the so-called PAVA of surface
wave analysis, accounting for the effect of structure along the minor
arc.

Following the notations of Romanowicz (1987), we de�ne the
displacement operatorD, the projection on a given component of
motionv, the strain tensor operator� and the source moment tensor
M . � andD, here considered in the spherical earth, depend on the
multiplet [i.e. on the integers (n, l)] but not on the azimuthal order
m. Therefore, for multipletk, we can write, in operator notation:

�

mm�

Rm
k Sm�

k = (v · D)(� : M)

�
�

mm�

Ym
l (� s)� Ym�

l (� r )

	

= (v · D)(� : M)kl Y0
l (�), (38)

where� is the epicentral distance, and we have applied the summa-
tion rule for spherical harmonics, since the operators depend only
on l andn, not onm. Let:

Ak
0(�) = (v · D)(� : M)kl Y0

l (�). (39)

The spherical earth seismogram is then:

uo(t) = Re
�

k

Ak
0(�)e

i � kt . (40)

It can be shown (e.g. Romanowicz 1987) that self-coupling com-
bined with along-branch coupling yield the following expression
for the seismogram, asymptotically, to order zero in 1/l:

upava(� r , � r , t) =
�

k

A0
k(� + �� ) exp[i (� k + � �̂ k)t ], (41)

where

�� =
a�

U(l + 1/2)
(� �̂ k Š � �̃ k). (42)

Here� �̂ k is the great circle average frequency de�ned in eq. (37),
� �̃ k is the ‘minor arc average’, de�ned in eq. (24):

We thus see that along-branch coupling is necessary to describe
the sensitivity of the seismogram to odd-order heterogeneity, namely
heterogeneity that is not symmetric with respect to the centre of the
earth (i.e. perturbation along the minor arc). Expression (41) is
identical to that posited by Woodhouse & Dziewonski (1984) for
the modelling of waveforms in a 3-D earth with both even and odd
order heterogeneities.

We note that in the PAVA approximation, the seismogram is sensi-
tive only to the average structure between the source and the receiver
and along the great circle path, that is, the corresponding sensitivity
kernels are ‘1-D’ in the vertical plane containing the source and the
receiver. This approximation is best for single-mode seismograms,
such as fundamental mode surface waves. The equivalence of the
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time domain expression (41) with the standard phase velocity mea-
surements of single mode surface waves in the frequency domain
was demonstrated in Romanowicz (1987).

The next step in complexity is the introduction of ‘across branch
coupling’, to order zero in (1/l).

2.1.4 Across-branch coupling

The PAVA approximation is not a good approximation for body
waves, whose sensitivity is concentrated along the ray theoretical
ray path. It is also not well suited for surface wave overtones, which
are formed by interactions of body waves. As shown by Li & Tan-
imoto (1993), it is necessary to consider across-branch coupling to
correctly describe the ray sensitivity of body waves.

The formalism of Li & Tanimoto (1993) is a purely linear, single
scattering formalism. In this case, the seismogram is written:

u(t) = u0(t) + Re
�

kk�

exp(i � kt) Š exp(i � k� t )
� 2

k Š � 2
k�

Akk� , (43)

whereu0(t) is the reference 1-D seismogram, andAkk� is calculated
using the stationary phase approximation to order zero.

While it provides a better representation of the 2-D sensitivity of
body waves to structure in the vertical plane containing source and
receiver, this formalism has some disadvantages with respect to the
time domain PAVA, in which the complete series along the great
circle path is included in the exponential term. As already introduced
earlier, Li & Romanowicz (1995) proposed a modi�cation (non-
linear asymptotic coupling theory, NACT) of the Li & Tanimoto
(1993) formalism by re-introducing the path average perturbation
in the exponential term, and appropriately removing it from the
linearized across-branch coupling term as expressed in eqs (26).
The expression forAkk� in eq. (26) (eq. 13 of Li & Romanowicz
1995) is:

Akk� =
1

2�

�
Q(1)

kk�

� 2�

0
�� 2

kk� cos j � d� + Q(2)
kk�

� 2�

0
�� 2

kk� sin j � d�
�

(44)

Figure 2. Simple models used in forward calculations. Top panels: single low velocity anomaly (Model 1). Left-hand panel: view from above; Right-hand
panel: vertical cross section along the line shown in the left-hand panel. Bottom panels: Same as top for a model with two anomalies of equal amplitude and
opposite signs (Model 2). In all cases, the anomalies correspond to a wavelength corresponding to spherical harmonic degree 16 (about 1250 km), and shear
wave velocity anomalies of±5 per cent.

here j = l � Š l and the source and receiver termsQ(1)
kk� andQ(2)

kk� are
given in appendix A of Li & Romanowicz (1995). Note that this
expression is only used fork�C� k (across-branch coupling terms).

The NACT approximation provides 2-D sensitivity of the seis-
mogram in the vertical plane containing source and receiver and is
thus a better approximation than PAVA to model the propagation
of body waves. Moreover, it preserves the long-time validity of the
PAVA part of the seismogram.

Neither PAVA nor NACT account for sensitivity outside of the
great circle vertical plane, and therefore only allow to accurately
model variations in the phase part of the seismogram, as the phase
is better behaved than the amplitude and less sensitive to off-
great circle effects. In contrast, strong variations in the amplitudes
of the waveforms can be observed due to off-great circle focus-
ing/defocusing effects.

2.1.5 Higher-order asymptotics

In order to include the off-great circle path sensitivity in the seis-
mogram, it is necessary to conduct the asymptotic computations
to higher order in (1/l). This was shown by Romanowicz (1987)
and Park (1987). Romanowicz (1987) gave the expressions for the
seismogram for the vertical component of motion. Here we present
the general result, with the algebra explicited in the Appendix. It
involves using expression (28) for the generalized Legendre poly-
nomials as well as the stationary phase to order (1/l) (as shown in
Romanowicz 1987). The expression thus obtained for the order (1/l)
contribution� u1

k of multiplet k to the seismogram, is:

� u1
k(t, � ) =

1

� kl

�
sin�

�
cos

�
k� Š

�
4

�

×
�
B1

0 cos� kt Š t B1
1 sin� kt

�

+ sin
�
k� Š

�
4

� �
C1

0 cos� kt Š tC1
1 sin� kt

�
�
,

(45)
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where

B1
0 =

a�
lU

(F1 Š F̃7) Š
F6

l

B1
1 =

F4 Š F̃10

l

C1
0 = Š

a�
lU

(F2 Š F̃8) Š
F5

l

C1
1 =

F3 Š F̃9

l

(46)

and the expressions forF0 . . . F̃10 are given in the Appendix. This
generalizes the expressions of Romanowicz (1987) to any moment
tensor source and any component of observation: In eq. (46), the
coef�cients B1

0, B1
1, C1

0 and C1
1 depend only on minor arc and

great circle averages of the local frequency and its spatial �rst and
second derivatives (in particular, derivatives transverse to the great
circle path). As shown by Romanowicz (1987), the expressions
obtained for the focusing terms are equivalent to those obtained by
Woodhouse & Wong (1985) by ray tracing on the sphere.

As we will show in the next section, this approximation works
well for certain epicentral distance ranges, but is more restrictive in
its domain of validity than the PAVA/NACT, because of the diver-
gence of the 1/lterms.

Note that, in the case where only self-coupling is considered to
order (1/l), we obtain the next approximation of the mode frequency
shift (e.g. Romanowicz & Roult 1986) or location parameter:

� k = � �̂ k +
D̂k

8l
cot(k� Š �/ 4) + O(1/ l 2), (47)

whereD̂k is the great circle average of the transverse gradient of
structure

D̂k =
1

2�

�



Dk(s)ds. (48)

The expression forDk is given in the Appendix and is the same as
that of Woodhouse & Wong (1985) (converted from phase velocity
to frequency shift formalism).

This introduces quasi-periodic oscillations around the average
frequency shift as a function of angular order as was illustrated in
real data by Romanowicz & Roult (1986) and Pollitzet al. (1987).
Since the 1/lterm is only the �rst term of a truncated asymptotic
series, the oscillations around the average frequency shift can be-
come divergent at certain combinations of� andk, because of the
division by sin (k� Š � /4), limiting the range of validity of this
asymptotic approximation.

3 P R AC T I C A L E X A M P L E S / D I S C U S S I O N

In what follows, we illustrate the effects of the different approx-
imations discussed in the preceding section on simple synthetic
examples. Two simple structures embedded in a spherically sym-
metric Earth will be considered (Fig. 2). The �rst structure (Model
1) is simply a low velocity anomaly of ellipsoidal shape. The sec-
ond structure (Model 2) comprises two ellipsoidal anomalies of the
same shape, amplitude and position, but of different signs. Three
different sources will be considered. An ‘isotropic’ source, used
for the computations with Model 1, and a double couple source for
Model 2. The amplitudes and sizes of the anomalies will be varied.

We calculate reference synthetic seismograms for the reference
1-D radially symmetric model, a simpli�ed model based on PREM
(Dziewonski & Anderson 1981), but with smoother depth variations

to reduce computation time in SEM, and for the 3-D models de-
�ned in Fig. 2. For these calculations, we used the ‘coupled’ SEM
(Capdevilleet al.2002; Chaljubet al.2003), down to 100 s period.
In this approach, the SEM is used in the mantle, and coupled to a
mode computation in the 1-D core. In what follows, comparisons
of asymptotic approximations to BORN and NBORN will be pre-
sented. The BORN computations are here performed according to
the ef�cient approach described in Capdeville (2005).

3.1 Body wave character: 2-D effects in the vertical plane
on overtones

Fig. 3 illustrates the importance of considering 2-D kernels in the
vertical plane containing the source and the receiver, when mod-
elling overtones, and more generally body waves. Here we com-
pare 3-D synthetics for a path traversing the two-anomaly structure
(Model 2) along its vertical plane of symmetry. The source is a
double-couple source located in the plane of symmetry, with a max-
imum of radiation for Rayleigh waves in the source-station direction.

source

�lnVs 5 % ( 150 km )

L component
� = 115 deg
( 220 , +00 )

SEM1D

X1 R1

SEM3D

SEM 

Differential waveform X 3.5

PAVA

NACT

1500 2000 2500 3000 3500 4000
time(sec)

NACT+FOC

Figure 3. Comparison of synthetic seismograms computed for the radial
component, in Model 2 at an epicentral distance of 115� . The source is a
double couple 45� dipping north south striking normal fault. The waveforms
at the top show a comparison of 1-D and 3-D synthetics computed using
C-SEM, down to 100 s period. Below are shown differential waveforms
between the 3-D and 1-D calculations, for different approximations (PAVA,
NACT, NACT+FOC, shown in red), and for the SEM calculations, shown in
black, for reference. In this case, the PAVA approximation performs poorly
for the overtone wavepacket X1, because the effect of the two equal and
opposite anomalies cancels out.
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The reference 3-D seismograms computed using C-SEM, and com-
pared to the 1-D reference seismograms, show a larger difference
for the overtone wave train X1 than for the fundamental mode wave
train R1. PAVA is not able to reproduce this difference: for PAVA
the differential trace is �at, re�ecting the fact that PAVA sensitivity
is 1-D, and ‘sees’ only the average structure between the source and
the receiver, which has zero anomaly, at any given depth, since the
effects of the two anomalies cancel each other.

On the other hand, NACT, with its 2-D kernels, is able to re-
produce the 3-D effects on the overtone wave packet quite well,

source

Z component
� = 99.6 deg
azm = 170 

SEM1D X1

R1

SEM3D

SEM differential waveform X 4.5

PAVA

NACT

1000 2000 3000
time(sec)

NACT+FOC

source

Z component
� = 99.6 deg
azm = 166 

SEM1D X1

R1

SEM3D

SEM differential waveform X 8

PAVA

NACT

1000 2000 3000
time(sec)

NACT+FOC

Figure 4. Comparison of synthetic seismograms computed for the vertical component, in Model 1 at an epicentral distance of 99.6� , for an isotropic source. As
in Fig. 3, the waveforms at the top show a comparison of 1-D and 3-D synthetics computed using C-SEM, down to 100 s period. Below are shown differential
waveforms between the 3-D and 1-D calculations, for different approximations (PAVA, NACT, NACT+FOC, shown in red), and for the SEM calculations,
shown in black. Left-hand panel: computation at an azimuth of 170� from North, in which the path penetrates into the anomaly. All approximations perform
well in this case. Right-hand panel: computation at an azimuth of 166� , in which the ray grazes the anomaly. In this case neither PAVA, nor NACT are able to
match the SEM computations. It is necessary to introduce off-plane effects (NACT+FOC).

source

component = Z
� = 140 deg
azimuth = 168 deg

CSEM1D

CSEM3D

CSEM differential waveform X 4

PAVA

NACT

NACT+FOC

0 500 1000 1500 2000 2500 3000 3500 4000

time(sec)

BORN

source

component = Z
� = 140 deg
azimuth = 180 deg

CSEM1D

CSEM3D

CSEM differential waveform X 3

PAVA

NACT

NACT+FOC

0 500 1000 1500 2000 2500 3000 3500 4000

time(sec)

BORN

Figure 5. Same as Fig. 4, but for a distance of 140� , and azimuths of 168� (left-hand panel) and 180� (right-hand panel), also showing a comparison with the
linear BORN computation. In this case, the linear Born computation gives the most satisfactory �ts to the SEM computation.

but does not improve the �t for the fundamental mode. The re-
maining very small mis�t in the overtones, and much of the fun-
damental mode mis�t can be explained by focusing effects (i.e.
off path propagation) and the asymptotic focusing computation
(NACT+FOC) does a good job in this case, except for a small
portion of the time-series between X1 and R1, likely due to the trun-
cation in the number of modes that are considered for the coupling
computation.

This example shows that, for the modelling of overtones at low
frequency, the most important effect is the 2-D effect in the vertical
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ABC

Max amp 5%

X R1

1D trace

A (2.88 multiplier)

SEM differential

PAVA misfit

NACT misfit

NACT+FOC misfit

BORN misfit

NBORN misfit

B (5.11 multiplier) C (17.49 multiplier)

Figure 6. (a) Comparison of synthetic seismograms for a Model 1 anomaly of larger size (diameter 22.5� , or �2500 km), using different approximations
and for different azimuths. (A) azimuth of 180� ; (B) azimuth of 168� and (C) azimuth of 160� . In the top plot, the star denotes the location of the source,
and the triangles are stations for which waveforms are shown. Here we show only the 1-D trace (top right-hand panel), the 3D–1D differential seismograms
(second row), and mis�ts between the 3-D SEM computation and the various approximations. In addition to PAVA, NACT, NACT+FOC and linear BORN,
where also show the comparison with NBORN. In this case, the linear BORN approximation behaves poorly and the NBORN modi�cation improves the �t to
SEM. However, for paths B and C, the asymptotic NACT+FOC approximation provides slightly better �ts than NBORN. Here and in the following �gures the
anomalies are de�ned as Gaussian anomalies of given diameter. The multiplier at the top of each column is applied to the differential trace and all the mis�t
traces in that column, which are relative to the 1-D trace plotted at the top right-hand corner of the �gure. (b) Same as (a) for the case of a smaller wavelength
anomaly, one of full width half maximum size 5� .

plane. The focusing effects are of second order for such smooth
structures.

3.2 Focusing effects: 2-D effects in the horizontal plane

In Fig. 4, we consider the single slow anomaly model (Model 1) and
paths grazing the anomaly at different azimuths from an isotropic
source located on a symmetry plane north of the anomaly. In the

left-hand panel, the path very slightly penetrates into the anomaly.
The PAVA approximation works well in this case and is able to
explain most of the difference between 1-D and 3-D seismograms,
particularly for the fundamental mode, which is here the strongest
phase and is well isolated from overtones. In the right-hand panel of
Fig. 4, on the other hand, the path is slightly further away from the
anomaly. In this case, PAVA is not able to explain the 3-D effects on
the R1 waveform, and NACT does not help. Introducing focusing
effects turns out to be crucial to explain the 3-D waveforms both for
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A (3.99 multiplier)

SEM differential

PAVA misfit

NACT misfit

NACT+FOC misfit

BORN misfit

NBORN misfit

B (8.43 multiplier) C (35.90 multiplier)

Figure 6. (Continued.)

the fundamental mode and the smaller overtone wave train. In this
case, again, the asymptotic computation of focusing effects does an
excellent job.

This example illustrates that: (1) the fundamental mode wave
train is generally well explained by PAVA and (2) focusing effects
are generally more important for the fundamental mode than 2-
D effects in the vertical plane. Many papers have discussed the
role of focusing in fundamental mode dispersion and waveform
measurements (e.g. Spetzleret al.2001; Yoshizawa & Kennett 2004;
Zhouet al.2004; Boschi 2006), however, we should stress that these
discussions only apply to the case of isolated fundamental mode
surface waves. As soon as overtones are considered, as shown in the
previous section, the more important effect is the 2-D effect in the
vertical plane.

Fig. 5 shows similar effects as Fig. 4, but this time at a larger dis-
tance (140� instead of 100� ), where the asymptotic approximations
are beginning to give less satisfactory results (they will eventually

break down near the antipode). Still, in the case of a path traversing
through the middle of the anomaly (right-hand panel), PAVA is able
to explain much of the 3-D effect, while the asymptotic focusing
calculation ‘overshoots’, and predicts a larger than necessary per-
turbation in the fundamental mode. For a grazing path (left-hand
panel), the asymptotic focusing computation provides a signi�cant
improvement over PAVA and NACT. However, it is necessary to
perform the complete calculation of scattering over the surface of
the sphere (i.e. BORN), in order to match the reference C-SEM
differential (3D–1D) waveforms.

We note that this impressive BORN �t is obtained for a speci�c
choice of size of anomaly. As discussed in Panninget al.(2008), the
single scattering, linear, Born approximation breaks down for large
amplitude, long wavelength anomalies, as it is not able to keep
up with the monotonous accumulation of phase delay along the
path, in which case it is important to include the multiple forward
scattering, as proposed in the ‘NBORN’ formalism. Fig. 6(a) shows
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an example comparing all the asymptotic approximations to the
BORN and NBORN ones, for paths interacting with the single low
velocity anomaly over different distances. While the largest mis�ts
are for PAVA and NACT for the path just outside of the anomaly,
these latter two approximations work much better for the path that
travels through the centre of the large anomaly. Interestingly, in
this particular case, the best �t is obtained in all cases for the
NACT+FOC approximation. On the other hand, when the anomaly
is of shorter wavelength, as shown in Fig. 6(b), BORN provides
the best �ts for all paths, and the NBORN approximation does not
further improve the �ts.

3.3 Domains of validity of various approximations

We have seen some simple examples illustrating the relative im-
portance of 2-D effects in the vertical and horizontal planes for
different parts of the seismogram. We showed these for speci�c
geometries, and a speci�c size of heterogeneity, corresponding to
a degree 16 term in a spherical harmonics expansion (i.e. a wave-
length of about 1200 km, that is twice the wavelength of the short-
est periods considered in our calculations). It is also instructive
to compare the performance of the various approximations in a
wider range of epicentral distances, azimuths, as well as sizes of
anomalies. In what follows, we will consider anomalies of three
different wavelengths, respectively with diameters of 5, 15 and
22.5� .

Fig. 7 compares residual variance plots for the fundamental mode
Rayleigh wave, with respect to the 3-D C-SEM reference, for the
four approximations (PAVA, NACT, NACT+FOC and BORN) in
the case of a single low velocity anomaly of three different wave-
lengths. These comparison plots show that the BORN approxi-
mation works very well, as expected, for the case of the smallest
anomaly, giving practically perfect �ts to the reference C-SEM cal-
culations. However, as the wavelength of the anomaly increases,
the BORN �ts deteriorate for paths traversing the anomaly. For
the longest wavelength anomaly, BORN performs poorly along
the paths that spend the most time inside the anomaly, and in
that case, the asymptotic, but non-linear NACT+FOC approxima-
tion gives signi�cantly better results than BORN. In the case of
a single anomaly, results are practically the same for PAVA and
NACT, regardless of the size of the anomaly, although for the larger
anomalies, we can see an increasing mis�t as we approach the
antipode.

Fig. 8 shows the effects of the same geometries on the overtone
wave packet. Here, all of the approximations work better in general,
but we see a clear improvement of NACT over PAVA, especially near
the axis of symmetry of the model and just beyond the anomaly,
where 2-D effects in the vertical plane are the strongest. The BORN
approximation works better for overtones than fundamental modes
for all wavelengths of anomaly considered.

In Figs 9 and 10, we show the results for the two anomaly case,
for the same three wavelengths of anomaly as in Figs 7 and 8. For
the fundamental mode (Fig. 9) we see that there is little difference
between the performance of PAVA and NACT, which reinforces
the fact that PAVA is an excellent approximation for the isolated
fundamental mode. There is little improvement when adding the
asymptotic focusing, which performs poorly when the receiver is
located in the area between the two anomalies, and at large distances
in the case of the smallest wavelength anomaly. For the largest
wavelengths anomalies, all the approximations perform equally,
except in the region between the anomalies, where PAVA/NACT
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Figure 7. Comparison of RMS mis�ts to CSEM obtained using different
approximations, for a range of azimuths and distances, and for 3 different
sizes of single low velocity anomalies. The star denotes the location of
the source. In this Fig. and the following, the mis�t is de�ned as an RMS
average of the difference between the approximate waveform and the 3-D
SEM waveform, over the speci�ed group velocity window, normalized by
the RMS amplitude of the 3-D SEM trace of the same window. Here the
mis�t has been calculated for the fundamental mode only (group velocity
window from 4.6 to 3.3 km sŠ1). Left-hand panel: anomaly of diameter
5� ; Middle panel: anomaly of diameter 15� ; Right-hand panel: anomaly of
diameter 22.5� . Only a small range of azimuths is shown, as the effects
of the heterogeneous structure become insigni�cant for paths further away
from the anomaly.

give the best results, and BORN performs very poorly. We see here
another manifestation of the breakdown of BORN when sampling
large wavelength anomalies: in this case the path only samples
the �rst, fast anomaly. The phase shift accumulated on this path
is too large to be explained by single scattering, while for longer
paths, the opposite sign phase shift gradually compensates for it,
and the BORN approximation eventually becomes more accurate
again. The NACT+FOC approximation also breaks down in the
region between the anomalies, most likely because of incomplete
(divergent) account of the wave front healing effect.
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