Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Geoscientific Model Development Discussions Année : 2016

Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome

Résumé

Three-dimensional ice flow modelling requires a large number of computing resources and observation data, such that 2-D simulations are often preferable. However, when there is significant lateral divergence, this must be accounted for (2.5-D models), and a flow tube is considered (volume between two horizontal flowlines). In the absence of velocity observations, this flow tube can be derived assuming that the flowlines follow the steepest slope of the surface, under a few flow assumptions. This method typically consists of scanning a digital elevation model (DEM) with a moving window and computing the curvature at the centre of this window. The ability of the 2.5-D models to account properly for a 3-D state of strain and stress has not clearly been established, nor their sensitivity to the size of the scanning window and to the geometry of the ice surface, for example in the cases of sharp ridges. Here, we study the applicability of a 2.5-D ice flow model around a dome, typical of the East Antarctic plateau conditions. A twin experiment is carried out, comparing 3-D and 2.5-D computed velocities, on three dome geometries, for several scanning windows and thermal conditions. The chosen scanning window used to evaluate the ice surface curvature should be comparable to the typical radius of this curvature. For isothermal ice, the error made by the 2.5-D model is in the range 0–10 % for weakly diverging flows, but is 2 or 3 times higher for highly diverging flows and could lead to a non-physical ice surface at the dome. For non-isothermal ice, assuming a linear temperature profile, the presence of a sharp ridge makes the 2.5-D velocity field unre-alistic. In such cases, the basal ice is warmer and more easily laterally strained than the upper one, the walls of the flow tube are not vertical, and the assumptions of the 2.5-D model are no longer valid.

Domaines

Glaciologie
Fichier principal
Vignette du fichier
GEOSCIENTIFIC MODEL DEVELOPMENT - Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome.pdf (520.17 Ko) Télécharger le fichier
Origine : Publication financée par une institution
Loading...

Dates et versions

insu-01388819 , version 1 (27-10-2016)

Identifiants

Citer

Olivier Passalacqua, Olivier Gagliardini, Frédéric Parrenin, Joe Todd, Fabien Gillet-Chaulet, et al.. Performance and applicability of a 2.5-D ice-flow model in the vicinity of a dome. Geoscientific Model Development Discussions, 2016, 9 (7), pp.2301-2313. ⟨10.5194/gmd-9-2301-2016⟩. ⟨insu-01388819⟩
94 Consultations
111 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More