E. Chaljub, Y. Capdeville, and J. Vilotte, Solving elastodynamics in a fluid???solid heterogeneous sphere: a parallel spectral element approximation on non-conforming grids, Journal of Computational Physics, vol.187, issue.2, pp.457-491, 2003.
DOI : 10.1016/S0021-9991(03)00119-0

URL : https://hal.archives-ouvertes.fr/hal-00109457

E. Chaljub, P. Moczo, S. Tsuno, P. Bard, J. Kristek et al., Quantitative Comparison of Four Numerical Predictions of 3D Ground Motion in the Grenoble Valley, France, Bulletin of the Seismological Society of America, vol.100, issue.4, pp.1427-1455, 2010.
DOI : 10.1785/0120090052

URL : https://hal.archives-ouvertes.fr/insu-00564745

E. Chaljub and B. Valette, Spectral element modelling of threedimensional wave propagation in a self-gravitating Earth with an arbitrarily strati¿ed outer core, Geophys. J. Int, vol.183, pp.131-141, 2004.

M. Chen, J. Tromp, D. Helmberger, and H. Kanamori, Waveform modeling of the slab beneath Japan, Journal of Geophysical Research, vol.121, issue.B11, pp.10-1029, 2007.
DOI : 10.1029/2006JB004394

P. Chen, T. H. Jordan, and L. Zhao, Full three-dimensional tomography: a comparison between the scattering-integral and adjoint-wavefield methods, Geophysical Journal International, vol.170, issue.1, pp.175-181, 2007.
DOI : 10.1111/j.1365-246X.2007.03429.x

E. Clévédé and P. Lognonné, Fréchet derivatives of coupled seismograms with to an anelastic rotating earth, Geophys, J. Int, vol.124, pp.456-482, 1996.

A. Curtis, B. Dost, J. Trampert, and R. Snieder, Eurasian fundamental mode surface wave phase velocities and their relationship with tectonic structures, Journal of Geophysical Research: Solid Earth, vol.76, issue.8, pp.919-945, 1998.
DOI : 10.1029/98JB00903

E. Delavaud, Simulation numérique de la propagation d'ondes en milieu géologique complexe: applicationàapplication`applicationà l'´ evaluation de la réponse sismique du bassin de Caracas (Vénézuela), 2007.

E. Delavaud, P. Cupillard, G. Festa, and J. P. Vilotte, 3D Spectral Element Method simulations of the seismic response in the Caracas basin, Proceedings of the Third International Symposium on the Effects of Surface Geology on Seismic Motion, pp.515-522, 2006.

M. Dumbser and M. Käser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes - II. The three-dimensional isotropic case, Geophysical Journal International, vol.167, issue.1, pp.319-336, 2006.
DOI : 10.1111/j.1365-246X.2006.03120.x

T. Dupond, A L 2 estimate of Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal, vol.10, pp.880-891, 1973.

A. M. Dziewonski and D. L. Anderson, Preliminary reference Earth model, Physics of the Earth and Planetary Interiors, vol.25, issue.4, pp.297-356, 1981.
DOI : 10.1016/0031-9201(81)90046-7

H. Emmerich and M. Korn, Incorporation of attenuation into time???domain computations of seismic wave fields, GEOPHYSICS, vol.52, issue.9, pp.1252-1264, 1987.
DOI : 10.1190/1.1442386

E. Faccioli, F. Maggio, R. Paolucci, and A. Quarteroni, 2D and 3D elastic wave propagation by a pseudospectral domain decomposition method, Journal of Seismology, vol.1, issue.3, pp.237-251, 1997.
DOI : 10.1023/A:1009758820546

A. M. Ferreira, J. H. Woodhouse, K. Visser, and J. Trampert, On the robustness of global radially anisotropic surface wave tomography, Journal of Geophysical Research, vol.113, issue.2, pp.10-1029, 2010.
DOI : 10.1029/2009JB006716

G. Festa and J. P. Vilotte, The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics, Geophysical Journal International, vol.161, issue.3, pp.789-812, 2005.
DOI : 10.1111/j.1365-246X.2005.02601.x

G. Festa, E. Delavaud, and J. P. Vilotte, Interaction between surface waves and absorbing boundaries for wave propagation in geological basins: 2D numerical simulations, Geophysical Research Letters, vol.13, issue.5, pp.10-1029, 2005.
DOI : 10.1029/2005GL024091

A. Fichtner and H. Igel, Efficient numerical surface wave propagation through the optimization of discrete crustal models -a technique based on non-linear dispersion curve matching (dcm), Geophys, J. Int, vol.173, issue.2, pp.519-533, 2008.

A. Fichtner, H. Bunge, and H. Igel, The adjoint method in seismology, Physics of the Earth and Planetary Interiors, vol.157, issue.1-2, pp.86-104, 2006.
DOI : 10.1016/j.pepi.2006.03.016

A. Fichtner, P. Bunge, and H. Igel, The adjoint method in seismology???, Physics of the Earth and Planetary Interiors, vol.157, issue.1-2, pp.105-123, 2006.
DOI : 10.1016/j.pepi.2006.03.018

A. Fichtner, H. Igel, H. P. Bunge, and B. L. Kennett, Simulation and inversion of seismic wave propagation on continental scales based on a Spectral-Element Method, J. Numer. Anal. Ind. appl. Math, vol.4, pp.11-22, 2009.

A. Fichtner, B. L. Kennett, H. Igel, and H. Bunge, Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods, Geophysical Journal International, vol.179, issue.3, pp.1703-1725, 2009.
DOI : 10.1111/j.1365-246X.2009.04368.x

A. Fichtner, B. L. Kennett, H. Igel, and H. Bunge, Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle, Earth and Planetary Science Letters, vol.290, issue.3-4, pp.270-280, 2010.
DOI : 10.1016/j.epsl.2009.12.003

O. Gauthier, J. Virieux, and A. Tarantola, Two???dimensional nonlinear inversion of seismic waveforms: Numerical results, GEOPHYSICS, vol.51, issue.7, pp.511387-1403, 1986.
DOI : 10.1190/1.1442188

F. Gilbert, Excitation of the Normal Modes of the Earth by Earthquake Sources, Geophysical Journal International, vol.22, issue.2, pp.223-226, 1971.
DOI : 10.1111/j.1365-246X.1971.tb03593.x

L. Guillot, Y. Capdeville, and J. Marigo, 2-D nonperiodic homogenization of the elastic wave equation: SH case, Geophys, J. Int, vol.182, pp.1438-1454, 2010.

K. R. Kelly, R. W. Ward, S. Treitel, and R. M. Alford, SYNTHETIC SEISMOGRAMS: A FINITE ???DIFFERENCE APPROACH, GEOPHYSICS, vol.41, issue.1, pp.41-43, 1976.
DOI : 10.1190/1.1440605

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 1999.
DOI : 10.1046/j.1365-246x.1999.00967.x

D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation, part I: validation, Geophys, J. Int, vol.149, pp.390-412, 2002.
DOI : 10.1046/j.1365-246x.2002.01653.x

URL : http://gji.oxfordjournals.org/cgi/content/short/149/2/390

D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation, Geophysical Journal International, vol.150, issue.1, pp.303-318, 2002.
DOI : 10.1046/j.1365-246X.2002.01716.x

URL : https://hal.archives-ouvertes.fr/hal-00669062

D. Komatitsch and J. P. Vilotte, The Spectral Element Method: an efficient tool to simulate the seismic response of 2d and 3d geological structures, Bull. seism. Soc. Am, vol.88, pp.368-392, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00669068

D. Komatitsch, Q. Liu, J. Tromp, P. Süss, C. Stidham et al., Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method, Bulletin of the Seismological Society of America, vol.94, issue.1, pp.187-206, 2004.
DOI : 10.1785/0120030077

URL : https://hal.archives-ouvertes.fr/hal-00669055

D. Komatitsch, J. Ritsema, and J. Tromp, The Spectral-Element Method, Beowulf Computing, and Global Seismology, Science, vol.298, issue.5599, pp.298-1737, 2002.
DOI : 10.1126/science.1076024

URL : https://hal.archives-ouvertes.fr/hal-00669056

S. Lee, H. Chen, Q. Liu, D. Komatitsch, B. Huang et al., Three-Dimensional Simulations of Seismic-Wave Propagation in the Taipei Basin with Realistic Topography Based upon the Spectral-Element Method, Bulletin of the Seismological Society of America, vol.98, issue.1, pp.253-264, 2008.
DOI : 10.1785/0120070033

URL : https://hal.archives-ouvertes.fr/hal-00721214

V. Leki´cleki´c, M. Panning, and B. Romanowicz, A simple method for improving crustal corrections in waveform tomography, Geophys. J. Int, vol.182, pp.265-278, 2010.

P. Lognonné, Normal modes and seismograms in an anelastic rotating Earth, Journal of Geophysical Research: Solid Earth, vol.61, issue.B12, pp.20-309, 1991.
DOI : 10.1029/91JB00420

P. Lognonné and B. Romanowicz, Modelling of coupled normal modes of the Earth: the spectral method, Geophysical Journal International, vol.102, issue.2, pp.365-395, 1990.
DOI : 10.1111/j.1365-246X.1990.tb04472.x

M. S. Longuet-higgins, A Theory of the Origin of Microseisms, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.243, issue.857, pp.1-35, 1950.
DOI : 10.1098/rsta.1950.0012

J. Lysmer and L. A. Drake, A Finite Element Method for Seismology, Methods in Computational Physics, 1972.
DOI : 10.1016/B978-0-12-460811-5.50009-X

Y. Maday and A. Patera, Spectral Element Methods for the incompressible Navier-Stokes equations, State of the Art Survey in Computational Mechanics, pp.71-143, 1989.

Y. Maday and E. M. Rønquist, Optimal error analysis of spectral methods with emphasis on non-constant coefficients and deformed geometries, Computer Methods in Applied Mechanics and Engineering, vol.80, issue.1-3, pp.91-115, 1990.
DOI : 10.1016/0045-7825(90)90016-F

K. J. Marfurt, Accuracy of finite???difference and finite???element modeling of the scalar and elastic wave equations, GEOPHYSICS, vol.49, issue.5, pp.533-549, 1984.
DOI : 10.1190/1.1441689

F. Marone and B. Romanowicz, Non-linear crustal corrections in highresolution regional waveform seismic tomography, Geophys, J. Int, vol.170, pp.460-467, 2007.

R. Martin and D. Komatitsch, An unsplit convolutional perfectly matched layer technique improved at grazing incidence for the viscoelastic wave equation, Geophys, J. Int, vol.179, pp.333-344, 2009.

E. D. Mercerat, J. P. Vilotte, and F. J. Sánchez-sesma, Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids, Geophysical Journal International, vol.166, issue.2, pp.679-698, 2006.
DOI : 10.1111/j.1365-246X.2006.03006.x

P. Moczo, J. O. Robertsson, and L. Eisner, The finite-difference timedomain method for modeling of seismic wave propagation, in Advances in Wave Propagation in Heterogenous Earth, pp.421-516, 2007.

J. P. Montagner and T. Tanimoto, Global upper mantle tomography of seismic velocities and anisotropies, Journal of Geophysical Research: Solid Earth, vol.98, issue.B12, pp.337-357, 1991.
DOI : 10.1029/91JB01890

S. Oliveira and G. Seriani, Abstract, Communications in Computational Physics, vol.88, issue.04, pp.937-958, 2011.
DOI : 10.1016/j.cam.2006.05.007

URL : https://hal.archives-ouvertes.fr/hal-00973399

K. B. Olsen, Site Amplification in the Los Angeles Basin from Three-Dimensional Modeling of Ground Motion, Bulletin of the Seismological Society of America, vol.90, issue.6B, pp.77-94, 2000.
DOI : 10.1785/0120000506

K. B. Olsen and R. J. Archuleta, 3-D simulation of earthquakes on the Los Angeles fault system, Bull. seism. Soc. Am, vol.86, pp.575-596, 1996.

A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

C. Pelties, M. Käser, V. Hermann, and C. E. Castro, Regular versus irregular meshing for complicated models and their effect on synthetic seismograms, Geophys, J. Int, vol.183, pp.1031-1051, 2010.

D. Peter, Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes, Geophysical Journal International, vol.186, issue.2, pp.721-739, 2011.
DOI : 10.1111/j.1365-246X.2011.05044.x

URL : https://hal.archives-ouvertes.fr/hal-00617249

Y. Qin, Y. Capdeville, J. Montagner, L. Boschi, and T. W. Becker, Reliability of mantle tomography models assessed by spectral element simulation, Geophysical Journal International, vol.177, issue.1, pp.598-616, 2009.
DOI : 10.1111/j.1365-246X.2008.04032.x

URL : https://hal.archives-ouvertes.fr/insu-01400653

C. Ronchi, R. Ianoco, and P. S. Paolucci, The ???Cubed Sphere???: A New Method for the Solution of Partial Differential Equations in Spherical Geometry, Journal of Computational Physics, vol.124, issue.1, pp.93-114, 1996.
DOI : 10.1006/jcph.1996.0047

R. Sadourny, Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids, Monthly Weather Review, vol.100, issue.2, pp.136-144, 1972.
DOI : 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2

F. J. Sánchez-sesma, Diffraction of elastic waves by three-dimensional surface irregularities, Bull. seism. Soc. Am, vol.73, issue.6, pp.1621-1636, 1983.

G. Seriani, 3-D large-scale wave propagation modeling by spectral element method on Cray T3E multiprocessor, Computer Methods in Applied Mechanics and Engineering, vol.164, issue.1-2, pp.235-247, 1998.
DOI : 10.1016/S0045-7825(98)00057-7

G. Seriani and E. Priolo, Spectral element method for acoustic wave simulation in heterogeneous media, Finite Elements in Analysis and Design, vol.16, issue.3-4, pp.337-348, 1994.
DOI : 10.1016/0168-874X(94)90076-0

N. M. Shapiro and M. Campillo, Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise, Geophysical Research Letters, vol.110, issue.B12, pp.10-1029, 2004.
DOI : 10.1029/2004GL019491

URL : https://hal.archives-ouvertes.fr/hal-00107919

N. M. Shapiro and M. H. Ritzwoller, Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle, Geophysical Journal International, vol.151, issue.1, pp.88-105, 2002.
DOI : 10.1046/j.1365-246X.2002.01742.x

L. Stehly, P. Cupillard, and B. Romanowicz, Towards improving ambient noise tomography using simultaneously curvelet denoising filters and SEM simulations of seismic ambient noise, Comptes Rendus Geoscience, vol.343, issue.8-9, pp.591-599, 2011.
DOI : 10.1016/j.crte.2011.03.005

URL : https://hal.archives-ouvertes.fr/hal-01348839

M. Stupazzini, R. Paolucci, and H. Igel, Near-Fault Earthquake Ground-Motion Simulation in the Grenoble Valley by a High-Performance Spectral Element Code, Bulletin of the Seismological Society of America, vol.99, issue.1, pp.286-301, 2009.
DOI : 10.1785/0120080274

C. Tape, Q. Liu, A. Maggi, and J. Tromp, Adjoint Tomography of the Southern California Crust, Science, vol.325, issue.5943, pp.988-992, 2009.
DOI : 10.1126/science.1175298

URL : https://hal.archives-ouvertes.fr/hal-00723543

C. Tape, Q. Liu, A. Maggi, and J. Tromp, Seismic tomography of the southern California crust based on spectral-element and adjoint methods, Geophysical Journal International, vol.180, issue.1, pp.433-462, 2010.
DOI : 10.1111/j.1365-246X.2009.04429.x

URL : https://hal.archives-ouvertes.fr/hal-00723546

A. Tarantola, Inversion of seismic reflection data in the acoustic approximation, GEOPHYSICS, vol.49, issue.8, pp.1259-1266, 1984.
DOI : 10.1190/1.1441754

A. Tarantola, Theoritical background for the inversion of seismic waveforms, including elasticity and attenuation, Pure appl, Geophys, vol.128, issue.12, pp.365-399, 1988.

T. Toshinawa and T. Ohmachi, Love wave propagation in threedimensional sedimentary basin, Bull. seism. Soc. Am, vol.82, pp.1661-1667, 1992.