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Abstract. The isotopic compositions of oxygen and hydro-

gen in ice cores are invaluable tools for the reconstruction of

past climate variations. Used alone, they give insights into the

variations of the local temperature, whereas taken together

they can provide information on the climatic conditions at

the point of origin of the moisture. However, recent analyses

of snow from shallow pits indicate that the climatic signal

can become erased in very low accumulation regions, due

to local processes of snow reworking. The signal-to-noise

ratio decreases and the climatic signal can then only be re-

trieved using stacks of several snow pits. Obviously, the sig-

nal is not completely lost at this stage, otherwise it would be

impossible to extract valuable climate information from ice

cores as has been done, for instance, for the last glaciation.

To better understand how the climatic signal is passed from

the precipitation to the snow, we present here results from

varied snow samples from East Antarctica. First, we look

at the relationship between isotopes and temperature from

a geographical point of view, using results from three tra-

verses across Antarctica, to see how the relationship is built

up through the distillation process. We also take advantage

of these measures to see how second-order parameters (d-

excess and 17O-excess) are related to δ18O and how they are

controlled. d-excess increases in the interior of the continent

(i.e., when δ18O decreases), due to the distillation process,

whereas 17O-excess decreases in remote areas, due to kinetic

fractionation at low temperature. In both cases, these changes

are associated with the loss of original information regarding

the source. Then, we look at the same relationships in pre-

cipitation samples collected over 1 year at Dome C and Vos-

tok, as well as in surface snow at Dome C. We note that the

slope of the δ18O vs. temperature (T ) relationship decreases

in these samples compared to those from the traverses, and

thus caution is advocated when using spatial slopes for past
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climate reconstruction. The second-order parameters behave

in the same way in the precipitation as in the surface snow

from traverses, indicating that similar processes are active

and that their interpretation in terms of source climatic pa-

rameters is strongly complicated by local temperature effects

in East Antarctica. Finally we check if the same relationships

between δ18O and second-order parameters are also found in

the snow from four snow pits. While the d-excess remains

opposed to δ18O in most snow pits, the 17O-excess is no

longer positively correlated to δ18O and even shows anti-

correlation to δ18O at Vostok. This may be due to a strato-

spheric influence at this site and/or to post-deposition pro-

cesses.

1 Introduction

Water isotopic composition of shallow and deep ice cores has

long been used for reconstructing past climatic conditions in

polar regions (Jouzel et al., 2007; Küttel et al., 2012; Schnei-

der et al., 2006). The correlation between temperature and

δ18O in polar regions is explained by the progressive rela-

tive loss of heavy isotopes with respect to the light ones dur-

ing distillation of the water mass along its trajectory from

warm to cold regions. However, more and more recent stud-

ies are evidencing that the water isotopic composition (δ18O

or δD) in shallow snow pits in Antarctica does not follow

the recent (last 50 years) temporal evolution of temperature,

especially in regions of very low accumulation like the East

Antarctic plateau (Ekaykin et al., 2002, 2004; Hoshina et al.,

2014; Winkler et al., 2013). Post-depositional effects at the

snow surface (Sokratov and Golubev, 2009) are responsible

for a large noise, i.e., a non-climatic signal, in water isotopic

records. This non-climatic signal can be shaped by many lo-

cal effects such as surface relief, accumulation rate (Ekaykin

et al., 2004) or temperature gradient in surface snow (Town

et al., 2008). The situation is however improved when work-

ing on stacks of several shallow pits from which a climatic

signal can be extracted (Altnau et al., 2015; Ekaykin et al.,

2014; Schneider et al., 2006). In addition, the fact that δ18O

or δD records in deep ice cores have been providing ro-

bust and high-resolution records of past temperature over the

last glacial period clearly confirms the direct link between

temperature and water isotopic composition of surface snow.

Accordingly, either the post-depositional noise is not strong

enough to entirely erase the original climatic signal, or some

of the post-deposition processes are under the control of lo-

cal temperature and thus reinstate a link between δ18O and

temperature.

In addition to δD and δ18O records bringing information

on temperature at first order, additional climatic informa-

tion can be retrieved from second-order parameters like

d-excess (d-excess= δD− 8 · δ18O) and 17O-excess (17O-

excess= ln(δ17O+ 1)− 0.528 · ln(δ18O+ 1)) (Dansgaard,

1964; Barkan and Luz, 2007; Landais et al., 2008). These

parameters represent the y intercepts of two straight lines,

one relating δD and δ18O with a slope of 8, and the other

relating ln(δ17O+ 1) and ln(δ18O+ 1) with a slope of 0.528.

Most meteoric and surface waters over the globe fall on a line

with a slope of 8 and a y intercept of 10 in the δD/δ18O dia-

gram, called the Global Meteoric Water Line (Craig, 1961).

However, variations of d-excess values have been observed

in waters from various regions around the globe, and have

been attributed, in the middle to low latitudes, to regional

hydrological conditions (importance of evaporation and pre-

cipitation amount). When plotting the isotopic compositions

of meteoric waters in a ln(δ17O+ 1)/ln(δ18O+ 1) diagram,

they fall on a straight line with a slope of 0.528 (Barkan

and Luz, 2007; Landais et al., 2008; Luz and Barkan, 2010;

Meijer and Li, 1998). Following the model of the d-excess

definition, Barkan and Luz (2007) defined the 17O-excess in

this diagram, and proposed that it was a tracer of climatic

conditions at evaporation. The fact that δ18O, d-excess and
17O-excess bear slightly different climatic information is due

to influences of both equilibrium and kinetic fractionation

processes on the water isotopic composition. Equilibrium

and kinetic fractionation effects are induced by differences in

saturation vapor pressure and diffusivities among isotopes,

respectively. The different water isotopes exhibit different

sensitivities to equilibrium and kinetic fractionation leading

to variations in d-excess and 17O-excess. At low latitudes,

both d-excess and 17O-excess will be sensitive to relative

humidity during evaporation because of large variations in

kinetic fractionation (Gat, 1996; Uemura et al., 2008, 2010).

However, along the distillation process, the influence of

relative humidity on d-excess is fading away to the benefit

of the temperature gradient between the source and the

precipitation site through equilibrium fractionation (Petit et

al., 1991; Vimeux et al., 1999).

For coastal stations of Antarctica, 17O-excess and d-excess

are markers of water origin, mainly temperature for d-excess

(Delmotte et al., 2000; Kurita, 2011; Schlosser et al., 2008)

and relative humidity for 17O-excess (Winkler et al., 2012).

Presence of sea ice at the oceanic water evaporative regions

may also contribute to the d-excess and 17O-excess signal

(Gao et al., 2011; Schoenemann et al., 2014). However, at

very low temperatures, and therefore in the central regions

of Antarctica, the d-excess and 17O-excess in the precipita-

tion become much more sensitive to the temperature of con-

densation than in the coastal regions. By using the different

isotopic parameters, it remains possible to separate the influ-

ence of the source temperature from the influence of the lo-

cal temperature, as was done in central Greenland (Masson-

Delmotte et al., 2005; Jouzel et al., 2005) and more recently

in East Antarctica (Uemura et al., 2012) with a sensitivity

of polar d-excess to source temperature of 1.5 ‰ ◦C−1 (Risi

et al., 2010) and a sensitivity of polar 17O-excess to source

relative humidity of −0.9 ppm %−1 (Landais et al., 2009).

Because 17O-excess is less sensitive to temperature than d-
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excess, the site temperature influence on 17O-excess is only

perceptible in very remote sites of East Antarctica (Winkler

et al., 2012). Finally, 17O-excess may also bear the signature

of stratospheric input since photochemical reactions involv-

ing ozone can affect the triple isotopic composition of oxy-

gen in water in the stratosphere (Franz and Röckmann, 2005;

Lin et al., 2013; Winkler et al., 2013; Zahn et al., 2006). This

effect is generally marginal since the amount of water vapor

in the stratosphere is very small (a few ppm only). However,

it can become significant in East Antarctica where surface

humidity is very low (i.e., at Vostok, the average specific hu-

midity value is ∼ 112 ppmv and decreases to almost 0 ppmv

in winter; Ekaykin, 2003).

The goal of this study is to understand how a climatic and

environmental signature can be imprinted in the water iso-

topic composition of surface snow in remote East Antarc-

tica. Our strategy is to make an optimal use of the combina-

tion of all water stable isotopes (δD, δ17O, δ18O) in different

types of snow on the Antarctic plateau (precipitation, surface

snow, buried snow) to disentangle temperature, water cycle

and stratospheric influences.

The outline of our study is the following. In Sect. 2, we

present the spatial distribution of water isotopic composition

averaged in the top 30 cm of surface snow in East Antarctica

with a focus on the remote East Antarctic plateau. In Sect. 3,

we present variations of isotopic composition of precipita-

tion and surface snow on two drilling sites in East Antarc-

tica (Dome C, Vostok). Section 4 is a multi-isotope compi-

lation of new data on several snow pits in East Antarctica.

Each section is organized in three subsections: a review of

current knowledge, a description of new measurements and

results and a discussion. The final discussion shows that the

multi-isotopes approach at different sites with similar tem-

perature and accumulation rate characteristics is a useful tool

to identify the main drivers for the water isotopic variations

observed on shallow ice cores and to test the origin of the

δ18O variations classically interpreted in terms of past tem-

perature changes.

2 Spatial variations of d-excess vs. δ18O and 17O-excess

vs. δ18O in Antarctic transects

2.1 Review of current knowledge

The measurements of water isotopic composition in Antarc-

tic transects have first provided a spatial relationship of

0.8 ‰ ◦C−1 between surface temperature and δ18O in snow

(Lorius and Merlivat, 1977; Masson-Delmotte et al., 2008).

Applications of this relationship for reconstructing past tem-

perature from records of δ18O in ice cores have however re-

vealed some limitations because of combined influences of

the seasonality of precipitations, origin of moisture, varia-

tions in elevation or post-deposition effects (e.g., Charles et

al., 1994; Fawcett et al., 1997; Hoshina et al., 2014; Jouzel et

al., 2003; Krinner et al., 1997; Masson-Delmotte et al., 2012;

Neumann et al., 2005). Changes in moisture source, post-

deposition effects and ice condensation are associated with

kinetic fractionation effects. As a consequence, 17O-excess

and d-excess are useful tools to disentangle the different in-

fluences on water isotopic composition in ice cores and hence

improve our knowledge of the δ18O vs. temperature relation-

ship.

For quantitative interpretations, the isotopic measurements

are also classically combined with simple isotopic models

(such as Mixed Cloud Isotope Model, i.e., MCIM, Ciais

and Jouzel, 1994) or more sophisticated general circulation

models (GCMs) equipped with water isotopes (such as the

model LMDZ-iso from the Laboratoire de Météorologie Dy-

namique of Paris, where Z stands for the zoom function of

the model; Risi et al., 2010, 2013). The aim of such a model–

data approach is twofold. First, the comparison of data and a

model on the present-day spatial repartition of water isotopic

composition in Antarctica is essential for the validation of

the implementation of water isotopes in the model. Second,

the use of isotopic models is essential to quantitatively inter-

pret the water isotopic records in deep ice cores and translate

them into records of climatic parameters (e.g., local temper-

ature).

The model–data comparison over polar transects enables

the correct implementation of the relative influences of ki-

netic vs. equilibrium fractionation processes during snow

formation. These different influences are balanced through

the expression of the supersaturation function, S, in the for-

mulation of the fractionation coefficient (αV−S) during snow

formation so that

αV−S =
S

(S− 1)D/D∗+ 1/αeq

, (1)

where αeq is the fractionation coefficient at equilibrium be-

tween vapor and solid; D and D∗ are the diffusion coeffi-

cients of the light and heavy water isotopes in air. In the clas-

sical approach, S is related to inversion temperature, T in ◦C,

at which precipitation is assumed to form, so that S= 1− a T

(Ciais and Jouzel, 1994; Jouzel and Merlivat, 1984). The

relationship between supersaturation and temperature is not

well constrained from atmospheric data. The classical way to

adjust the slope a in the different models is to compare water

isotopes data and model outputs in polar regions. More pre-

cisely, because d-excess is very sensitive to kinetic effects at

condensation in cold polar regions, the tuning of the super-

saturation relationship to temperature is performed so that the

observed relationship between δ18O and d-excess in Antarc-

tica can be reproduced by the model (Ciais and Jouzel, 1994;

Risi et al., 2013; Schmidt et al., 2007). In GCMs, this tuning

leads to values for a between 0.003 and 0.005, with recent

models (Risi et al., 2010; Lee et al., 2007; Schmidt et al.,

2005; Tindall et al., 2009; Werner et al., 2011) favoring val-

ues equal to or greater than 0.004. Using the link between
17O-excess and δ18O on polar transects is an additional con-
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straint (Landais et al., 2008; Pang et al., 2015). The best fit

of an MCIM model to the isotopic compositions (d-excess

and 17O-excess) measured on the Terra Nova Bay–Dome C

traverse, is obtained with a value for a of 0.0033 (Winkler et

al., 2012). Pang et al. (2015) used the same value to fit to the

Zhongshan–Dome A traverse. Adequate tuning of supersat-

uration is the key to quantitatively interpret the influence of

temperature and moisture origin on δ18O, d-excess and 17O-

excess, especially in deep ice core records (Masson-Delmotte

et al., 2005; Stenni et al., 2010; Winkler et al., 2012).

The longest ice core records (Dome C, Dome F, and Vos-

tok) are located in the cold and dry regions of East Antarctica

(EPICA comm. members, 2004; Kawamura et al., 2007; Petit

et al., 1999). In these cold regions, the kinetic fractionation

is very strong because of a high supersaturation level. The

influence of kinetic fractionation on water isotopic compo-

sition is even stronger in glacial climatic conditions. In or-

der to quantitatively interpret these glacial isotopic records,

the expression of kinetic fractionation during snow forma-

tion should be known precisely at very low temperatures.

Unfortunately, there are barely any present-day analogs for

the glacial conditions encountered at Dome F, Vostok and

Dome C. To better document the water isotopic composi-

tion of snow in extremely cold regions of Antarctica, and

to improve the tuning of the supersaturation function, recent

transects have been performed toward remote regions of the

East Antarctic plateau (e.g., Becagli et al., 2004; Fujita et al.,

2011; Masson-Delmotte et al., 2008; Mayewski and Good-

win, 1999; Pang et al., 2015).

2.2 Measurements and results

We present here a compilation of existing and new transect

data combining the measurements of all water stable isotopes

(δ18O, d-excess and 17O-excess). The first transect com-

bining these surface measurements was obtained within the

ITASE project (Magand et al., 2004; Mayewski and Good-

win, 1999; Mayewski et al., 2005) between Terra Nova Bay

and Dome C (Fig. 1), and water isotopic data were already

published (Landais et al., 2008; Proposito et al., 2002). The

second transect was performed between Zhongshan station

and Dome A (Fig. 1) during the CHINARE expedition and

water isotopic data were published in Pang et al. (2015). Fi-

nally, we present new water isotopic records from a transect

obtained between Syowa, Dome Fuji and the site of the Drön-

ning Maud Land ice core (EPICA DML, obtained within

the European Project for Ice Coring in Antarctica, EPICA)

(Fig. 1) through a Swedish–Japanese project (Fujita et al.,

2011).

The surface snow samples were obtained from shallow

pits on which the average water isotopic composition was

measured. These pits had a depth of 1 m for the Terra Nova

Bay–Dome C traverse (Proposito et al., 2002; Magand et al.,

2004), 10 cm for the Zhongshang–Dome A traverse (Pang et

al., 2015) and 10 to 30 cm for the Syowa–Dome F traverse.

Figure 1. Map of the sites discussed in this manuscript.

Because the accumulation decreases from the coast towards

the inland sites, the recorded period, for the first transect,

varies from 2 years near the coast to 12 years at Dome C.

For the Chinese traverse, the recorded period varies from 1

year in inland areas to 3 months in coastal areas. For the

Syowa–Dome F traverse, the pits were shallower at inland

sites (10 cm) and deeper at coastal sites in order to record at

least 1 year in each sample. For the three transects presented

here, 17O-excess measurements were obtained by fluorina-

tion method of water to oxygen (Barkan and Luz, 2005) fol-

lowed by dual inlet measurements of produced oxygen vs. a

reference oxygen standard. Measurements of the Terra Nova

Bay–Dome C transect were performed at the Hebrew Univer-

sity of Jerusalem Israël (HUJI) using a Delta V mass spec-

trometer. Measurements of the two other transects were per-

formed in France at the Climate and Environment Sciences

Laboratory (LSCE) on a MAT 253 instrument. The measure-

ments were calibrated vs. VSMOW (Vienna Standard Mean

Ocean Water) and SLAP (Standard Light Antarctic Precipi-

tation), taking reference values for δ18O and 17O-excess of

respectively 0 ‰ and 0 ppm (or per meg) and −55.5 ‰ and

0 ppm (Pang et al., 2015; Schoenemann et al., 2013; Win-

kler et al., 2012). The pooled standard deviation (1σ ) was

computed from duplicate injection, fluorination and isotope

ratio mass spectrometry (IRMS) measurements of the same

sample, and is on average of 5–6 ppm for 17O-excess. The

δ18O and d-excess measurements for the Syowa–Dome Fuji

transect were performed using an equilibration method (Ue-

mura et al., 2007) at the National Institute of Polar Research,

Japan.

All three transects show similar evolutions for the relation-

ships between d-excess and δ18O on the one hand, and 17O-

excess vs. δ18O on the other hand (Fig. 2, Table 2). For δ18O

level lower than −40 ‰, d-excess decreases for increasing

δ18O with a slope of−0.95 ‰ ‰−1. 17O-excess does not ex-

hibit a significant trend if we restrict the data in the range of

δ18O>−50 ‰ as in the Terra Nova Bay–Dome C transect

The Cryosphere, 10, 837–852, 2016 www.the-cryosphere.net/10/837/2016/
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Figure 2. Water isotopic composition along Antarctic transects

(blue: Zhongshan–Dome A transect; green: Syowa–Dome F tran-

sect; red: Terra Nova Bay–Dome C transect) and comparison with

modeling outputs (black and grey line: MCIM with S= 1–0.004T

and S= 1–0.002T respectively, from Landais et al., 2012a; dotted

line: LMDZ-iso with S= 1–0.004T ; Risi et al., 2013).

(Fig. 2, Table 2). For δ18O values lower than −40 ‰, 17O-

excess increases with δ18O with a slope of 0.91 ppm ‰−1

(Table 2).

2.3 Discussion

For δ18O values between −20 and −40 ‰, there is a large

scattering of the d-excess values, with no clear trend. This

can be due to a variability of the climatic conditions (tem-

perature and relative humidity) at the source. For δ18O val-

ues below−40 ‰, d-excess values are clearly anti-correlated

with the δ18O values and change from ∼ 4 ‰ to about 25 ‰.

Such a change cannot be due to a change of the relative hu-

midity of the source nor to a change of the source temper-

ature that could explain only a few per mil changes. Thus,

the increase of d-excess for decreasing δ18O values is prob-

ably caused by the fractionation at condensation during the

distillation. This increase of d-excess is directly related to a

decrease of the slope (dδD/dδ18O) of the distillation line to-

wards low δ18O values (i.e., low temperatures). Indeed, in

the case of simple Rayleigh distillation, when the precipi-

tated snow is immediately removed from the air mass and

when only equilibrium fractionation occurs, we can express

the local slope of the Rayleigh’s distillation line at a given

point as

dδD

dδ18O
=

(
αDV−S − 1

)(
α18
V−S − 1

) × (1+ δD)(
1+ δ18O

) . (2)

This slope expression comes from a simple mass bal-

ance associated with a condensation step, with a small

amount of snow precipitated at equilibrium and thus re-

moved from the vapor. No assumption is made on the pre-

vious distillation path. When considering only equilibrium,

(αDV−S − 1)/(α18
V−S − 1) equals 8.7 at 0 ◦C and then increases

for lower temperature (it equals 10.1 at −40 ◦C). However,

when distillation increases, the ratio (1+ δD)/(1+ δ18O) no

longer equals 1, and 1+ δD reaches values lower than 0.6

(corresponding to δD lower than −400 ‰) in East Antarc-

tica. The combined effect of distillation and equilibrium frac-

tionation at low temperature leads to a slope of the meteoric

water line smaller than 8 at about −40 ◦C (i.e., 0.6× 10.1

is smaller than 8). The distillation effect is thus responsible

for the decrease of the slope of the meteoric water line and

hence the increase of d-excess for cold regions. Still, as ex-

plained in Jouzel and Merlivat (1984), the anti-correlation

between d-excess and δ18O is muted by the existence of

the kinetic effect. Indeed, when considering also kinetic ef-

fects in addition to equilibrium during solid precipitation,

(αDV−S − 1)/(α18
V−S − 1) equals 11.4 at −40 ◦C. Still, the dis-

tillation effect dominates over the effect of both equilibrium

and kinetic fractionation (0.6× 11.4 still remains smaller

than 8) and the d-excess tends to increase toward low tem-

perature.

The decrease of 17O-excess with decreasing temper-

ature is not linked to distillation effect. Pure equilib-

rium fractionation in a Rayleigh distillation with simi-

lar dependencies of α17
V−Sand α18

V−S to temperature (with

ln(α17
V−S/α

18
V−S)= 0.528) would lead to an increase of 17O-

excess toward low temperatures (Landais et al., 2012b; Van

Hook, 1968). Actually, the decrease of the 17O-excess to-

ward low temperature is due to the kinetic effect at condensa-

tion. Indeed, the ratio ln(D/D17)/ ln(D/D18) is significantly

lower (0.518) than the corresponding ratio between equilib-

rium fractionation factors and it results in a decrease of the
17O-excess in a Rayleigh distillation system when kinetic ef-

fect at condensation is significant.

When the temperature decreases, the supersaturation in the

air mass increases. This enhances the kinetic effect at con-

densation and leads to a decrease of both 17O-excess and d-

excess compared to their evolutions at pure equilibrium. In

turn, the evolution of d-excess and 17O-excess at low tem-

perature can help tuning the kinetic effect (Eq. 1) and es-

pecially the dependency of supersaturation to temperature. A

change in the source region of the water vapor also influences
17O-excess and d-excess at low temperature, but cannot by it-

self explain the observed decrease in 17O-excess from about

30 ppm to about 10 ppm between δ18O values of −50 and
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−60 ‰ (Fig. 2). Following Winkler et al. (2012) we estimate

that the effect of relative humidity would not be more than

10 ppm and the effect of a change of temperature, not more

than 3 ppm.

The three transect data sets are of primary interest to con-

strain the fractionation formulation between vapor and snow

in remote regions of Antarctica, as has already be done

in previous publications (Landais et al., 2008; Pang et al.,

2015; Winkler et al., 2012). We give here two examples for

this tuning using published modeling experiments incorpo-

rating all stable water isotopes. Figure 2 shows that a good

agreement can be obtained between isotopic data and mod-

eling results when using a simple model of water trajec-

tory (MCIM, Ciais and Jouzel, 1994; Landais et al., 2008)

with an appropriate tuning of the supersaturation function

(S= 1− 0.0033T or S= 1− 0.004T according to the tun-

ing of other parameters such as the temperature of solid con-

densation) (Landais et al., 2012a; Pang et al., 2015; Win-

kler et al., 2012). Winkler et al. (2012) discussed in details

the tuning of the different parameters of the MCIM to be

able to fit together δ18O, d-excess and 17O-excess in cen-

tral Antarctica and showed that supersaturation is indeed

the key parameter to fit the relative evolution of 17O-excess

vs. δ18O and d-excess vs. δ18O. When supersaturation is too

low (e.g., S= 1− 0.002T ), equilibrium fractionation domi-

nates and modeled 17O-excess and d-excess are too high at

low temperature (Fig. 2).

Things are more complicated when using AGCM

equipped with water isotopes. Figure 2 shows that a d-excess

increase and 17O-excess decrease for decreasing δ18O are

also predicted by the LMDZ-iso model with an appropriate

supersaturation function (S= 1− 0.004T , Risi et al., 2013).

However, the modeled δ18O values are not low enough in

Antarctica, thus leading to a strong discrepancy between the

East Antarctica data sets and the modeling outputs. One of

the main reasons for this disagreement is that temperatures

in Antarctica are not cold enough in the LMDZ model. The

overestimation of polar temperature is a common bias of

CMIP5–PMIP3 simulations (e.g., Cauquoin et al., 2015b;

Risi et al., 2010; Werner, 2011). This problem might be

linked to the generally poor representation of the polar at-

mospheric boundary layer and related atmospheric inversion

temperatures in GCMs (e.g., Krinner et al., 1997). Future

improvements in the incorporation of the water isotopes in

AGCM should take advantage of the transect data presented

here.

Finally, the combined measurements of water isotopes

along the three transects are essential to quantify the tem-

perature influence on δ18O, d-excess and 17O-excess. Using

the supersaturation tuning on the transect data, Winkler et

al. (2012) and Pang et al. (2015) found the following influ-

ences of temperature on δ18O, d-excess and 17O-excess in the

remote drilling stations of East Antarctica (Dome A, Vostok,

Dome C): 1 ‰ ◦C−1,−1.8 ‰ ◦C−1 and 0.3 ppm ◦C−1. These

determinations are in agreement with the recent estimates by

Uemura et al. (2012) for the Dome F d-excess and δ18O sen-

sitivity to temperature.

3 Temporal variation of the water isotopic composition

on the East Antarctic plateau

3.1 Introduction

While the spatial relationship between δ18O and tempera-

ture has long been the reference to link δ18O records in ice

cores to past temperature variations (Jouzel et al., 2013), nu-

merous studies have shown the limitations of such an ap-

proach because climate influences δ18O in a complex way

(see Sect. 2.1). One way to capture the uncertainty associ-

ated with such reconstruction is to evaluate the temporal de-

pendency of δ18O to temperature. In this section, we thus

estimate the relationship between temperature and water iso-

topes in precipitating snow over 1 year and the relationship

between temperature and water isotopes in the surface snow

on the same site. Because isotopic composition archived in

ice core probably results both from the isotopic composi-

tion of the precipitation and from post-deposition effects, we

study the annual relationship between the isotopic composi-

tion of snow and the temperature, both on precipitation sam-

ples and on surface snow sampled every week.

3.2 Method

Precipitation and surface snow samples come from two sta-

tions located on the East Antarctica plateau: Vostok and

Dome C (Fig. 1). Climatological characteristics for these sta-

tions are listed in Table 1. Vostok and Dome C are both

located on the East Antarctica plateau in low accumula-

tion regions (2–3 cm ice eq yr−1, Table 1). Vostok station is

the most remote and highest station. In terms of tempera-

ture, Vostok experiences the coldest conditions, and the wind

speed is greater at Vostok relative to Dome C (Table 1).

At Vostok, precipitation occurs in three forms: snow from

clouds, diamond dust and rime. The durations of precipita-

tion events vary from a few hours to a few days (the lat-

ter is typical for diamond dust). The Vostok precipitation

sampling has been performed immediately after each precip-

itation event from December 1999 to December 2000 and

can be separated into two data sets. The first one (series A)

corresponds to sampling from a precipitation trap placed at

1 m above the snow surface and at ∼ 50 m windward from

the station (Landais et al., 2012a). Samples collected in this

trap consist of pure precipitation as ascertained by the calm

weather conditions and absence of blowing snow at the time

of collection. Sublimation in the trap is unlikely for two rea-

sons. First, the high walls of the trap shaded the precipitation

within it. Second, most of the samples were collected in win-

ter, when insolation is minimal. The second series (B) cor-

responds to sampling from a lower precipitation trap buried

with its upper edge at the snow surface. Thus the flow of
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Table 1. Main characteristics of the snow pits drilled in East Antarctica at three different stations. Meteorological data for Vostok from

http://www.aari.ru. Data indicated by a ∗ correspond to the snow pit Vostok_winkler (Winkler et al., 2013). Accumulation rate (S2) from

E. Le Meur et al. (2016). Temperature at S2: L. Arnaud, personal communication, 2015, 10 m temperature at Dome C: J. Schwander,

unpublished data, 2001. Wind speed at Dome C from the IPEV/PNRA project “Routine Meteorological Observations” at Concordia station

http://www.climantartide.it.

Vostok S2 Dome C

Latitude −78.5◦ S −76.3◦ S −75.1◦ S

Elevation 3488 m 3229 m 3233 m

Mean annual air T (2 m) −55.2 ◦C NA −51.7 ◦C

Air T coldest month −68.0 ◦C (Aug) NA −63.5 ◦C (Jul.)

Air T hottest month −31.8 ◦C (Dec) NA −31.3 ◦C (Jan)

10 m borehole T −57 ◦C −55.1 ◦C −54.9 ◦C

Acc. rate (ice eq.) 2.4 cm yr−1 2.1 cm yr−1 2.7 cm yr−1

Wind speed 5.1 m s−1 NA 3.3 m s−1

Average δ18O −57.13 ‰∗; −57.06 ‰ −53.81 ‰ −51.14 ‰

Average d-excess 15.3 ‰∗; 16.1 ‰ 12.3 ‰ 9.1 ‰

Average 17O-excess 10 ppm∗; 26 ppm 32 ppm 31 ppm

Figure 3. (a) Isotopic composition of the precipitation at Vostok over 1 year. A: samples from the upper trap (pure precipitation); B: samples

from the lower trap (precipitation mixed with blowing snow). For the 17O-excess, dark green points were measured at LSCE, whereas light

green points were measured at HUJI. (b) Isotopic composition of the precipitation at Dome C over 1 year.

blowing snow around the trap was unimpeded and the snow

collected consists of a mixture of precipitation and blowing

snow. After the collection, the samples from the two series

were melted, poured into special plastic bottles and frozen

again. This procedure was followed to avoid alteration of the

initial isotopic composition of precipitation due to sublima-

tion and exchange with the atmospheric water vapor. Sample

volume varied between 1 mL (diamond dust) and 10–20 mL

(heavy precipitation).

The δD, δ8O and 17O-excess measurements for the

16 samples of series A (Fig. 3a, blue panel: Febru-

ary 2000–September 2000) have been published in Landais

et al. (2012a). δ18O and d-excess measurements were per-

formed at Geophysics department, Niels Bohr Institute, Uni-

versity of Copenhagen, while 17O-excess was measured at

HUJI using a Delta V instrument (duplicate measurements

of 17O-excess were also realized at LSCE for six samples).

The 11 samples of series B were measured in the same in-

stitutions as the samples of series A (Fig. 3a, yellow panel:

December 1999–February 2000).

The Dome C precipitation sampling has been continu-

ously performed since December 2007 in the framework of

the Italian glaciology program at Concordia station. Almost

100 samples are collected every year and analyzed for δD

and δ18O. Here, we present only a subset of this sample col-

lection from January to December 2010 (Fig. 3b). Unfortu-

nately, samples from the year 2011 (period when the surface

snow was sampled, see the last paragraph of this section)

were not available. The 17O-excess was measured at LSCE

using the fluorination method followed by dual inlet analy-

www.the-cryosphere.net/10/837/2016/ The Cryosphere, 10, 837–852, 2016
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sis on a MAT 253 as for the transect samples of the previous

section (Sect. 2) and Vostok precipitation samples.

It should be noted that some δ18O values presented on

Fig. 3 are significantly lower than the δ18O value of the SLAP

(−55.5 ‰). The classical two-point calibration VSMOW–

SLAP is thus possibly not valid here. We have addressed the

δ18O calibration issue for very low δ18O values by diluting

well-characterized standards with almost pure H16
2 O (Isotec

Water-16O from Sigma-Aldrich; Casado et al., 2016). These

dilutions and associated measurements have shown that the

VSMOW–SLAP calibration for δ18O on our instrument can

be extrapolated down to−90 ‰. It was not possible to do the

same exercise with 17O-excess because the water with almost

pure H16
2 O (99.98 %, Casado et al., 2016) was not character-

ized in H17
2 O content. Still, measurements of much depleted

δ18O samples on different mass spectrometers suggest that

we may create biases of up to 10 ppm in the 17O-excess val-

ues expressed in a VSMOW–SLAP scale. Mean 17O-excess

values associated with δ18O<−55.5 ‰ and performed on

different mass spectrometers may therefore not be directly

comparable.

The sampling of surface snow at Dome C was performed

between December 2010 and December 2011, in the clean

area, about 1 km away from Concordia station, according to

the following procedure. Each day of collection, an area of

approximatively 5 m2 was chosen (different from the previ-

ous one) and snow is scraped from 5 to 10 spots (∼ 0.04 m2)

within this area. This variability is due to the necessity to

collect enough snow for later analysis. Only the first 1–2 mm

of snow was collected, using a metal blade. The snow col-

lected was homogenized and melted, and a fraction destined

for isotopic analysis transferred into a 20 mL vial and then

kept frozen until analysis. In every 5 m2 area, sastrugi were

avoided, but otherwise (i.e., in flat areas) the sampling was

performed randomly and no distinction was made between

snow types; drifted snow, wind crust, soft, hard and hoar

snow are sampled indiscriminately. The aim was to sample

all types of snow present during the day of sampling to ac-

cess the average composition of the surface snow in direct

contact with the atmosphere. On this set of samples, δ18O

and δD were measured by a wavelength scanned cavity ring-

down spectroscopy instrument (Picarro L2130i) with a re-

sulting uncertainty of 1σ = 0.05 ‰ for δ18O and 0.5 ‰ for

δD. As for the other new 17O-excess data presented in this

manuscript, we used here the fluorination method coupled

with dual inlet mass spectrometry (MAT 253) with a result-

ing uncertainty 1σ = 5 ppm.

3.3 Discussion

As already observed for other Antarctic sites where δ18O

measurements on precipitation samples have been per-

formed, δ18O of falling snow is strongly related to temper-

ature both at Dome C (R= 0.88, p< 0.05, Table 2) and at

Vostok (R= 0.77, p< 0.05, Table 2). The annual slope of

Figure 4. Isotopic composition of surface snow sampled every 1–

2 weeks at Dome C.

δ18O vs. temperature is 0.46 and 0.26 ‰ ◦C−1 at Dome C and

Vostok respectively (Table 2). The annual slope at Dome C is

comparable to the one observed at Dome F for a similar tem-

perature level (0.47 to 0.78 ‰ ◦C−1, Fujita and Abe, 2006;

Motoyama et al., 2005), while the Vostok seasonal δ18O

vs. temperature slope is significantly lower. Using only the

samples of series A (instead of A+B) increases the annual

slope at Vostok slightly (0.35 ‰ ◦C−1), suggesting that this

low slope can result from post-deposition noise (i.e., blow-

ing snow with an isotopic composition different from the

one of the falling snow). Several other possible explanations

have already been evoked to explain this low slope (Ekaykin,

2003; Landais et al., 2012a), such as a strong gradient be-

tween condensation and surface temperature at Vostok when

precipitation occurred, or a change in the type of precipita-

tion at Vostok (possible high contribution of diamond dust in

precipitation). However, we should also note that at Vostok,

we have only a small number of water samples correspond-

ing to precipitation events associated with the largest amount

of snow. These large precipitation events are associated with

relatively high temperature in winter. Such a selection of par-

ticular precipitation events may also have an influence on the

final δ18O vs. temperature slope; therefore we avoid specu-

lating on this particular value with so few data points (26 at

Vostok).

As for the surface snow at Dome C, there is a rather good

correlation between δ18O and 2 m air temperature (Fig. 4)

with a global slope of 0.14 ‰ ◦C−1 (R= 0.54, p< 0.05, Ta-

ble 2). This slope is lower than the annual slope in the pre-

cipitation at Dome C (0.46 ‰ ◦C−1, R= 0.88, p< 0.05, Ta-

ble 2) and hence much lower than the spatial slope. The fact

that temporal slopes are smaller than the spatial ones has to

be kept in mind when applying these slopes to past tempera-

ture reconstructions. When looking in more detail at the evo-

lution of δ18O over 1 year, two observations can be made.

First, between December 2010 and March 2011, we observe

a long-term decreasing trend of both temperature and surface

snow δ18O, in a period associated with only rare precipita-
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tions events. Here the number of points is limited and this

correlation should be checked by a higher resolution study.

A possible explanation for the joint evolution of these two

parameters (between precipitation events) would be surface

snow metamorphism and exchange with the atmospheric wa-

ter vapor, as already evidenced in Greenland (Casado et al.,

2016; Ritter et al., 2016; Steen-Larsen et al., 2013). This

mechanism is supported by the synchronous prolonged pe-

riod of hoar formation (Fig. 4), surface hoar crystals being

the product of water vapor condensation (Champollion et al.,

2013). Besides, the porous surface hoar could also act as a

trap for the rare snow particles and diamond dust (Champol-

lion et al., 2013), therefore facilitating the evolution of the

isotopic composition of the snow in the absence of precip-

itation events. Second, several short warming events during

winter 2011 are also clearly imprinted in the δ18O signal.

Because warm events are often associated with precipitation

events (Fig. 4), the temperature-δ18O link during these events

can result from fresh snow deposition. Note that the warm

event of mid-June (17 June) is not reflected in the δ18O sig-

nal. This may be due to wind erosion and redeposition of the

snow.

The relationship between d-excess or 17O-excess and δ18O

can also help us to understand the annual variation of the iso-

topic composition of the snow. Here the annual amplitude

of variation (10–20 ‰ for d-excess and 30–40 ppm for 17O-

excess) suggests that the main control is the site temperature,

because other parameters such as source temperature and rel-

ative humidity would not account for more than a few per

mil for d-excess or more than 10 ppm for 17O-excess (Win-

kler et al., 2012). Both for Vostok and Dome C precipita-

tion, d-excess and δ18O are anti-correlated with a slope of

−1.61 ‰ ‰−1 (R=−0.88, p< 0.05, Table 2) at Dome C

and −0.7 at Vostok (R=−0.64, p< 0.05, Table 2). Even if

there is a large difference between the two slopes, this anti-

correlation is expected and has already been observed with

similar values (1 to 2 ‰ ‰−1) on the transect data: for δ18O

level below −40 ‰, we observe a clear anti-correlation be-

tween δ18O and d-excess linked to the effect of distillation.

In the surface snow at Dome C, d-excess is also globally anti-

correlated with δ18O over the whole year 2011 with a slope

of −0.47 ‰ ‰−1 (R=−0.4, p< 0.05, Table 2), indicating

that the effect of the distillation process is still perceptible in

the surface snow but somehow obscured by another process.
17O-excess of precipitation is significantly correlated with

δ18O at Vostok (2.95 ppm ‰−1, R= 0.88, p< 0.05, Table 2)

with a higher slope and correlation coefficient compared to

the transect data set with δ18O<−40 ‰ (0.91 ppm ‰−1,

R= 0.36, p< 0.05, Table 2). On the opposite, no clear re-

lationship can be drawn from the 17O-excess vs. δ18O val-

ues in the precipitation at Dome C, even if sampling at both

sites encompasses the same range of δ18O values down to

−70 ‰ and surface temperature down to−75 ◦C. Such a re-

sult suggests that the kinetic effect during condensation is not

the only driver for 17O-excess variations in East Antarctica.

The analysis of the surface snow at Dome C, however, shows

a small (but significant) correlation between 17O-excess and

δ18O. How can this correlation exist in the surface snow and

not (significantly) in the precipitation at the same site? We

propose two hypotheses regarding this phenomenon. First, at

Dome C the annual cycle of temperature in 2010 is very well

defined and does not show the frequent warming events (up

to −50 ◦C) observed during the winter of 2011 at Dome C

and in 2000 at Vostok. In other words, natural variability

may be the cause of these differences, with winter 2010 ex-

periencing more stable (and therefore colder) conditions than

winter 2000 and 2011, and thus reduced correlation between
17O-excess and δ18O. Alternatively, the post-deposition pro-

cesses within the snow could be responsible for a renewed

correlation between 17O-excess and δ18O.

4 Variability of water isotopic composition in snow pits

4.1 Description of the sampling sites

The next step to understand the archiving of the water iso-

topic composition is to look at the combined water isotopes

on short snow pits at different places in Antarctica. The iso-

topic composition on snow pits will indeed be influenced by

the isotopic composition of snow precipitation, diamond dust

deposition and post-deposition effects, involving exchanges

with atmospheric water vapor. Many isotopic measurements

have been performed on snow pits in Antarctica (e.g., Alt-

nau et al., 2015; Ekaykin et al., 2014) but except the study

from Winkler et al. (2013) focusing on one shallow pit only

in Vostok, none of the previous studies have combined mea-

surements of all stable water isotopes.

Here, we compare the results obtained from snow pits

from three localities: Vostok, S2 and Dome C (Fig. 1). The

main characteristics of the sampling sites are described in Ta-

ble 1. From Dome C to S2, and then to Vostok, the temper-

ature decreases, while the altitude increases. Thus the com-

bination of the continental effect and of the altitudinal effect

should lead to decreasing δ18O values, because of a more

advanced distillation at the most remote sites. Interestingly,

results from modeling of air parcel trajectories (Reijmer et

al., 2002) indicate that air parcels moving toward Vostok pass

over Dome C, thus confirming the pathway of the distillation.

To see if the distillation is indeed the main process control-

ling the isotopic composition in the snow pits, we first com-

pare the average values between the pits, and then look at

the evolution of isotopic parameters. Given the accumulation

rate, several decades are probably recorded (about 60 years).

However, we avoid discussing any precise age scale for these

shallow pits drilled in East Antarctica. Indeed, because of the

low accumulation rate and redeposition effects in this region,

the precise chronology is uncertain (possibility of gaps or

snow layer repetition). This prevents a proper interpretation

of isotopic variations in terms of interannual variability and
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we only discuss in the following the average isotopic values

and correlation between the different isotopic parameters. If

distillation is the main driver, we expect low δ18O values to

be associated with high d-excess values, because they would

be symptomatic of a more pronounced distillation, and with

lower 17O-excess values, because of the kinetic effect at very

low temperature.

4.2 Isotopic measurements

Here, we have analyzed the isotopic composition of the first

(2 to 4) meters of snow at three localities: Vostok, S2 and

Dome C (Fig. 1). At Vostok, we can compare new data from

the snow pit obtained for this study to a snow pit previously

analyzed in δD, δ18O and δ17O (Winkler et al., 2013) that

was dated to 1951 at 3.46 m. In the following, this snow pit

will be called Vostok_winkler. For the different snow pits,

the snow was sampled every 3 cm from the top to the bot-

tom. The new δ18O, δD and 17O-excess measurements pre-

sented here were performed following the analytical meth-

ods of Sect. 2.2 with a MAT253, while the data from Vos-

tok_winkler were measured on a Delta V.

4.3 Results

The average values for δ18O (Table 1) decrease from Dome C

to Vostok. The average d-excess values have an opposite

trend relative to the δ18O values (they increase from 9.1 ‰ at

Dome C to 12.3 ‰ at S2 and to 16.1 ‰ at Vostok). Finally,

the average 17O-excess values measured on the same instru-

ment are similar at Dome C, S2 and Vostok (∼ 30 ppm).

Correlations between variations of δ18O, d-excess and 17O-

excess were inferred first for the whole isotopic series of

the snow pits and then, for the couple δ18O/17O-excess for

subsections of 20 points, corresponding to 60 cm, or about

10 years. The Spearman’s correlations performed over a

shifting window of 20 points are significant (with α= 0.05)

if the absolute value of the correlation coefficient ρ is higher

than 0.443.

The results of Spearman’s correlations for the whole se-

ries are presented in Table 2. For the d-excess/δ18O couple

of parameters, the correlation is negative in all the pits, and

strongest at S2. We note that the correlation at Dome C is

also negative but not significant at the 0.05 level. Regarding

the 17O-excess/δ18O couple of parameters, the correlation is

significant only in the Vostok_winkler snow pit. At this site,

the correlation is negative.

The shifting window correlation coefficients between 17O-

excess and δ18O are overall negative at Vostok and S2

(Fig. 5a–c). They are significant in most of the core (70 %

of cases) for Vostok_winkler, and also in a large part of the

core for the second snow pit at Vostok (30 % of cases) and at

S2 (40 % of cases). At Dome C, the correlation coefficients

are small, and oscillate between positive and negative values

(Fig. 5d). They only reach significant values in 4 % of cases.

Figure 5. Water isotopic data from snow pits and correlation be-

tween δ18O and 17O-excess for Vostok_winkler ((a); Winkler et al.,

2013), Vostok (b), Dome C (c) and S2 (d). Each correlation coeffi-

cient R between δ18O and 17O-excess corresponds to a correlation

realized over 20 points (see Sect. 4.3). The correlation coefficients

are significant when they are larger than 0.443 in absolute values.

The limit of significance is displayed as a green dotted line.

4.4 Interpretation of the results and discussion of

processes

The comparison of the average values between sites is coher-

ent with the distillation process, with δ18O values decreas-

ing and d-excess values increasing from Dome C to Vostok.

However, the kinetic effect at condensation is not clearly ap-

parent, as the 17O-excess values remain more or less the same

between the sites.

Global Spearman’s correlations led to significant nega-

tive correlations between δ18O and d-excess for S2, Vostok

and Vostok_winkler. These negative correlations are consis-

tent with those already detected in the snow from transects

and in the precipitation, and therefore with a distillation pro-

cess. An effect of the source is also possible, but not suffi-

cient to explain the large amplitude of variations in d-excess

and 17O-excess (10–20 ‰ for d-excess and 30–40 ppm for
17O-excess). At Dome C, the absence of significant corre-

lation in the snow pit is unexpected, considering the anti-

correlation observed at this site both in the precipitation and

in the surface snow. Thus the distillation process at this site

appears somehow obliterated by post-deposition processes
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(erosion, transport and redepositing of snow, diffusion of iso-

topes within the firn) affecting the isotopic compositions and

their relationships.

The overall negative relationship between δ18O and 17O-

excess at Vostok and S2 (considering not only the whole se-

ries values but also the subsections values) is rather intrigu-

ing. In effect, this is opposed to what has been observed on

transects and at the seasonal scale for precipitation samples.

The anti-correlation between 17O-excess and δ18O in these

two sites definitively shows that distillation is not the driver

of the 17O-excess variations in the East Antarctica snow pits.

Other mechanisms must then be considered to account for

such negative correlation. Winkler et al. (2013) have ex-

plored different possible explanations for the relationships

between 17O-excess, δ18O and δD. Using additional 10Be

measurements in the same pit at Vostok and the good cor-

relation between 10Be and 17O-excess, they have concluded

that stratospheric input may be a good candidate for explain-

ing the high 17O-excess values concomitant with high 10Be

and low δ18O. Indeed, mass-independent fractionation as-

sociated with reaction with ozone in the stratosphere may

lead to strong 17O-excess in the stratosphere (Zahn et al.,

2006). Even if the amount of water vapor is very small there

(2 ppm), East Antarctica is very dry (30 ppm at Vostok) and

located under the influence of the polar vortex hence with

significant stratospheric input (e.g., Cauquoin et al., 2015a;

Stohl and Sodemann, 2010). We propose here that the more

frequent anti-correlation between 17O-excess and δ18O ob-

served at Vostok relative to S2, and also at Vostok and S2

with respect to Dome C, is linked to a stronger influence of

stratospheric input in areas that are more remote (i.e., Vos-

tok and S2). This is supported by the highest level of natural

tritium observed at Vostok (100 TU) compared to Dome C

(30 TU) (Becagli et al., 2004; Fourré et al., 2006; Proposito et

al., 2002). Natural tritium is indeed mainly produced by the

interaction of cosmic radiations with the upper atmosphere

(Craig and Lal, 1961; Masarik and Beer, 2009) and is thus

a good marker of stratospheric water input when measured

in surface snow. Unfortunately, no tritium measurement is

available at S2 now.

Finally, note that post-deposition could also have an effect

on the relationship between δ18O, d-excess and 17O-excess.

This effect has been studied in Winkler et al. (2013) who

showed by simple calculations at steady state that this effect

could be important. Still, this calculation could not explain

the observed relationship at Vostok_winkler and particularly

how the seasonal correlation between δ18O and 17O-excess

observed in precipitation at Vostok can be changed to an anti-

correlation in the snow. To better quantify this effect in East

Antarctica, modeling of post-deposition effect should be im-

proved by using a dynamic model as in Town et al. (2008)

and by using field measurements and experiments to tune it

to the East Antarctic plateau.

5 Conclusions

We presented a compilation of new water stable isotopic data

in East Antarctica on surface snow, precipitation and snow

pits. The comparison of the different stable isotope parame-

ters δ18O, d-excess and 17O-excess is very useful to decipher

the various influences on the water isotopic composition in

ice cores that is further archived in deep ice cores. We se-

lected sites in East Antarctica with extreme climatic and iso-

topic values (δ18O down to −70 ‰ in winter) in order to ob-

tain a present-day equivalent to the glacial period archived in

deep ice cores. These sites are located at the very end of the

distillation trajectory with possible significant input of strato-

spheric water vapor that has an influence on water isotopic

ratios.

Table 2 presents the compilation of the relationships be-

tween the different isotopic parameters and temperature for

the different types of snow and different locations. Measure-

ments of water isotopes in average surface snow and precip-

itations show a systematic anti-correlation between d-excess

and δ18O for δ18O lower than−40 ‰ and, except at Dome C,

a systematic correlation between 17O-excess and δ18O for

δ18O lower than−40 ‰. Even if the low δ18O values encoun-

tered in East Antarctica cannot yet be reproduced by AGCM

equipped with water isotopes, the (anti-)correlation between

water isotopic parameters can be explained well. The anti-

correlation between d-excess and δ18O results from the dis-

tillation and the correlation between 17O-excess and δ18O at

very low temperatures; this is the result of kinetic effects at

condensation in a strongly supersaturated environment.

The links between isotopic parameters are however dif-

ferent in snow pits of East Antarctica. Especially, the pos-

itive relationship between δ18O and 17O-excess, associated

with kinetic effects at low temperatures, is not visible, and

an anti-correlation between δ18O and 17O-excess appears at

Vostok and S2 that could be explained by a stratospheric in-

put of water vapor. 10Be values, measured in the same snow

pit at S2, show a positive correlation with 17O-excess val-

ues (M. Baroni, personal communication, 2015), and thus

give weight to this explanation. Such an effect is not visible

at Dome C where no particular relationship between 17O-

excess and δ18O is visible.

From the different types of snow in East Antarctica, we

always observe a positive relationship between changes in

surface temperature and change in δ18O of snow, even in the

absence of precipitation. If confirmed by future studies, the

correlation between δ18O of surface snow and temperature

in the absence of precipitation in East Antarctica has strong

importance for the interpretation of water isotopes in deep

ice cores. Indeed, East Antarctica is characterized by a very

small accumulation rate (even smaller during glacial peri-

ods); therefore post-deposition effects are expected to have

a significant effect. Our findings suggest that post-deposition

effects lead to a correlation between δ18O and temperature.

To better understand the exchanges between surface snow
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and atmospheric vapor, and to assess their impact on the iso-

topic compositions, detailed models focusing on these inter-

actions are needed. In the future, the development of models

of post-deposition processes equipped with water isotopes

may become the key to the quantitative interpretation of iso-

topes in ice cores.

Finally, from our data, we calculated a wide range of

temporal slopes between δ18O and temperature (0.14 to

0.46 ‰ ◦C−1, Table 2). They are in general significantly

lower than the spatial slope of the δ18O vs. temperature rela-

tionship over Antarctica (0.8 ‰, Lorius and Merlivat, 1977;

Masson-Delmotte et al., 2008). Such results have important

implications for the temperature reconstructions from deep

ice cores in central Antarctica. Indeed, with a smaller δ18O

vs. temperature slope, the δ18O-inferred amplitude of past

temperature changes is larger. This is in agreement with out-

puts of experiments performed with AGCM equipped with

water isotopes. Indeed, the modeled temporal slopes between

δ18O and temperature over the East Antarctic plateau, both at

annual and glacial–interglacial scales, are generally smaller

by up to a factor of 2 compared to the present-day spatial

slope over Antarctica (Cauquoin et al., 2015b; Lee et al.,

2008; Risi et al., 2010; Schmidt et al., 2007; Sime et al.,

2008, 2009).

The Supplement related to this article is available online

at doi:10.5194/tc-10-837-2016-supplement.
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