Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management
Jinfeng Chang, Philippe Ciais, Mario Herrero, Petr Havlik, Matteo Campioli, Xianzhou Zhang, Yongfei Bai, Nicolas Viovy, Joanna Joiner, Xuhui Wang, et al.

To cite this version:
Combining livestock production information in a process-based vegetation model to reconstruct the history of grassland management

Jinfeng Chang1,2, Philippe Ciais1, Mario Herrero3, Petr Havlík4, Matteo Campioli5, Xianzhou Zhang6, Yongfei Bai7, Nicolas Viovy1, Joanna Joiner8, Xuhui Wang9,10, Shushi Peng10, Chao Yue1,11, Shilong Piao10, Tao Wang12,13, Didier A. Hauglustaine1, Jean-François Soussana14, Anna Peregon1,15, Natalya Kosykh15, and Nina Mironycheva-Tokareva15

1Laboratoire des Sciences du Climat et de l’Environnement, UMR8212, CEA-CNRS-UVSQ, 91191 Gif-sur-Yvette, France
2Sorbonne Universités (UPMC), CNRS-IRD-MNHN, LOCEAN/IPSL, 4 place Jussieu, 75005 Paris, France
3Commonwealth Scientific and Industrial Research Organisation, Agriculture Flagship, St. Lucia, QLD 4067, Australia
4Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, 2361 Laxenburg, Austria
5Centre of Excellence PLECO (Plant and Vegetation Ecology), Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
6Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, 100093 Beijing, China
7State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China
8NASA Goddard Space Flight Center, Greenbelt, MD, USA
9Laboratoire de Météorologie Dynamique, Institute Pierre Simon Laplace, 75005 Paris, France
10Sino-French Institute of Earth System Sciences, College of Urban and Environmental Sciences, Peking University, 100871 Beijing, China
11CNRS and UJF Grenoble 1, UMR5183, Laboratoire de Glaciologie et Géophysique de l’Environnement (LGGE), Grenoble, France
12Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085 Beijing, China
13CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, 100085 Beijing, China
14INRA, UAR0233 CODIR Collège de Direction. Centre-Siège de l’INRA, Paris, France
15Institute of Soil Science and Agrochemistry, Siberian Branch Russian Academy of Sciences (SB RAS), Pr. Akademika Lavrentyeva 8/2, 630090 Novosibirsk, Russia

Correspondence to: Jinfeng Chang (jinfeng.chang@locean-ipsl.upmc.fr)

Received: 9 January 2016 – Published in Biogeosciences Discuss.: 18 February 2016
Revised: 26 May 2016 – Accepted: 8 June 2016 – Published: 29 June 2016
Abstract. Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5° by 0.5°. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 1901–2012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, rising CO₂ concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 × 10⁶ km² in 1901 to 12.3 × 10⁶ km² in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and interannual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.

1 Introduction

The rising concentrations of greenhouse gases (GHGs), such as carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O), are driving climate change through increased radiative forcing (IPCC, 2013). It is estimated that, globally, livestock production (including crop-based and pasture-based) currently accounts for 37 and 65 % of the anthropogenic CH₄ and N₂O emissions respectively (Martin et al., 2010; FAO, 2006). Grassland ecosystems support most of the world’s livestock production, thus contributing indirectly a significant share of global CH₄ and N₂O emissions. For CO₂ fluxes, however, grassland can be either a sink or a source with respect to the atmosphere. The annual changes in carbon storage of managed grassland ecosystems in Europe (hereafter referred to as net biome productivity, NBP) was found to be correlated with carbon removed by grazing and/or mowing (Soussana et al., 2007). Thus, knowledge of management type (grazed or mown) and intensity (intensive or extensive) is crucial for simulating the carbon stocks and GHG fluxes of grasslands.

For European grasslands, Chang et al. (2015a) constructed management intensity maps over the period 1961–2010 based on (i) national-scale livestock numbers from statistics (FAOSTAT, 2014), (ii) static sub-continental grass-fed fractions for each animal type (Bouwman et al., 2005), and (iii) the grass-fed livestock numbers supported by the net primary productivity (NPP) of the ORCHIDEE-GM (ORGanizing Carbon and Hydrology In Dynamic Ecosystems grassland) management model. That study estimated an increasing NBP (i.e. acceleration of soil carbon accumulation) over the period 1991–2010. The increasing NBP was attributed to climate change, CO₂ trends, nitrogen (N) addition, and land-cover and management intensity changes. The observation-driven trends of management intensity were found to be the dominant driver explaining the positive trend of NBP across Europe (36–43 % of the total trend with all drivers; Chang et al., 2016). That study confirmed the importance of management intensity in drawing up a grassland carbon balance. However, the national-scale management intensity and the identical history maps between 1901 and 1960 in that study carried several sources of uncertainty (Chang et al., 2015a). It implies that long-term history of large-scale gridded information on grassland management intensity is needed. The HYDE 3.1 land-use dataset (Klein Goldewijk et al., 2011) provides reconstructed gridded changes of pasture area over the past 12 000 years. Here, “pasture” represents managed grassland providing grass biomass to livestock. This reconstruction is based on population density data and country-level per capita use of pasture land derived from FAO statistics (FAOSTAT, 2008) for the post-1961 period and assumed by those authors for the pre-1960 period. It defines land used as pasture but does not provide information about management intensity. To our knowledge, global maps of grassland management intensity history are not available.

Recently, Herrero et al. (2013) garnered global livestock data to create a dataset with gridded grass-biomass-use information for year 2000. In this dataset, grass used for grazing or silage is separated from grain feed, occasional feed, and stover (fibrous crop residues). A variety of constraints have been taken into account in creating this global dataset, including the specific metabolisable energy (ME) requirements for each animal species and regional differences in animal diet composition, feed quality, and feed availability. This grass-biomass-use dataset provides a starting point for constraining the amount of carbon removed by grazing and mowing (i.e. the target of grass-biomass use) and is suitable for adoption by global vegetation models to account for livestock-related fluxes.

The major objective of this study is to produce global gridded maps of grassland management intensity since 1901 for
global vegetation model applications. These maps combine historical NPP changes from the process-based global vegetation model ORCHIDEE-GM (Chang et al., 2013, 2015b) with gridded grass-biomass extrapolated from Herrero et al. (2013). First, ORCHIDEE-GM is calibrated to simulate the distribution of “potential” (maximal) harvested and grazed biomass from mown and grazed grasslands respectively. In a second step, the modelled productivity maps are used in combination with livestock data to reconstruct annual maps of grassland management intensity, at a spatial resolution of 0.5° by 0.5°. This is done for each country since 1961 and for 18 large regions of the globe for 1901–1960. The reconstructed management intensity defines the fraction of mown, grazed, and unmanaged grasslands in each grid cell. The gridded grassland management intensity maps are model dependent because they rely on simulated NPP. Thus, in this study we also give a specific attention to the evaluation of modelled productivity against both a new set of site-level NPP measurements and satellite-based models of gross primary productivity (GPP). In Sect. 2, we describe the ORCHIDEE-GM model, the adjustment of its parameters for the C4 grassland biome, model input, the method proposed to reconstruct grassland management intensity, and the data used for evaluation. The derived management intensity maps and the comparison between modelled and observed productivity are presented in Sect. 3 and discussed in Sect. 4. Concluding remarks are made in Sect. 5.

2 Material and methods

2.1 Model description

ORCHIDEE is a process-based ecosystem model developed for simulating carbon fluxes, and water and energy fluxes in ecosystems, from site level to global scale (Krinner et al., 2005; Ciais et al., 2005; Piao et al., 2007). ORCHIDEE-GM (Chang et al., 2013) is a version of ORCHIDEE that includes the grassland management module from PaSim (Riedo et al., 1998; Vuichard et al., 2007a, b; Graux et al., 2011), a grassland model for field-level to continental-scale applications. Accounting for the management practices such as mowing, livestock grazing and organic fertilizer application on a daily basis, ORCHIDEE-GM proved capable of simulating the dynamics of leaf area index, biomass, and C fluxes of managed grasslands. ORCHIDEE-GM version 1 was evaluated and some of its parameters calibrated, at 11 European grassland sites representative of a range of management practices, with eddy-covariance net ecosystem exchange and biomass measurements. The model successfully simulated the NBP of these managed grasslands (Chang et al., 2013). Chang et al. (2015b) then added a parameterization of adaptive management through which farmers react to a climate-driven change of previous-year productivity. Though a full N cycle is not included in ORCHIDEE-GM, the positive effect of nitrogen fertilizers on grass photosynthesis rates, and thus on subsequent ecosystem productivity and carbon storage, is parameterized with an empirical function calibrated from literature estimates (version 2.1; Chang et al., 2015b). ORCHIDEE-GM v2.1 was applied over Europe to calculate the spatial pattern, interannual variability (IAV), and the trends of potential productivity, i.e. the productivity that maximizes simulated livestock densities assuming an optimal management system in each grid cell (Chang et al., 2015b). This version was further used to simulate NBP and NBP trends over European grasslands during the last 5 decades at a spatial resolution of 25 km and a 30 min time step (Chang et al., 2015a).

ORCHIDEE-GM v1 and v2.1 were developed based on ORCHIDEE v1.9.6. To benefit from recent developments and bug corrections in the ORCHIDEE model, ORCHIDEE-GM is updated in this study with ORCHIDEE Trunk.rev2425 (available at https://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE). We further made the adjustment of its parameters for the C4 grassland biome (Sect. 2.2) and implemented a specific strategy for wild herbivores grazing (Sect. 2.3; also see Supplement Sect. S1). The updated model is referred to hereafter as ORCHIDEE-GM v3.1.

2.2 Model parameter settings

ORCHIDEE-GM was applied to simulate GHG budgets and ecosystem carbon stocks under climate, CO2, and management changes for Europe. However, an extension of model application to regions outside Europe requires first a calibration of key productivity-related parameters. Two sensitive parameters representing photosynthetic capacity (the maximum rate of Rubisco carboxylase activity at a reference temperature of 25°C; \(V_{c_{\text{max},25}} \)) and the morphological plant traits (the maximum specific leaf area; \(\text{SLA}_{\text{max}} \)) were reported by Chang et al. (2015a) for simulating grassland NPP. The \(V_{c_{\text{max},25}} = 55 \mu\text{mol m}^{-2}\text{s}^{-1} \) and \(\text{SLA}_{\text{max}} = 0.048 \text{m}^2\text{g}^{-1} \) per g C in ORCHIDEE-GM were previously defined from observations and indirectly evaluated against eddy-flux tower measurements of GPP for temperate C3 grasslands in Europe (Chang et al., 2013, 2015b). The global TRY database gives SLA values for C4 grasses, of 0.0192 m2 g-1 dry matter (DM) (0.0403 m2 g-1 C with a mean leaf carbon content per DM of 47.61 %; Kattge et al., 2011). Thus, we have set the value of \(\text{SLA}_{\text{max}} = 0.044 \text{m}^2\text{g}^{-1} \) per g C for C4 grasses in ORCHIDEE-GM to fit the mean value from the TRY estimate, as we did previously for C3 grasses (Chang et al., 2013). The parameter \(V_{c_{\text{max},25}} \) cannot be directly measured, but it is usually derived from \(A/C_{i} \) curves in C3 or C4 photosynthesis models (C3: Farquhar et al., 1980; C4: Collatz et al., 1992), where \(A \) is the leaf-scale net CO2 assimilation rate and \(C_{i} \) the partial pressure of CO2 in leaf intercellular spaces. Several researches provide observation-based estimates of \(V_{c_{\text{max},25}} \) (Feng and Dietze, 2013; Verheijen et al., 2013; range of 24–131 \mu\text{mol m}^{-2}\text{s}^{-1} \) for C3 grasses and
of 15–46 µmol m$^{-2}$ s$^{-1}$ for C4 grasses). Based on these estimates, we keep the value of $V_{c max} = 55$ µmol m$^{-2}$ s$^{-1}$ previously calibrated in Europe for all C3 grasses and set $V_{c max} = 25$ µmol m$^{-2}$ s$^{-1}$ for C4 grasses. These values may reflect neither differences in nitrogen and phosphorus availability between locations nor adaptation or species changes within a C3 or C4 grassland, but they are within the range of observations made under different conditions and consistent with values used by other terrestrial ecosystem models (Table S1 in the Supplement). All other parameters of ORCHIDEE model are kept the same as in Trunk.rev2425. The parameter settings for grassland management module are in consistent with that in ORCHIDEE-GM v1 (Chang et al., 2013) and v2.1 (Chang et al., 2015a, b).

2.3 Model input

ORCHIDEE-GM v3.1 was run on a global grid over the globe using the 6-hourly CRU+NCEP reconstructed climate data at 0.5° x 0.5° spatial resolution for the period 1901–2012 (Viovy, 2013). The fields used as input of the model are temperature, precipitation, specific humidity, solar radiation, wind speed, pressure, and long-wave radiation. Other input data are (1) yearly domestic grazing-ruminant stocking density maps, (2) wild-herbivores population density maps, (3) N fertilizer application maps including manure-N and mineral-N fertilizers, and (4) atmospheric-N deposition maps. These input maps all cover the period from 1901 to 2012 and are briefly described below (also see Supplement Sects. S2–S5). Table 1 lists all variables shown in this section, including their abbreviations, units, related equations, and data sources.

Grazing-ruminant stocking density maps: spatial statistical information on grazing-ruminant stocking density is not available at global scale. In this study, we combined the domestic ruminant stocking density maps (Supplement Sect. S2) and historic land-cover change maps (Supplement Sect. S3) to construct gridded grazing-ruminant stocking density.

Assuming that all the ruminants in each grid cell were grazing on the grassland within the same grid, we defined the grazing-ruminant stocking density in grid cell k in year m ($D_{grazing, m,k}$, livestock unit (LU) per ha of grassland area) as

$$D_{grazing, m,k} = \frac{D_{m,k}}{f_{grass, m,k}},$$

(1)

where $D_{m,k}$ is the total domestic ruminant stocking density (unit: LU per ha of land area; Supplement Sect. S2) and $f_{grass, m,k}$ is the grassland fraction in grid cell k in year m from a set of historic land-cover-change maps (Supplement Sect. S3). To avoid unrealistic densities of ruminant grazing over grassland (which might cause grasses to die during the growing season), a maximum value of 5LU ha$^{-1}$ was set for the density map. In addition, a minimum grazing-ruminant density of 0.2LU ha$^{-1}$ was set to avoid economically implausible stocking rates. Figure S1 in the Supplement shows the example maps of domestic ruminant stocking density (D) and the corresponding grazing-ruminant stocking density ($D_{grazing}$) for reference year 2006.

Wild herbivore density maps: gridded maps of wild herbivore density are not available; therefore the gridded population density of wild herbivores (D_{wild}; unit: LU per ha of grassland area) is derived from the literature data and from Bouwman et al. (1997) (see Table S2 for detail). The population of these herbivores from literature was first converted to LU according to the ME requirement calculated from their mean weight (Table S2) and then distributed to suitable grasslands based on grassland aboveground (consumable) NPP simulated from ORCHIDEE-GM v3.1 (Supplement Sect. S4; Fig. S2). The wild herbivores density was assumed to remain constant during the period of 1901–2012, because no worldwide historical wild-animal population information was available. A specific grazing strategy for wild herbivores is incorporated in the model (Supplement Sect. S1). We assumed wild herbivores eat fresh grass biomass during the growing season and eat dead grass during the non-growing season.

Nitrogen application rates from mineral fertilizers and manure: grassland is fertilized with organic N fertilizer (e.g. manure, slurry) and/or even mineral-N fertilizer, though this is not as common as for cropland. Gridded fertilizer application rates on grassland are not available worldwide. The only exception that we are aware of is for European grasslands (Leip et al., 2008, 2011, 2014; data available for EU-27 as used in Chang et al., 2015a). For countries/regions other than EU-27, the following data were used. The amount of manure-N fertilizer for 17 world regions at 1995 was derived from various sources (e.g. IFA, 1999; FAO/IFA/IFDC, 1999; FAO/IFA, 2001) and synthesized by Bouwman et al. (2002a, b; Table S3). For mineral-N fertilizers on grassland, country-scale data of fertilized area and mean fertilization rate for 1999/2000 are available in FAO/IFA/IFDC/ICI/PPI (2002) with grassland/pasture been fertilized in 13 non-EU countries. The regional/country-scale data were downscaled to a 0.5° x 0.5° grid and extended to cover the period 1901–2012 (see Supplement Sect. S5 for detail).

Atmospheric-nitrogen deposition maps: the historical atmospheric-N deposition maps were simulated by the LMDz-INCA-ORCHIDEE global chemistry–aerosol–climate model (Hauglustaine et al., 2014). Hindcast simulations for the years 1850, 1960, 1970, 1980, 1990, and 2000 have been performed using anthropogenic emissions from Lamarque et al. (2010). The total nitrogen deposition fields (wet and dry; NH$_4$ and NO$_3$) of all nitrogen-containing gas-phase and aerosol species have been simulated at a spatial resolution of 1.9° in latitude and 3.75° in longitude. Linear interpolation was performed between the hindcast snapshot years to produce temporally variable
Table 1. The abbreviations, units, related equations, and data sources of the variables shown in this study.

<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Variables</th>
<th>Units</th>
<th>Related equations</th>
<th>Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)</td>
<td>Domestic ruminant stocking density</td>
<td>LU per ha of land area</td>
<td>Eqs. (1), (2), (S3), (S4), (S5)</td>
<td>Robinson et al. (2014); FAOSTAT, 2014</td>
</tr>
<tr>
<td>(D_{\text{grazing}})</td>
<td>Grazing-ruminant stocking density</td>
<td>LU ha(^{-1})</td>
<td>Eqs. (1), (3)</td>
<td>Robinson et al. (2014); FAOSTAT (2014); Bartholomé and Belward (2005); Eva et al. (2004); Poulter et al. (2011); Hurtt et al. (2011)</td>
</tr>
<tr>
<td>(D_{\text{wild}})</td>
<td>Wild herbivore density</td>
<td>LU ha(^{-1})</td>
<td>Eq. (S6)</td>
<td>Synthesized by Bouwman et al. (1997)</td>
</tr>
<tr>
<td>(N_{\text{manure}})</td>
<td>Organic (manure) nitrogen fertilizer application rate</td>
<td>kg N ha(^{-1}) yr(^{-1})</td>
<td>Eqs. (S7), (S8)</td>
<td>Synthesized by Bouwman et al. (2002a, b)</td>
</tr>
<tr>
<td>(N_{\text{mineral}})</td>
<td>Mineral-nitrogen fertilizer application rate</td>
<td>kg N ha(^{-1}) yr(^{-1})</td>
<td>Eq. (S9)</td>
<td>FAO/IFA/IFDC/IPI/PPI (2002)</td>
</tr>
<tr>
<td>(N_{\text{deposition}})</td>
<td>Atmospheric-nitrogen deposition rate</td>
<td>kg N ha(^{-1}) yr(^{-1})</td>
<td></td>
<td>Hauglustaine et al. (2014)</td>
</tr>
<tr>
<td>(GBU)</td>
<td>Grass-biomass use</td>
<td>kg DM yr(^{-1})</td>
<td>Eqs. (2), (4), (7)</td>
<td>Herrero et al. (2013); FAOSTAT (2014)</td>
</tr>
<tr>
<td>(Y_{\text{mown}})</td>
<td>Annual potential harvested biomass from mown grasslands</td>
<td>kg DM m(^{-2}) yr(^{-1})</td>
<td>Eqs. (7), (10), (11)</td>
<td>this study</td>
</tr>
<tr>
<td>(Y_{\text{graze}})</td>
<td>Annual potential biomass consumption over grazed grasslands</td>
<td>kg DM m(^{-2}) yr(^{-1})</td>
<td>Eqs. (3), (4), (7), (10), (11)</td>
<td>this study</td>
</tr>
<tr>
<td>(A_{\text{grass}})</td>
<td>Grassland area</td>
<td>m(^{2})</td>
<td>Eqs. (4), (7)</td>
<td>Bartholomé and Belward (2005); Eva et al. (2004); Poulter et al. (2011); Hurtt et al. (2011)</td>
</tr>
<tr>
<td>(f_{\text{grass}})</td>
<td>Grassland fraction</td>
<td>Percent (%)</td>
<td>Eq. (1)</td>
<td>Bartholomé and Belward (2005); Eva et al. (2004); Poulter et al. (2011); Hurtt et al. (2011)</td>
</tr>
<tr>
<td>(f_{\text{mown}})</td>
<td>Minimum fraction of mown grassland</td>
<td>Percent (%)</td>
<td>Eqs. (5), (7), (8), (10), (11)</td>
<td>this study</td>
</tr>
<tr>
<td>(f_{\text{grazed}})</td>
<td>Minimum fraction of grazed grassland</td>
<td>Percent (%)</td>
<td>Eqs. (4), (6), (7), (8), (10), (11)</td>
<td>this study</td>
</tr>
<tr>
<td>(f_{\text{unmanaged}})</td>
<td>Maximum fraction of unmanaged grassland</td>
<td>Percent (%)</td>
<td>Eqs. (6), (9), (10), (11)</td>
<td>this study</td>
</tr>
</tbody>
</table>

\(^{a}\) The subscripts of these variables in this study: \(i \) is ruminant category; \(j \) is country; \(k \) is grid cell; \(m \) is year; \(q \) is region.

\(^{b}\) When not specified, the ha\(^{-1}\) (or m\(^{-2}\)) in the units indicate per ha (or per m\(^{2}\)) of grassland area.

atmospheric-N deposition maps (\(N_{\text{deposition}} \), unit: kg N per ha of grassland area per year).

2.4 Simulation set-up

Considering different photosynthetic pathways and management types, six grassland plant functional types (PFTs) are defined: C3 natural (unmanaged) grassland, C3 mown grassland, C3 grazed grassland, C4 natural (unmanaged) grassland, C4 mown grassland, and C4 grazed grassland. In the simulation, we ideally consider that grassland PFTs are distributed all over the world. Post-processing will incorporate the information of grassland distribution in the real world (Supplement Sect. S3). ORCHIDEE-GM v3.1 is run over the globe during the period 1901–2012, forced by increasing CO\(_2\), variable climate, and variable nitrogen deposition.
Figure 1. Illustration of the procedures for reconstructing management intensity maps. Italic texts indicate the major steps of the reconstruction. The mean, units, related equations, and data sources of the variables (i.e., gridded maps) are shown in Table 1. $D_{grazing}$ is grazing-ruminant stocking density; D_{wild} is wild herbivore density; N_{manure} is organic (manure) nitrogen fertilizer application rate; $N_{mineral}$ is mineral-nitrogen fertilizer application rate; $N_{deposition}$ is atmospheric-nitrogen deposition rate; Y_{mown} is annual potential harvested biomass from mown grasslands; Y_{grazed} is annual potential grazed biomass from grazed grasslands; GBU is grass-biomass use; f_{mown} is minimum fraction of mown grassland; f_{grazed} is minimum fraction of grazed grassland; $f_{unmanaged}$ is maximum fraction of unmanaged grassland.

Figure 1 briefly illustrates the procedures of combining model output, grass-biomass-use data, and grassland area data to reconstruct grassland management intensity maps. This section presents the procedures of the reconstruction in detail. Table 1 lists all variables shown in this section, including their abbreviations, units, related equations, and data sources.

Herrero et al. (2013) established a global livestock production dataset containing a high-resolution (8 km × 8 km) gridded map of grass-biomass use for the year 2000. In this study, this dataset is extrapolated annually over 1901–2012 to constrain the grass-biomass consumption in ORCHIDEE-GM v3.1. Assuming that grass-biomass use for grid cell k in country j and year m ($GBU_{m,j,k}$, unit: kg DM per year) varies proportionally with the total ME requirement of domestic ruminants in each country, $GBU_{m,j,k}$ can be calculated from its value of the year 2000 given by Herrero et al. (2013), according to

$$GBU_{m,j,k} = GBU_{2000,j,k} \times \frac{D_{m,k}}{D_{2000,k}},$$

where $D_{m,k}$ and $D_{2000,k}$ are the total ruminant stocking density for grid cell k in year m and in year 2000 calculated by Eqs. (S4) and (S5) in Supplement Sect. S2, which take into account the changes in category-specific ME requirement at country scale (1961–2012) or regional scale (1901–1960).

ORCHIDEE-GM v3.1 simulates the annual potential (maximal) harvested biomass from mown grasslands (Y_{mown}, unit: kg DM m$^{-2}$ yr$^{-1}$ from mown grassland) and the annual potential biomass consumption per unit area of grazed grassland (Y_{grazed}, unit: kg DM m$^{-2}$ yr$^{-1}$ from grazed grassland) in each grid cell. Under mowing, the frequency and magnitude of forage harvests in each grid cell is a function of grown biomass (Vuichard et al., 2007a). The effective yield on grazed grassland (i.e., Y_{grazed}) depends on the grazing stocking rate (here, $D_{grazing}$) and on the environmental conditions of the grid cell (Chang et al., 2015a); it is calculated as

$$Y_{grazed,m,k} = IC \times T_{grazing,m,k} \times D_{grazing,m,k},$$

where IC is the daily intake capacity for 1 LU (~ 18 kg DM per day calculated in Supplement Sect. S1 of Chang et al., 2015b), and $T_{grazing,m,k}$ is the number of grazing days in grid cell k at year m. Due to the impact of livestock on grass growth through trampling, defoliation (i.e. biomass intake), etc., and because grassland cannot be continuously grazed during the vegetation period, thresholds of shoot biomass are set for starting, stopping, and resuming grazing (Vuichard et al., 2007a). The “recovery” time required under grazing is obtained in the model using threshold (Vuichard et al., 2007a; Chang et al., 2015a), which determines when grazing stops (dry biomass remaining lower than 300 kg DM ha$^{-1}$) or when grazing can start again (dry biomass recovered to a value above 300 kg DM ha$^{-1}$ for at least 15 days). Y_{grazed} is usually lower than Y_{mown} in temperate grasslands due to the lower herbage-use efficiency of grazing simulated by ORCHIDEE-GM (Chang et al., 2015b). However, in some arid regions the grass biomass does not grow enough during the season to trigger harvest; i.e. it does not reach the threshold in the model at which farmers are assumed to decide to cut grass for feeding forage to animals (see Chang et al., 2015b), so that Y_{grazed} can become larger than Y_{mown} (Fig. S3). The following set of rules was used to reconstruct historical changes in grassland management intensity, based on NPP simulated by ORCHIDEE-GM v3.1.

- Rule 1: for each grid cell and year, the total biomass removed by either grazing and cutting must be equal to the grass-biomass use, $GBU_{m,k}$.
- Rule 2: grazing management prioritizes in fulfilling $GBU_{m,k}$.
Rule 3: if the potential biomass consumption from grazing \(Y_{\text{grazed}}\) is not high enough to fulfill \(GBU_{m,k}\), a combination of grazing and mowing management is taken.

Thus, for grid cell \(k\) in year \(m\), the minimum fraction of grazed \(f_{\text{grazed},m,k}\), the minimum fraction of mown \(f_{\text{mown},m,k}\), and the maximum fraction of unmanaged grassland \(f_{\text{unmanaged},m,k}\) are calculated with the following equations (definitions of minimum and maximum in this context are given below).

If \(A_{\text{grass},m,k} \times Y_{\text{grazed},m,k} > GBU_{m,k}\), then

\[
f_{\text{grazed},m,k} = \frac{GBU_{m,k}}{A_{\text{grass},m,k} \times Y_{\text{grazed},m,k}} \tag{4}
\]

\[
f_{\text{mown},m,k} = 0 \tag{5}
\]

\[
f_{\text{unmanaged},m,k} = 1 - f_{\text{grazed},m,k} \tag{6}
\]

where \(A_{\text{grass},m,k}\) (unit: \(m^2\)) is the grassland area for grid cell \(k\) in year \(m\) of the series of historic land-cover change maps (Supplement Sect. S3).

If \(A_{\text{grass},m,k} \times Y_{\text{grazed},m,k} < GBU_{m,k}\) and \(A_{\text{grass},m,k} \times Y_{\text{mown},m,k} > GBU_{m,k}\) then

\[
f_{\text{grazed},m,k} \times A_{\text{grass},m,k} \times Y_{\text{grazed},m,k} + f_{\text{mown},m,k} \\
\times A_{\text{grass},m,k} \times Y_{\text{mown},m,k} = GBU_{m,k} \tag{7}
\]

\[
f_{\text{grazed},m,k} + f_{\text{mown},m,k} = 1 \tag{8}
\]

\[
f_{\text{unmanaged},m,k} = 0. \tag{9}
\]

If \(GBU_{m,k}\) cannot be fulfilled by any combination of modelled \(Y_{\text{grazed}}\) and \(Y_{\text{mown}}\), we diagnose a modelled grass-biomass production deficit and apply the following equations:

if \(Y_{\text{grazed}}>Y_{\text{mown}}\), then

\[
f_{\text{grazed},m,k} = 1, f_{\text{mown},m,k} = 0, \tag{10}
\]

and

\[
f_{\text{unmanaged},m,k} = 0.
\]

if \(Y_{\text{grazed}}<Y_{\text{mown}}\), then

\[
f_{\text{mown},m,k} = 1, f_{\text{grazed},m,k} = 0, \tag{11}
\]

and

\[
f_{\text{unmanaged},m,k} = 0.
\]

Herbage-use efficiency (Hodgson, 1979) is defined as the forage removed expressed as a proportion of herbage growth. It can be an indicator of management intensity over managed grassland, in addition to the fraction of managed area obtained above. In this study, the forage removed is modelled annual grass-biomass use including \(Y_{\text{grazed}}\) and \(Y_{\text{mown}}\), and herbage growth is modelled annual grass GPP.

2.6 Model evaluation: datasets and model–data agreement metrics

The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus the evaluation of modelled productivity becomes necessary. In this study, modelled productivity (NPP and GPP) is compared to a new set of site-level NPP measurements (Sect. 2.7.1) and two satellite-based models of GPP (MODIS-GPP, from the Moderate Resolution Imaging Spectroradiometer, Sect. 2.7.2; sun-induced chlorophyll fluorescence (SIF) data, Sect. 2.7.3). Modelled NPP (or GPP) combines grassland productivity of all PFTs (Sect. 2.4), accounting for the variable fractions of grazed, mown, and unmanaged grassland in each grid cell calculated by Eqs. (4–11), and hereafter is referred to as NPPmodel (or GPPmodel). Model–data agreement of NPP and GPP was assessed using Pearson’s product-moment correlation coefficients \(r\) and root mean squared errors (RMSEs).

2.6.1 Grassland NPP observation database

NPP is a crucial variable in vegetation models and it is essential that this variable is properly validated. High-quality measurements of grassland NPP are scarce, partly due to the difficulty of measuring some NPP components such as fine-root production (Scurlock et al., 1999, 2002). An updated version of the Luyssaer et al. (2007) database comprising non-forest biomes (Campioli et al., 2015) was used here. This database contains a flag indicating managed or unmanaged to each site and provides mean annual temperature, annual precipitation, and downwelling solar radiation based on site measurements from the literature, CRU database (Mitchell and Jones, 2005), MARS database (http://mars.jrc.ec.europa.eu/mars/About-us/AGRI4CAST/Data-distribution/AGRI4CAST-Interpolated-Meteorological-Data), or WorldClim database (Hijmans et al., 2005). Three additional datasets used in this study present NPP measurements from 30 sites across China (Zeng et al., 2015; Y. Bai, personal communication, 2015) and 16 sites across western Siberia (Peregon et al., 2008; with data updated to 2012). Data from China include NPP observations at fenced (i.e. unmanaged) and unfenced (i.e. managed) grassland for each site, and data of western Siberia are observations from natural wetlandq. In total, we have 305 NPP observations \(\text{NPP}_{\text{obs}}\) with separated aboveground and belowground NPP from 129 sites all over the world (including grassland, wetland, and...
savanna; Fig. S4). Duplicate observations from the same site year were averaged and considered as a single entry. NPP measurements with different management (managed or unmanaged) at the same site were considered as identical observations. In total, 270 grassland NPP measurements were compared to the simulation of ORCHIDEE-GM v3.1 for the grid cell, corresponding to each site and for the time period of observation. Depending on the status of measured grassland (unmanaged or managed), modelled NPP from unmanaged or managed grassland is used for comparison. Modelled NPP over managed grassland accounts for the NPP from mown and grazed grassland and their corresponding fractions.

2.6.2 Grassland GPP from MODIS products

The MOD17A3 dataset (version 55; Zhao et al., 2005; Zhao and Running, 2010) – a MODIS product on vegetation production – provides the seasonal and annual GPP data at a spatial resolution of 1 km from 2000 to 2013. To obtain the grassland GPP from the MOD17 dataset, we first extract the MOD17 GPP at 1 km resolution over grassland grids in the MOD12Q1 dataset. Here, the grassland in the MOD12Q1 dataset includes the “open shrubland”, “savanna”, and “grassland” in the Boston University’s UMD classification scheme. The extracted annual and seasonal MODIS GPP was then averaged and aggregated to 0.5° × 0.5° spatial resolution to be comparable to model output.

2.6.3 Sun-induced chlorophyll fluorescence data

Space-based observations of SIF provide a time-resolved measurement of a proxy of photosynthesis (Ganter et al., 2014). Similar to the MPI-BGC data-driven GPP product (Jung et al., 2011), SIF values exhibit a linear relationship ($r^2 = 0.79$) with monthly tower GPP at grassland sites in western Europe (Ganter et al., 2014). Compared to MODIS EVI (MOD13C2 products), SIF observations drop to zero during the non-growing season, thus providing a clearer signal of photosynthetic activity (Ganter et al., 2014) than other vegetation indices based on visible and near-infrared reflectances. SIF also provides a better seasonal agreement with GPP from flux towers as compared to vegetation indices (Joiner et al., 2014).

In this study, we used monthly GOME-2 (version 26, level 3) SIF data products with the spatial resolution of 0.5° × 0.5° (available from 2007 to 2012). SIF-GPP is calculated by a SIF-GPP linear model adjusted from Guanter et al. (2014) (SIF-GPP = −0.1 + 4.65 × SIF (V26); see Supplement Sect. S6 for detail). To reduce the contamination of SIF by non-grassland PFTs, we restrict the model–data comparison to grassland-dominated grid cells, defined as those with grassland cover in the MOD12Q1 dataset (Sect. 2.5.2) is larger than 50%.

3 Results

3.1 Maps of grassland management intensity

Figure 2 shows the minimum fractions of mown and grazed grasslands and the maximum fraction of unmanaged out of total grassland (f_{mown}, f_{grazed}, and $f_{unmanaged}$ respectively; Sect. 2.4) in the year 2000. Grazed grasslands comprise most of the managed grasslands in the maps (Fig. 2b). Significant fractions of mown grasslands are only found in regions with high ruminant stocking density such as eastern China, India, eastern and northern Europe, and eastern United States, where Y_{grazed} cannot fulfill the grass-biomass demand (Fig. 2a). Using the FAO-defined regions (see caption to Table 2), the largest fractions of managed grasslands are modelled in regions of high ruminant stocking density (Fig. S1) such as in eastern Europe with a mean fraction of 90 ± 17% (the mean is the average fraction of mown and grazed grasslands over all the grid cells in this region, and the standard deviation is taken from differences between grid cells), South Asia (59 ± 46%), and western Europe (55 ± 36%). The lowest managed grasslands fractions are modelled in the Russian Federation (17 ± 34%).

In some grid cells, the simulated grassland productivity is not sufficient to fulfill the grass-biomass use given by Herrero et al. (2013; Fig. 2d). Of the 2.4 billion tonnes of grass-biomass use (in dry matter for the reference year 2000) given by Herrero et al., 16 % cannot be fulfilled by the productivity simulated by ORCHIDEE-GM v3.1. This translates into a modelled grass-biomass production deficit of 0.38 billion tonnes (Table 2). Out of all regions, the largest modelled production deficit (f_{global} in Table 2) is found in South Asia (49%). This South Asian deficit is predominantly in India (35% of the modelled global total deficit) and Pakistan (10% of the modelled global total deficit). Other regions with a biomass production deficit are the Near East and North Africa (18%) and sub-Saharan Africa (13%). Overall, 32% of the global production deficit comes from regions with dry climate and low NPP (less than 50 g C m⁻² yr⁻¹), and 34% of it comes from regions with low grassland cover (less than 10% of total land cover). The causes of this grass-biomass production deficit diagnosed by ORCHIDEE-GM are discussed in Sect. 4.2.

Modelled herbage-use efficiency over managed grassland during the 2000s (grazed plus mown; Fig. 3) ranges between 2 and 20% in most regions and generally follows the spatial pattern of grazing-ruminant density (Fig. S1). High herbage-use efficiency (over 20%) is found in regions with significant mown grassland (f_{mown}) simulated due to the larger fraction of biomass removed over mown grassland than that over grazed grassland in the same grid cell (Fig. S3).

Figure 4 displays the NPP per unit area and the production (Prod = NPP × grassland area) of each type of grassland for 10 FAO-defined regions and the globe. Even when grassland management is included, the production of unman-
Figure 2. (a) Mown, (b) grazed, and (e) unmanaged fraction of global grassland, and (d) modelled grass-biomass production deficit of 2000. Modelled grass-biomass production deficit indicates the simulated grassland productivity in the grid cells is not sufficient to fulfil the grass-biomass use given by Herrero et al. (2013) and is expressed with units of g dry matter (DM) per m² of total land area in each grid cell.

Table 2. Grass-biomass production deficits in regions where simulated productivity by ORCHIDEE-GM v3.1 (i.e. Y_{mown} and Y_{grazed}; see text) cannot fulfil the grass-biomass use given by Herrero et al. (2013) for 2000.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Grass-biomass use (million tonne DM)</th>
<th>Production deficit (million tonne DM)</th>
<th>f_{deficit} (%)</th>
<th>f_{global} (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>North America</td>
<td>228</td>
<td>19</td>
<td>8 %</td>
<td>5 %</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>52</td>
<td>1</td>
<td>2 %</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Western Europe</td>
<td>196</td>
<td>5</td>
<td>2 %</td>
<td>1 %</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>82</td>
<td>1</td>
<td>1 %</td>
<td>0.3 %</td>
</tr>
<tr>
<td>Near East and North Africa</td>
<td>175</td>
<td>67</td>
<td>39 %</td>
<td>18 %</td>
</tr>
<tr>
<td>East and Southeast Asia</td>
<td>275</td>
<td>25</td>
<td>9 %</td>
<td>7 %</td>
</tr>
<tr>
<td>Oceania</td>
<td>107</td>
<td>4</td>
<td>3 %</td>
<td>1 %</td>
</tr>
<tr>
<td>South Asia</td>
<td>390</td>
<td>188</td>
<td>48 %</td>
<td>49 %</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>534</td>
<td>23</td>
<td>4 %</td>
<td>6 %</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>351</td>
<td>48</td>
<td>14 %</td>
<td>13 %</td>
</tr>
<tr>
<td>World total</td>
<td>2391</td>
<td>380</td>
<td>16 %</td>
<td>100 %</td>
</tr>
</tbody>
</table>

a Regions are classified following the definition in the FAO Global Livestock Environmental Assessment Model (GLEAM; http://www.fao.org/gleam/en/).

b f_{deficit} is the fraction of production deficit in the total grass-biomass use of the region for 2000.

c f_{global} is the fraction of production deficit in the global total production deficit for 2000.

aged grassland ($\text{Prod}_{\text{unmanaged}}$) still comprises 63 % of the total production ($\text{Prod}_{\text{total}}$) in the 1990s. The production of grazed grasslands ($\text{Prod}_{\text{grazed}}$) accounts for 34 % of $\text{Prod}_{\text{total}}$ while the production of mown grasslands ($\text{Prod}_{\text{mown}}$) is only 3 %, given the small area under this management practice (Fig. 4). Mown grasslands only contribute to production in the regions where climate conditions and fertilizers maintain a high NPP, and Y_{grazed} is not enough to fulfil the animal requirement, which triggers the harvest practice in Eqs. (7–11).

Over unmanaged grassland (Fig. S2), ORCHIDEE-GM v3.1 simulated a total annual consumption by wild herbivores of 147–654 million tonnes DM of the 5778 million tonnes DM in aboveground NPP (consumable NPP) over suitable grassland (Table S5), which comprises 3–11 % of the consumable NPP, similar to the range given by Warneck (1988). The fraction of consumption in consumable NPP varied from 1 % in the former USSR to 9 % in Scandinavia, indicating the different significance of wild herbivores on grassland.

3.2 Historical changes in the area and productivity of managed grassland

The global minimum area of managed grassland ($A_{\text{managed-gm}}$) is of $6.1 \times 10^6 \text{ km}^2$ in 1901 and increased to $12.3 \times 10^6 \text{ km}^2$ in 2000 (Table 3; Fig. 5) – an increase of
Table 3. Area, mean productivity, and herbage-use efficiency of managed grassland from this study, ruminant numbers, and pasture area from HYDE 3.1 dataset for 1901 and 2000 by regions and global total.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Grassland area (1000 km², 1901/2000)</th>
<th>Mean productivity (kg DM m⁻² yr⁻¹, 1900s/1990s)</th>
<th>Herbage-use efficiency (Percent; 1900s/1990s)</th>
<th>N_ruminant ₪ (10⁶ LU; 1900s/1990s)</th>
<th>Pasture area from HYDE 3.1† (1000 km²; 1901/2000)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total managed</td>
<td>Mown</td>
<td>Grazed</td>
<td>Y_mown</td>
<td>Y_grazed</td>
</tr>
<tr>
<td>North America</td>
<td>989/1360</td>
<td>41/95</td>
<td>948/1265</td>
<td>0.26/0.38</td>
<td>0.090/0.13</td>
</tr>
<tr>
<td>Russian Federation</td>
<td>351/567</td>
<td>23/49</td>
<td>329/518</td>
<td>0.19/0.42</td>
<td>0.060/0.10</td>
</tr>
<tr>
<td>Western Europe</td>
<td>514/555</td>
<td>54/44</td>
<td>460/522</td>
<td>0.51/0.85</td>
<td>0.220/0.31</td>
</tr>
<tr>
<td>Eastern Europe</td>
<td>339/366</td>
<td>71/93</td>
<td>268/274</td>
<td>0.26/0.54</td>
<td>0.110/0.21</td>
</tr>
<tr>
<td>Near East and North Africa</td>
<td>595/1334</td>
<td>17/130</td>
<td>578/1205</td>
<td>0.09/0.18</td>
<td>0.050/0.06</td>
</tr>
<tr>
<td>East and Southeast Asia</td>
<td>419/1271</td>
<td>6/77</td>
<td>412/1194</td>
<td>0.43/0.72</td>
<td>0.080/0.14</td>
</tr>
<tr>
<td>Oceania</td>
<td>499/528</td>
<td>52/60</td>
<td>447/669</td>
<td>0.18/0.33</td>
<td>0.070/0.11</td>
</tr>
<tr>
<td>South Asia</td>
<td>614/830</td>
<td>123/202</td>
<td>491/628</td>
<td>0.32/0.58</td>
<td>0.100/0.12</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>960/2640</td>
<td>11/33</td>
<td>949/2608</td>
<td>0.35/0.39</td>
<td>0.108/0.18</td>
</tr>
<tr>
<td>Sub-Saharan Africa</td>
<td>803/2561</td>
<td>8/109</td>
<td>795/2452</td>
<td>0.32/0.46</td>
<td>0.080/0.10</td>
</tr>
<tr>
<td>Global total</td>
<td>6083/12313</td>
<td>404/891</td>
<td>567911422</td>
<td>0.29/0.48</td>
<td>0.100/0.14</td>
</tr>
</tbody>
</table>

† Regions are classified following the definition in the FAO Global Livestock Environmental Assessment Model (GLEAM; http://www.fao.org/gleam/en/).

ypi The potential harvested biomass from mown grassland (Y_mown) and the potential biomass consumption over grazed grassland (Y_grazed) are 10-year averages for the period 1901–1910 (1900s) and 1991–2000 (1990s), representing the productivity at the beginning and at the end of the 20th century respectively.

‡ Ruminant numbers (as units of livestock unit, LU) are calculated based on the total metabolisable energy (MEE) requirement by all ruminant. The MEE requirement by all ruminants is based on ruminant numbers from statistics (for 1901–2012; data derived from FAOSTAT, 2014) and literature estimates (for 1901–1980; data derived from Mitchell (1993, 1998a, b) and available in HYDE database at http://themes.pbl.nl/themasites/hyde/hyde2/hydedatasource/livestock/index-2.html), using the calculation method given in the Supplement Sect. S1 of Chang et al. (2015a).
Figure 4. Productivities per unit area (height of each rectangle) and grassland areas (width of each rectangle) of the different types of grassland (mown, grazed, and unmanaged grassland) by FAO-defined regions and global total. Areas in the graph show the production of each grassland type (i.e. $\text{Prod}_{\text{mown}}$, $\text{Prod}_{\text{grazed}}$, and $\text{Prod}_{\text{unmanaged}}$; see Sect. 3.1 for detail). Productivities and grassland areas are averaged for 1991–2000. The FAO-defined regions (from top-left) are North America, Russian Federation, western Europe, eastern Europe, Near East and North Africa (NENA), East and Southeast Asia, Oceania, South Asia, Latin America and the Caribbean (LAC), and sub-Saharan Africa (SSA).

Figure 5. Historical changes in the area of managed/unmanaged grassland and in the ruminant numbers for 1901 and 2012 by region and global total. See caption to Table 2 for expansion of FAO-defined regions.

ern India, southern China, South Korea, Japan, and southern Brazil where N fertilizer additions (Tables S3 and S4) cause a higher productivity (Fig. 6b).

3.3.1 Evaluation of modelled NPP against observed NPP

Figure 7a shows the comparison between site-scale NPP observations (NPP_{obs}) and the model results at the corresponding grid cells ($\text{NPP}_{\text{model}}$). The $\text{NPP}_{\text{model}}$ is positively correlated with NPP_{obs} across 129 sites but with the low cor-
3.3.2 Evaluation of modelled GPP against MODIS-GPP for annual mean and interannual variability

At global scale, MODIS-GPP gives a mean grassland GPP of 537 g C m⁻² yr⁻¹ and ORCHIDEE-GM v3.1 simulates a mean value of 796 g C m⁻² yr⁻¹, ≈ 50 % higher than MODIS-GPP. A higher modelled GPP (GPP_model) than MODIS is found for all latitude bands especially in boreal (50–80° N) and tropical regions (20° S–20° N; Fig. 8). The linear regression between gridded MODIS-GPP and GPP_model suggests a similar spatial pattern (slope = 1.05, and the correlation coefficient r_{spatial} = 0.84; Fig. S5).

The temporal correlation coefficient between the detrended time series of global GPP_model and MODIS-GPP was found to be high (r_{global} 0.88, p <0.01). Within the grid cells covered by grass over more than 20 % of total land in MOD12Q1, significant positive interannual correlations between GPP_model and MODIS-GPP were found for 39 % of the grid cells (i.e. 40 % of the grassland area), except in some tundra areas of Siberia and North America, grassland on the Qinghai–Tibet Plateau, and savannah in sub-Saharan Africa (Fig. 9).

3.3.3 Evaluation of modelled seasonal cycle of GPP against MODIS-GPP and GOME-2 SIF products

Figure 10 compares the normalized seasonal variation of GPP_model, MODIS-GPP, and SIF-GPP for five latitude bands and the globe. Similar mean seasonal variations of grassland productivity are found between modelled GPP, MODIS-GPP, and SIF (r_{seasonal} range from 0.55 to 0.89; Table 4). Compared to both MODIS-GPP and SIF data, ORCHIDEE-GM v3.1 captures the seasonal variation of productivity in boreal
Table 4. Mean ± standard deviation of \(r_{\text{seasonal}} \) comparing the seasonal cycle of modelled GPP (GPP\(_{\text{model}}\)), MODIS-GPP, and SIF data for the five latitude bands and global scale. \(r_{\text{seasonal}} \) is expressed as mean ± standard deviation of grid level correlation coefficient within each latitude band and global. To avoid the strong impact of other land-cover types (e.g. crop and forest) to the seasonal cycle, we only consider \(r_{\text{seasonal}} \) for grid cells with grassland covering more than 50% of total land in the MOD12Q1 dataset.

![Figure 8](image1.png)

Figure 8. Comparison between mean MODIS-GPP and modelled GPP for the period 2000–2013 by latitude band. The uncertainty of MODIS-GPP comes from the reported relative error term driven by NASA’s Data Assimilation Office (DAO) reanalysis datasets (Zhao et al., 2006). The uncertainty of modelled GPP is the standard deviation of interannual variation of grassland GPP in each band for the period 2000–2013.

![Figure 9](image2.png)

Figure 9. Spatial distribution of \(r_{\text{AV}} \) between MODIS-GPP and GPP\(_{\text{model}}\). \(r_{\text{AV}} \) is the correlation coefficient between detrended time series of modelled and MODIS-GPP from 2000 to 2012. This figure only shows the \(r_{\text{AV}} \) for grid cells with grassland covering more than 20% of total land in the MOD12Q1 dataset. Grey indicates insignificant or negative \(r_{\text{AV}} \) (\(p > 0.05 \) or \(r_{\text{AV}} < 0 \)); yellow-to-red indicates significant positive \(r_{\text{AV}} \) with increasing value (\(r_{\text{AV}} > 0 \) and \(p < 0.05 \)).

!image3.png

!image4.png

4 Discussion

4.1 Managed area of grassland and management intensity: comparison with previous estimates

The area of managed grasslands obtained in this study is lower than the pasture area of HYDE 3.1 (\(A_{\text{pasture-hyde}} \), Klein Goldewijk et al., 2011; Table 3), except in eastern Europe for the year 2000. \(A_{\text{pasture-hyde}} \) is 3.2 times larger than the minimum area of managed grasslands (mown plus grazed grasslands; hereafter referred to as \(A_{\text{managed-gm}} \)) in the year 1901 and 2.7 times larger in the year 2000. The difference comes from the method used for estimating managed areas between Klein Goldewijk et al. (2011) and this study. \(A_{\text{pasture-hyde}} \) in Klein Goldewijk et al. (2011) was estimated simply from population density and the country-level-per-capita use of pasture derived from the FAO statistics (FAOSTAT, 2008). In this study, \(A_{\text{managed-gm}} \) is constrained by grass-biomass-use data (i.e. requirement of biomass for animals) and the simulated grassland productivity (i.e. supply of biomass to animals). In fact, the actual (real-world) managed grassland area could be larger than \(A_{\text{managed-gm}} \) in regions where grasslands are not strictly unmanaged, i.e. not fully occupied by \(A_{\text{managed-gm}} \) in the management intensity maps (i.e. \(f_{\text{unmanaged}}>0 \); Fig. 2c). In pastoral systems such as open rangeland and mountain areas, animals keep moving to search for the most digestible grass. Tracts of grasslands can be grazed for a short period, with only a small part of the annual grass productivity being digested (i.e. very low herbage-use efficiency). This type of grassland could be recognized as extensively grazed grassland, whereas it is considered as unmanaged in this study. For example, lower herbage-use efficiency than that simulated in this study (Fig. 3) could be expected in open rangeland of central Asia, the Rus-
sia federation, sub-Saharan Africa, Brazil, and Australia and in the mountains of southwestern China and the European Alps. Reclassifying these areas would result in a larger area of extensively managed grassland. Few studies reported the herbage-use efficiency of managed grassland. One exception is the network of European eddy-covariance flux sites. For these sites the average herbage-use efficiency (expressed as forage defoliated as a proportion of GPP) is 7.1 % ± 6.1 % for grazed sites, and 13.3 % ± 6.4 % for mown sites (J.-F. Soussana, personal communication, 2015); a similar range, between 2 and 20 %, is simulated in this study (Fig. 3).

The time evolution of $A_{\text{managed-gm}}$ since 1901 in this study is arguably more realistic than HYDE because it considers changes in animal stocking density from statistics and the evolution in per-head use of pasture. $A_{\text{managed-gm}}$ takes into account (1) changes in grass-biomass requirement, considering both ruminant numbers and meat/milk productivity (Supplement Sect. S2; N_{ruminant} in Table 3); (2) changes in grassland productivity driven by climate change, rising CO$_2$ concentration, and changes in N fertilization (Y_{mown} and Y_{grazed} in Table 3); and (3) changes in management types (mown and grazed grassland areas in Table 3 and Fig. 5). For example in intensively managed grasslands, an increase in ruminant stocking density causes a shift from grazed to mown grassland (globally and regionally, except in western Europe; Table 3 and Fig. 5), because mown grassland provides more grass biomass than grazed grassland per unit of area (Fig. S3).

$A_{\text{pasture-hyde}}$ is consistent with country-specific pasture area censuses and thus may be suitable for reconstructing land cover, but it does not provide information about management intensity. $A_{\text{managed-gm}}$ and its split between mown, grazed, and unmanaged fractions provide specific global distributions of pasture management intensity and its historical changes. However, there are several limitations, which may cause uncertainties in our maps of management intensity: (1) the grass fraction in ruminant diet has likely been changing during the last century while, due to a lack of information, we assumed that it was static in each region up to the year 2000; (2) technical developments (such as ruminant breeding) are not considered but may affect the feeding efficiency (meat/milk production per amount of feed) and thus feedback on the grass-biomass requirement; (3) the spatial distribution of ruminants was kept constant in our estimate, whereas it could have changed, depending on geographic changes in human population distribution; and (4) the results depend on the accuracy of NPP modelling in ORCHIDEE-GM. Despite these limitations, the maps of grassland management intensity provide new information for drawing up global estimates of management impact on biomass production and yields (Campioli et al., 2015) and for global vegetation models like ORCHIDEE-GM to enable simulations of carbon stocks and GHG budgets beyond simple tuning of grassland productivities (e.g. like in LPJmL; Bondeau et al., 2007) to account for management. These maps can also be tested in other vegetation models, or the same algorithm can be implemented in other models to give the management intensity consistent with simulated NPP.

4.2 Causes of regional grass-biomass production deficits

Grass-biomass production is constrained by the gridded biomass consumption for the year 2000 (Herrero et al., 2013). In some grid cells, the gridded biomass consumption by year 2000 cannot be fulfilled by the potential grass production simulated by ORCHIDEE-GM v3.1 (Fig. 2d). These modelled grass-biomass production deficits could be due to several reasons.
Land-cover maps used as input to ORCHIDEE-GM v3.1 do not represent grasslands well in the mixed and landless systems and grasslands providing occasional feed to ruminant (e.g. roadside, forest understory grazing land, and small patches). This failing could cause the model to miss a significant part of grass productivity in this study. For example, the largest modelled grass-biomass production deficit is found in India because the simulated grassland productivity is far from agreeing with the grass-biomass-use data. In this country, occasional feed may constitute an important fraction of ruminant diet (30 or 50 % in mixed and landless or pastoral systems of South Asia from Bouwman et al., 2005), which is not represented by the land-cover maps used as input to ORCHIDEE-GM v3.1 and thus is not modelled.

In arid regions such as Pakistan, Sudan, Iran, Egypt, and northwestern China, grass can grow in places where the water table is near to the surface and groundwater resources are available (e.g. oases, riparian zones, lakes). However, ORCHIDEE-GM v3.1 is driven by gridded climate data and does not taken into account local topography-dependent water resources such as rivers and lakes and thus is not being able to simulate local grass growing areas in arid regions.

Grassland irrigation, though it is not as common as in cropland, is applied in arid regions such as Saudi Arabia but is not considered by ORCHIDEE-GM v3.1.

In some semi-arid open rangeland, ruminants may walk long distances to acquire enough grass. For example, in semi-arid sub-Saharan Africa, Uzbekistan, and central Australia, animals usually keep moving in order to search for grass. This displacement of grazing animals from grass sources is not considered in the model.

The grass fraction in ruminant diet is defined per region according to specific production systems. However, the grass fraction can differ within a region depending on local fodder crop production and grassland use. For example, the large numbers of ruminants in eastern China are mostly fed by grain and stovers (fibrous crop residues) instead of grass, because little grassland exists in that region.

4.3 Model performance: comparison of modelled and observed grassland productivity

In Sect. 3.3, the spatial patterns of NPP\textsubscript{model} or GPP\textsubscript{model} were compared with observations (NPP\textsubscript{obs} or MODIS-GPP). ORCHIDEE-GM v3.1 captured well the spatial pattern of grassland productivity, with (i) high r\textsubscript{spatial} between GPP\textsubscript{model} and MODIS-GPP (Sect. 3.3.2) and (ii) NPP\textsubscript{model} extracted from global simulation showing significant correlation with site-level NPP observation from 129 sites all over the world (Sect. 3.3.1). However, GPP\textsubscript{model} is higher than MODIS-GPP in all latitude bands (Fig. 8). It should be kept in mind that MODIS-GPP had a calculated 18 % uncertainty due to climate forcing (Zhao et al., 2006). Besides, a low bias of MODIS-GPP for grasslands has been reported in a tallgrass prairie in the United States (Turner et al., 2006) and in an alpine meadow on the Tibetan Plateau (Zhang et al., 2008) when compared to the GPP from flux-tower measurements. The underestimate of MODIS-GPP is mostly related to the low value of the maximum light-use efficiency parameters used in the MODIS-GPP algorithm (Turner et al., 2006; Zhang et al., 2008).

The relatively low r value between NPP\textsubscript{model} and site-level NPP\textsubscript{obs} (r = 0.35, p=0.01; Sect. 3.3.1) could be related to the fact that local climate, soil properties, and topographic features are not considered in the model. For example, the r between the site-level climate and that from the CRU+NCEP climate forcing data (0.5° × 0.5° resolution) is 0.96 for annual mean temperature but only 0.86 for annual total precipitation and 0.86 for solar radiation. The relatively low correlation for annual total precipitation may cause inaccuracy in the model simulations of productivity, because water availability could be a major factor limiting grass growth (e.g. in temperate regions; Le Houerou et al., 1988; Silvertown et al., 1994; Briggs and Knapp 1995; Knapp et al., 2001; Nippert et al., 2006; Harpole et al., 2007). Further, a similar mean belowground NPP and an overestimation of mean aboveground NPP by ORCHIDEE-GM v3.1 is found in Sect. 3.3.1, which suggests that (1) the model tends to overestimate above-ground NPP possibly due to overestimation of GPP (compared to MODIS-GPP) and (2) the model tends to overestimate the ratio of aboveground and belowground biomass allocation (R\textsubscript{above}/below) compared to observation. This overestimation could be the result of nitrogen limitation on the carbon allocation scheme for grassland. For example, a large nitrogen supply has been observed to increase R\textsubscript{above}/below (Aerts et al., 1991; Cotrufo and Gorissen, 1997), while nitrogen limitation might cause it to decrease. However, nitrogen limitation in grassland is not accounted for in ORCHIDEE-GM v3.1, which possibly leads to the model’s overestimation of R\textsubscript{above}/below. The model could be improved by incorporating the full nitrogen cycle.

For the seasonal cycle, we compared modelled GPP seasonality to both MODIS-GPP and GOME-2 SIF data. ORCHIDEE-GM v3.1 captures the seasonal variation of productivity in most regions where grassland is the dominant ecosystem (coverage > 50 %), as shown by the high r\textsubscript{seasonal} between GPP\textsubscript{model} and MODIS-GPP (Fig. 56a) or SIF data (Fig. 56b). However, the model does not capture the seasonal amplitude of grassland productivity in some arid/semi-arid regions (e.g. southwestern United States and central Australia; Fig. 56a and b). In arid/semi-arid regions, grass productivity is triggered by discrete precipitation events and depends on the timing and magnitude of these pulses (Sala et al., 1982; Schwinnning and Sala, 2004; Huxman et al., 2004).
These precipitation pulses are infrequent, discrete, and not represented in a global climate re-analysis dataset such as CRU+ NCEP used in our simulation. In particular, NCEP-like all climate models tends to produce "general circulation model drizzle" (Berg et al., 2010), i.e. too many frequent small rainfall events. This forcing uncertainty could be a major obstacle for our model to capture the seasonality of productivity in these regions. In dry grasslands, the dominant species could change during the season, but the resultant changes in SLA and Vc max by different dominant species cannot be reflected in ORCHIDEE-GM v3.1. This within-season variability could be another reason for the model-data discrepancy in arid/semi-arid grassland seasonality. For the savanna of sub-Saharan Africa, eastern Africa, and South America (Fig. S6), the relatively low f seasonals could be a result of the fact that the frequent fires are not simulated in the current version of the model used here.

ORCHIDEE-GM v3.1 captures the IAV of grassland GPP at global scale and in many regions of the world (40 % of global grassland area) compared to the MODIS-GPP. One exception where IAV is not in phase with MODIS-GPP is sub-Saharan Africa (Fig. 9). Possible causes of this discrepancy are (1) the frequent fires which affect the IAV of GPP, which are not simulated in this study; (2) model biases in the IAV of soil moisture, which could affect the model performances for the productivity of semi-arid Africa, given its two-layer bucket hydrology; (3) the problems with MODIS-GPP dry areas, which may degrade the model-data agreement. The cold Qinghai–Tibet plateau and boreal tundra are the other regions where the model does not capture the GPP IAV (Fig. 9). The low model-data agreement in IAV could be due to shortcomings in (1) the specific characteristics, functioning traits, and nutrient availability of the tundra/alpine-grassland ecosystem that are not well parameterized or accounted for in our model (e.g. Tan et al., 2010, for Qinghai–Tibet plateau) and (2) the snow scheme. The timing of snowmelt will impact the grass phenology, while early spring soil moisture impacted by snow water storage may affect the grassland productivity. The single-bucket snowpack scheme (Chalita and Le Treut, 1994) in the current version of ORCHIDEE-GM may not represent the snow processes sufficiently accurately. The mechanistic intermediate-complexity snow scheme (ISBA-ES; Boone and Etchevers, 2001) implemented into ORCHIDEE-ES (Wang et al., 2013) may improve the model performance in simulating grassland productivity.

5 Concluding remarks

In this study, we have derived the global gridded maps of grassland management intensity, including the minimum area of managed grassland with fraction of mown/grazed part, the grazing-ruminant stocking density, and the density of the wild animal population at a resolution of 0.5°. The management intensity maps are built based on the assumption that grass-biomass production from managed grassland (simulated by ORCHIDEE-GM v3.1) in each grid cell is just enough to satisfy the grass-biomass requirement by ruminants in the same grid (data derived from Herrero et al., 2013). Furthermore, the maps are extended to cover the period 1901–2012, taking into account both the changes in grass-biomass requirement and supply. The evolution in grass-biomass requirement is determined by the ME-based ruminant numbers calculated in this study, while the changes in grass-biomass supply are simulated by ORCHIDEE-GM v3.1, considering variable drivers such as climate, CO2 concentration, and N fertilization. Despite the multiple sources of uncertainty, these maps, to our knowledge for the first time, provide global, time-dependent information on grassland management intensity. Global vegetation models such as ORCHIDEE-GM, containing an explicit representation of grassland management, are now able to use these maps to make a more accurate estimate of global carbon and GHG budgets.

The gridded grassland management intensity maps are model dependent because they depend on NPP. Thus in this study we also give a specific attention to the evaluation of modelled productivity against both a new set of site-level NPP measurements and global satellite-based products (MODIS-GPP and GOME2-SIF). Generally, ORCHIDEE-GM v3.1 captures the spatial pattern, seasonal cycle, and IAV of grassland productivity at global scale, except in regions with either arid or cold climates (tundra) and high-altitude mountains/plateaus. Because the major purpose of a global vegetation model like ORCHIDEE-GM is to simulate carbon, water, and energy fluxes at a large scale, it uses a limited number of plant functional types and generic equations. The model is not expected to accurately capture productivity variations everywhere. Thus we conclude that its current version, ORCHIDEE-GM v3.1, is suitable to simulate global grassland productivity.

6 Data availability

The ORCHIDEE model used as a starting point in this study is ORCHIDEE rev2425. The source code can be obtained at http://forge.ipsl.jussieu.fr/orchidee/browser/trunk/ORCHIDEE. A detailed documentation and the forcing data needed to drive ORCHIDEE can be found at http://forge.ipsl.jussieu.fr/orchidee/wiki/Documentation and http://forge.ipsl.jussieu.fr/orchidee/wiki/Forcings. ORCHIDEE-GM v3.1 is derived from rev2425 with the modifications presented in Sect. 2.1 and the previous studies (Chang et al., 2013, 2015a, b), the source code of which can be obtained upon request (http://labex.ipsl.fr/orchidee/index.php/contact).

The Supplement related to this article is available online at doi:10.5194/bg-13-3757-2016-supplement.

Acknowledgements. We thank the editor and the two anonymous referees for their valuable review comments, which helped to greatly improve the paper. We gratefully acknowledge funding from the European Union Seventh Framework Programme FP7/2007–2013 under grant no. 603864 (HELIK). Philippe Ciais and Shushi Peng acknowledge support from the ERC Synergy grant ERC-2013-SyG-610028 IMBALANCE-P. Matteo Campioli is a postdoctoral fellow at the Research Foundation – Flanders (FWO). Chao Yue is supported by the European Commission-funded project LUC4C (grant no. 603542). Tao Wang is funded by European Union FP7-ENV project PAGE21 (grant no. 282700). We thank those who developed the EC-JRC-MARS dataset (European Union, 2011–2014) created by MeteoConsult based on ECWMF (European Centre for Medium Range Weather Forecasts) model outputs and a reanalysis of ERA-Interim. We greatly thank John Gash for his effort on English language editing. Edited by: A. Ito

References

Reconstructing the history of grassland management in a vegetation model

J. Chang et al.:

