R. Geller and T. Ohminato, Computation of synthetic seismograms and their partial derivatives for heterogeneous media with arbitrary natural boundary conditions using the Direct Solution Method, Geophysical Journal International, vol.116, issue.2, pp.421-446, 1994.
DOI : 10.1111/j.1365-246X.1994.tb01807.x

R. Geller and N. Takeuchi, A new method for computing highly accurate DSM synthetic seismograms, Geophys, J. Int, vol.123, pp.449-470, 1995.

F. Gilbert, Excitation of the Normal Modes of the Earth by Earthquake Sources, Geophysical Journal International, vol.22, issue.2, pp.223-226, 1971.
DOI : 10.1111/j.1365-246X.1971.tb03593.x

D. Givoli and J. Keller, Non-reflecting boundary conditions for elastic waves, Wave Motion, vol.12, issue.3, pp.261-279, 1990.
DOI : 10.1016/0165-2125(90)90043-4

S. Grand, R. Van-der-hilst, and S. Widiyantoro, Global seismic tomography: a snapshot of convection in the Earth, Geol. Soc. Am. Today, vol.7, pp.1-7, 1997.

M. J. Grote and J. Keller, On Nonreflecting Boundary Conditions, Journal of Computational Physics, vol.122, issue.2, pp.231-243, 1995.
DOI : 10.1006/jcph.1995.1210

D. V. Helmberger, Theory and application of synthetic seismograms, in Earthquakes: Observation, Theory and Interpretation, pp.173-222, 1983.

S. Hung, F. Dahlen, and G. Nolet, Wavefront healing: a banana-doughnut perspective, Geophysical Journal International, vol.146, issue.2, pp.289-312, 2001.
DOI : 10.1046/j.1365-246x.2001.01466.x

D. Komatitsch and J. Tromp, Introduction to the spectral element method for three-dimensional seismic wave propagation, Geophysical Journal International, vol.139, issue.3, pp.806-822, 1999.
DOI : 10.1046/j.1365-246x.1999.00967.x

D. Komatitsch and J. Tromp, Spectral-element simulations of global seismic wave propagation-II. Three-dimensional models, oceans, rotation and self-gravitation, Geophysical Journal International, vol.150, issue.1, pp.303-318, 2002.
DOI : 10.1046/j.1365-246X.2002.01716.x

URL : https://hal.archives-ouvertes.fr/hal-00669062

D. Komatitsch and J. P. Vilotte, The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures, Bull. seism. Soc. Am, vol.88, pp.368-392, 1998.

T. Lay, Q. Williams, and E. Garnero, The core?mantle boundary layer and the deep Earth dynamics, Nature, vol.392, issue.6675, pp.461-468, 1998.
DOI : 10.1038/33083

X. D. Li and B. Romanowicz, Comparison of global waveform inversions with and without considering cross-branch modal coupling, Geophysical Journal International, vol.121, issue.3, pp.695-709, 1995.
DOI : 10.1111/j.1365-246X.1995.tb06432.x

X. B. Li and B. Romanowicz, Global mantle shear velocity model developed using nonlinear asymptotic coupling theory, Journal of Geophysical Research: Solid Earth, vol.98, issue.46, pp.245-267, 1996.
DOI : 10.1029/96JB01306

X. Liu and A. Dziewonski, Global analysis of shear wave velocity anomalies in the lower-most mantle, Geodyn. Ser, vol.95, pp.21-36, 1998.
DOI : 10.1029/GD028p0021

P. Lognonné and B. Romanowicz, Modelling of coupled normal modes of the Earth: the spectral method, Geophysical Journal International, vol.102, issue.2, pp.365-395, 1990.
DOI : 10.1111/j.1365-246X.1990.tb04472.x

D. Loper and T. Lay, The core-mantle boundary region, Journal of Geophysical Research: Solid Earth, vol.20, issue.11, pp.6397-6420, 1995.
DOI : 10.1029/94JB02048

Y. Maday and A. Patera, Spectral element methods for the incompressible Navier?Stokes equations, State of the Art Survey in Computational Mechanics, pp.71-143, 1989.

G. Masters, S. Jonhson, G. Laske, and H. Bolton, A Shear-Velocity Model of the Mantle [and Discussion], Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.354, issue.1711, pp.1385-1411, 1996.
DOI : 10.1098/rsta.1996.0054

C. Mégnin and B. Romanowicz, The three-dimensional shear velocity structure of the mantle from the inversion of body, surface and higher-mode waveforms, Geophysical Journal International, vol.143, issue.3, pp.709-728, 2000.
DOI : 10.1046/j.1365-246X.2000.00298.x

S. Ni and D. V. Helmberger, Horizontal transition from fast to slow structures at the core???mantle boundary; South Atlantic, Earth and Planetary Science Letters, vol.187, issue.3-4, pp.301-310, 2001.
DOI : 10.1016/S0012-821X(01)00273-4

A. T. Patera, A spectral element method for fluid dynamics: Laminar flow in a channel expansion, Journal of Computational Physics, vol.54, issue.3, pp.468-488, 1984.
DOI : 10.1016/0021-9991(84)90128-1

R. A. Phinney and R. Burridge, Representation of the Elastic - Gravitational Excitation of a Spherical Earth Model by Generalized Spherical Harmonics, Geophysical Journal International, vol.34, issue.4, pp.451-278, 1973.
DOI : 10.1111/j.1365-246X.1973.tb02407.x

J. Ritsema, S. Ni, D. V. Helmberger, and H. P. Crotwell, Evidence for strong shear velocity reductions and velocity gradients in the lower mantle beneath Africa, Geophysical Research Letters, vol.94, issue.23, pp.4245-4248, 1998.
DOI : 10.1029/1998GL900127

J. Ritsema, H. Van-heijst, and J. H. Woodhouse, Complex Shear Wave Velocity Structure Imaged Beneath Africa and Iceland, Science, vol.286, issue.5446, pp.1925-1928, 1999.
DOI : 10.1126/science.286.5446.1925

C. Ronchi, R. Ianoco, and P. S. Paolucci, The ???Cubed Sphere???: A New Method for the Solution of Partial Differential Equations in Spherical Geometry, Journal of Computational Physics, vol.124, issue.1, pp.93-114, 1996.
DOI : 10.1006/jcph.1996.0047

R. Sadourny, Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids, Monthly Weather Review, vol.100, issue.2, pp.136-144, 1972.
DOI : 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2

F. J. Sánchez-sesma and R. Vai, Absorbing boundaries in the frequency domain, in, The effects of surface Geology on Seismic Motion, pp.961-966, 1998.

R. J. Stead and D. V. Helmberger, Numerical?analytical interfacing in two dimensions with applications to modeling NST seismograms, Pure appl, Geophys, vol.174, pp.153-174, 1988.

W. Su, R. L. Woodward, and A. M. Dziewonski, Degree 12 model of shear velocity heterogeneity in the mantle, Journal of Geophysical Research, vol.98, issue.128, pp.6945-6980, 1994.
DOI : 10.1029/93JB03408

N. Takeuchi and R. Geller, Optimally accurate second order time-domain finite difference scheme for computing synthetic seismograms in 2-D and 3-D media, Physics of the Earth and Planetary Interiors, vol.119, issue.1-2, pp.99-131, 2000.
DOI : 10.1016/S0031-9201(99)00155-7

H. Takeuchi and M. Saito, Seismic Surface Waves, Methods Comp. Phys, vol.11, pp.217-295, 1972.
DOI : 10.1016/B978-0-12-460811-5.50010-6

B. Valette, About the influence of pre-stress upon adiabatic perturbations of the Earth, Geophysical Journal International, vol.85, issue.1, pp.179-208, 1986.
DOI : 10.1111/j.1365-246X.1986.tb05177.x

J. Vidale and M. Hedlin, Evidence for partial melt at the core?mantle boundary north of tonga from the strong scattering of seismic waves, Nature, pp.391-682, 1998.

L. Vinnik, L. Bréger, and B. Romanowicz, Anisotropic structures at the base of the Earth's mantle, Nature, vol.24, issue.6685, pp.564-567, 1998.
DOI : 10.1038/31208

L. Wen and D. V. Helmberger, A two-dimensional, p ?sv hybrid method and its application to modeling localized structures near the core?mantle boundary, J. geophys. Res, vol.103, pp.17-901, 1998.

L. Wen and D. V. Helmberger, Ultra-Low Velocity Zones Near the Core-Mantle Boundary from Broadband PKP Precursors, Science, vol.279, issue.5357, pp.1701-1703, 1998.
DOI : 10.1126/science.279.5357.1701

J. H. Woodhouse and F. A. Dahlen, The Effect of A General Aspherical Perturbation on the Free Oscillations of the Earth, Geophysical Journal International, vol.53, issue.2, pp.335-354, 1978.
DOI : 10.1111/j.1365-246X.1978.tb03746.x

J. H. Woodhouse and T. P. Girnius, Surface waves and free oscillations in a regionalized Earth model, Geophys, J. R. astr. Soc, vol.78, pp.641-660, 1982.