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Abstract. A technique for estimating the age–depth relation-

ship in an ice core and evaluating its uncertainty is presented.

The age–depth relationship is determined by the accumula-

tion of snow at the site of the ice core and the thinning pro-

cess as a result of the deformation of ice layers. However,

since neither the accumulation rate nor the thinning process

is fully known, it is essential to incorporate observational in-

formation into a model that describes the accumulation and

thinning processes. In the proposed technique, the age as a

function of depth is estimated by making use of age mark-

ers and δ18O data. The age markers provide reliable age in-

formation at several depths. The data of δ18O are used as

a proxy of the temperature for estimating the accumulation

rate. The estimation is achieved using the particle Markov

chain Monte Carlo (PMCMC) method, which is a combina-

tion of the sequential Monte Carlo (SMC) method and the

Markov chain Monte Carlo method. In this hybrid method,

the posterior distributions for the parameters in the models

for the accumulation and thinning process are computed us-

ing the Metropolis method, in which the likelihood is ob-

tained with the SMC method, and the posterior distribution

for the age as a function of depth is obtained by collecting

the samples generated by the SMC method with Metropolis

iterations. The use of this PMCMC method enables us to esti-

mate the age–depth relationship without assuming either lin-

earity or Gaussianity. The performance of the proposed tech-

nique is demonstrated by applying it to ice core data from

Dome Fuji in Antarctica.

1 Introduction

Ice cores provide vital information on the climatic and en-

vironmental changes over the past hundreds of thousands of

years. In order to make use of the chronological records from

each slice of an ice core, it is crucial to accurately deter-

mine the relationship between age and depth in the ice cores.

Many of the dating methods for determining the age–depth

relationship rely on glaciological modeling. However, since

the glaciological processes controlling the age–depth rela-

tionship are not fully known, it is essential to reduce uncer-

tainty by incorporating various types of observational infor-

mation into the glaciological model. In particular, it is impor-

tant to effectively make use of the information of age mark-

ers, which provides significant constraints on the age–depth

relationship. The Bayesian approach is a powerful way to

combine a variety of observational information with a model,

and it has been applied to the dating of ice cores in a num-

ber of studies. Parrenin et al. (2007) considered a glaciolog-

ical process model that contains several uncertain parame-

ters. They then estimated the parameters for that model using

the Bayesian approach and the Markov chain Monte Carlo

(MCMC) method, although they did not consider the errors

in the glaciological process model in the estimation of the pa-

rameters. Klauenberg et al. (2011) took a Bayesian approach

to estimate the age–depth relationship and to improve some

parameters in their dating model by using δ18O data. The

uncertainty of the estimate was also evaluated in a Bayesian

manner. However, their method was not designed to make

use of the constraints of age markers when estimating the
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age–depth relationship. In order to effectively make use of

age markers, it is essential to ensure the consistency of the

estimated age within the entire ice core, and it is thus nec-

essary to simultaneously consider a large number of vari-

ables to represent the age–depth relationship for the entire

ice core. Hence, the Bayesian estimation of the age–depth

relationship becomes a high-dimensional problem. Some ex-

isting methods handle this high dimensionality by assuming

Gaussianity. Dreyfus et al. (2007) used age markers and a pe-

nalized least-squares method, which assumes Gaussianity, to

estimate the age as a function of depth. Lemieux-Dudon et al.

(2009) also started by assuming that the uncertainties are

Gaussian and that the model is approximately linear. How-

ever, if any of the relationships among the variables are non-

linear, Gaussianity does not hold in general. In this paper,

we propose a dating method to estimate the age for the en-

tire ice core without assuming either linearity or Gaussianity.

The proposed method formulates the age–depth relationship

based on a state space model to apply a sequential Bayesian

approach. The estimation is then achieved using the parti-

cle Markov chain Monte Carlo (PMCMC) method (Andrieu

et al., 2010), which is a sequential Bayesian approach appli-

cable to nonlinear non-Gaussian problems formulated as a

state space model. This method estimates the age by using

the marginal distribution, in which the uncertainties of the

parameters in the glaciological model are marginalized out.

Hence, it evaluates the uncertainty of the estimated age af-

ter considering the effects of the uncertainties in the model

parameters.

The remainder of the present paper is organized as fol-

lows. In Sect. 2, we provide a model of the age–depth rela-

tionship. In Sect. 3, the age–depth relationship is formulated

in a framework of a state space model in order to apply PM-

CMC for the estimation of the age, accumulation rate, and

model parameters. The PMCMC algorithms are explained in

Sect. 4. In Sect. 5, an application to the Dome Fuji ice core

is demonstrated, and the performance of our method is eval-

uated. The discussion of the proposed method is presented

in Sect. 6. Finally, a summary is presented in Sect. 7. For

reference, symbols used in this paper are listed in Table A1.

2 Dating model

The age–depth relationship is determined by two processes.

One is accumulation of snow at the site of the ice core and

the other is the thinning process due to long-term deforma-

tions within the ice sheet (e.g., Parrenin et al., 2001, 2007).

In this section, a model for describing the age–depth rela-

tionship is introduced. Basic ideas about how to estimate the

contributions from the snow accumulation and thinning are

also provided.

Denoting the annual rate of snow accumulation by A(z)

(m yr−1) and the thinning factor by2(z) (dimensionless), the

relationship between age ξ (year) and depth from the surface

z (m) is described by the following differential equation:

dz= A(z)2(z)dξ. (1)

In this equation, the accumulation rate A(z) is written as a

function of depth. This means that A(z) indicates the accu-

mulation rate at the time when the ice at depth z was de-

posited. It would be more natural to consider the accumula-

tion rate as a function of age ξ rather than depth z. In this

study, however, we first consider the accumulation rate as a

function of depth for the convenience of computation. The

accumulation rate with respect to age is then estimated after

considering the uncertainty of age as described later. Equa-

tion (1) yields the age ξ in the following form:

ξ(z)=

z∫
0

dz′

A(z′)2(z′)
. (2)

This implies that the age ξ can be obtained by the integral

from the surface at z= 0.

In order to model the thinning factor 2(z) in Eq. (2), we

adopt the pseudo-steady hypothesis (Parrenin et al., 2006;

Parrenin and Hindmarsh, 2007), which assumes steady ge-

ometry of the ice sheet and a steady vertical profile for ve-

locity. Assuming a pseudo-steady state, the thinning factor

2(z) in Eq. (2) can be written using the vertical velocity U :

2(z)= U(z)/U(0). (3)

Rescaling z and U as

ζ =
H − z

H
,u(ζ )=−

U(z)

H
, (4)

Eq. (3) can be rewritten as follows:

2(ζ)= u(ζ )/u(1). (5)

In Eq. (4), H is the thickness of the ice sheet, which is con-

stant in the pseudo-steady state. The variable ζ is a rescaled

vertical coordinate that becomes 0 at the bottom and 1 at the

surface, and u indicates the velocity in the ζ coordinate. We

rewrite the rescaled vertical velocity u(ζ ) in the following

form (Parrenin et al., 2006):

u(ζ )= u(0)+ [u(1)− u(0)]ω(ζ ), (6)

where ω(ζ ) is a function satisfying ω(0)= 0 and ω(1)= 1.

In the pseudo-steady state, the function ω(ζ ) is unchanged in

time. In this study, ω(ζ ) is described by the Lliboutry equa-

tion (Lliboutry, 1979):

ω(ζ )= ζ −
1− s

p+ 1
(1− ζ )

[
1− (1− ζ )p+1

]
, (7)

where s corresponds to the sliding ratio, which is the ratio of

the basal horizontal velocity to the vertically averaged hor-

izontal velocity. In the pseudo-steady state, the vertical ve-

locity profile u(ζ ) is assumed to be steady. Thus, the param-

eters p and s do not vary over time. Equation (7) derives
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Figure 1. δ18O data used in this study.

from the shallow ice approximation (SIA) and is based on

a linearization of the temperature profile. Martin and Gud-

mundsson (2012) have shown that the Lliboutry equation is

not appropriate for a steady dome. However, we can expect

that the domes in central Antarctica are non-steady because

the Raymond bumps have never been observed. We thus as-

sume that the Lliboutry equation can still be used. Denoting

the melting rate at the base of the ice sheet as m, A and m

correspond to the vertical velocity at ζ = 1 and that at ζ = 0,

respectively, under a pseudo-steady state. Equation (6) can

thus be rewritten as follows:

u(ζ )=−
1

H

[
m+ (A−m)ω(ζ )

]
. (8)

Setting µ=m/(A−m), Eqs. (5) and (8) yield

2(ζ)=
ω(ζ )+µ

1+µ
. (9)

We assume µ is constant, which means the ratiom/A is con-

stant. This assumption would be approximately justified be-

causem is typically much smaller thanA. Using Eqs. (7) and

(9), the thinning factor2 can be determined if the parameters

s, p, and µ are specified.

In order to obtain the age ξ using Eq. (2), it is also nec-

essary to give the profile of the accumulation rate A. In this

study, A is treated as an unknown to be estimated. Since the

accumulation rate is related to the Antarctic temperature, we

can use proxies of the temperature for constraints when es-

timating the profile of A. As a proxy for the temperature,

we used the δ18O data taken at Dome Fuji (Watanabe et al.,

2003), which are plotted in Fig. 1. Since the vertical profile

of the age ξ is associated with the profile of A, the informa-

tion from the δ18O data is also effective for improving the

estimate of the age ξ .

At several depths, we can also use reliable age values given

by age markers. We used such age values as tie points when

estimating the age–depth relationship. The age, depth, and

uncertainty (2σ ) for each tie point used in the paper are

shown in Table 1. The first point was determined from the

Antarctic Cold Reversal to Holocene transition and the sec-

ond one was determined from the beryllium 10 peak. These

two points were given by Parrenin et al. (2007). The subse-

quent 23 points were determined from the relationship be-

tween O2 /N2 and the summer insolation (Kawamura et al.,

2007). Both the δ18O data and the tie points were considered

when estimating the age ξ .

3 State space model

In this section, the age–depth relationship is formulated in a

framework of a state space model on the basis of the model

described in the previous section. The state space model rep-

resents the evolution of variables by a recurrence equation.

The state space model provides a platform for the sequential

Bayesian estimation using PMCMC, which will be explained

in the next section.

Discretizing the vertical coordinate z with an interval 1z,

the integral in Eq. (2) for any discretized z can be approxi-

mately calculated using the following recurrence relation:

ξz+1z ≈ ξz+
1z

Az2z
(z= 0,1z,21z,. . .,Z−1z), (10)

where ξz denotes the age at depth z, and we denote the accu-

mulation rate and the thinning factor in the interval from z to

z+1z by Az and2z, respectively. At the surface (z= 0), ξ0

is defined as 0. The depth at the bottom of the core is denoted

by Z.

Equation (10) would contain an error due to the discretiza-

tion of Eq. (2). In addition, since we can not accurately know

Az and 2z for each z, an estimate of the age–depth relation-

ship might also be affected by errors in Az and 2z. We rep-

resent these unspecified errors by νz. Equation (10) is thus

modified as follows:

ξz+1z = ξz+
1z

Az2z
+ νz

√
1z

Az2z

(z= 0,1z,21z,. . .,Z−1z). (11)

We assume that νz obeys the normal distributionsN (0, σ 2
ν ),

where we denote a normal distribution with mean µ and vari-

ance σ 2 by N (µ,σ 2). We multiply νz by
√
1z/(Az2z) in

order that the variance of the unknown variation per year re-

main the same to the bottom of the core. In a pseudo-steady

state, the thinning factor 2z can be obtained according to

Eq. (9). However, Eq. (9) does not consider all of the effects

governing the thinning process 2z; for example, it omits the

effect of impurities (Freitag et al., 2013). The errors in2 due

to such unspecified effects would also be considered by νz in

Eq. (11).

The accumulation rate Az is treated as an unknown vari-

able, and its transition from z to z+1z is described by the
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Table 1. Depth, age, and uncertainty of age at each tie point.

Depth Age Uncertainty of

age (2σε)

371.00 12 390 400

791.00 41 200 1000

1261.61 81 973 2230

1375.67 94 240 1410

1518.91 106 263 1220

1605.27 116 891 1490

1699.17 126 469 1660

1824.80 137 359 2040

1900.74 150 368 2230

1958.31 164 412 2550

2015.01 176 353 2880

2052.23 186 470 2770

2103.14 197 394 1370

2156.67 209 523 1980

2202.02 221 211 890

2232.45 230 836 780

2267.28 240 633 1230

2309.35 252 866 1160

2345.32 268 105 1980

2366.01 280 993 1600

2389.31 290 909 1210

2412.25 301 628 880

2438.37 313 205 840

2462.36 324 774 1110

2505.4 343 673 2000

following recurrence relation:

logAz+1z = logAz+ ηz

√
1z

Az2z

(z= 0,1z,21z,. . .,Z−1z). (12)

Note that in Eq. (12), the transition of Az is described by

using its logarithm in order to guarantee Az > 0. The term ηz
represents the (unknown) variation in the accumulation rate.

We assume that ηz obeys N (0, σ 2
η ). We hereinafter assume

1z= 1[m]. Equations (11) and (12) can thus be rewritten as

follows:

ξz+1 = ξz+
1

Az2z
+

νz
√
Az2z

, (z= 0, . . .,Z− 1) (13)

logAz+1 = logAz+
ηz

√
Az2z

, (z= 0, . . .,Z− 1). (14)

Based on Eqs. (13) and (14), we introduce conditional

probability density functions. Since we assumed νz and ηz
obey N (0, σ 2

ν ) and N (0, σ 2
η ), respectively, the conditional

distribution of ξz+1 given ξz and that of Az+1 given Az for

each z become

p(ξz+1|ξz,θ)=N
(
ξz+

1

Az2z
,

σ 2
ν

Az2z

)
and (15)

p(Az+1|Az,θ)= logN
(
Az,

σ 2
η

Az2z

)
, (16)

respectively, where θ indicates a collection of unspecified pa-

rameters such as p and s in Eq. (7). The full definition of θ

will be provided later.

Estimates of ξz and Az for each z are obtained on the basis

of their posterior distributions given the tie points and the

δ18O data. For the kth tie point τk at depth zk , we assume the

following relationship between τk and the modeled age ξzk :

τk = ξzk + εk, (17)

where εk is the discrepancy between the age at the tie point

and the modeled age. We assume that εk obeys the normal

distribution N (0,σ 2
ε ). While we consider the uncertainty in

the age of tie points, we assume there to be no uncertainty in

the depths of tie points. This is because the depth uncertainty

would not have essential effects on the estimate of the age

for each slice of the ice core. The effects of the depth uncer-

tainty on the estimates of accumulation and thinning are also

expected to be minor, because the accumulation and thinning

are related to the increment of depth rather than the absolute

depth from the surface. In this study, the uncertainty in the

age increment is taken into account by νz in Eq. (13). This

would compensate for the possible effect of the depth un-

certainty on the estimates of accumulation rate and thinning

factor.

The δ18O data, which are associated with the accumulation

rate, can be abundantly obtained from the ice core at Dome

Fuji. Multiple data points for δ18O are sometimes available

within an interval of a single meter, and we used the mean

δ18O value for each such interval. It was assumed thatAz, the

accumulation rate in the interval from z to z+1, is associated

with δ18O as follows:

δ18Oz = a logAz+ b+wz; (18)

this relation was also used by Klauenberg et al. (2011). We

assume that wz obeys the normal distribution N (0,σ 2
w). Al-

though we assume the regression coefficients a and b do not

depend on age, it is not guaranteed that the accumulation rate

and δ18O have the same linear relationship over the entire

period recorded in the ice core. Even if we could accept the

linear assumption between the accumulation rate and δ18O,

a and b might change due to the variation in climatological

conditions other than temperature. However, the uncertain

variable ηz in Eq. (12) represents the variation in accumu-

lation rate including not only the variation related to δ18O,

but also the variation due to other unknown factors. Thus, to

some extent, errors in our assumption about the relationship

Nonlin. Processes Geophys., 23, 31–44, 2016 www.nonlin-processes-geophys.net/23/31/2016/
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between the accumulation rate and δ18O would be absorbed

by ηz.

Like Eqs. (15) and (16), we introduce conditional proba-

bility density functions based on Eqs. (17) and (18). Since we

assumed εz and wz obey N (0, σ 2
ε ) and N (0, σ 2

w), respec-

tively, the conditional distribution of τk given ξzk and that of

δ18Oz given Az become

p(τk|ξzk ,θ)=N
(
ξzk ,σ

2
ε

)
, (19)

p(δ18Oz|Az,θ)=N
(
a logAz+ b, σ

2
w

)
. (20)

We hereinafter combine ξz and Az into one vector xz
as xz = (ξz Az)

T . Because p(ξz+1|ξz,θ) and p(Az+1|Az,θ)

are given, the joint distribution p(ξz+1,Az+1|ξz,Az,θ) can

also be defined. Thus,

p(xz+1|xz,θ)= p(ξz+1,Az+1|ξz,Az,θ). (21)

We also define the vector of the available data for each z as

yz. If both the tie point τkz and the δ18O data are available

at z, then yz = (τkz ,δ
18Oz)

T . If the δ18O data are available

but a tie point is unavailable, we define yz = δ
18Oz. If nei-

ther a tie point nor δ18O data are available, we define yz =

Ø. Using yz, the conditional distributions in Eqs. (19) and

(20) can then be combined into the conditional distribution

p(yz|xz,θ) for any z, where we define p(yz = Ø|xz,θ)= 1.

Our aim is to estimate x0:Z = {x0, . . .,xZ} based on the se-

quence of the data y1:Z = {y1, . . .,yZ}. If a set of the param-

eters θ were given, we could obtain an estimate of x0:Z from

the posterior distribution p(x0:Z|y1:Z,θ). However, since the

value of θ is not specified, it is necessary to take into account

the uncertainties of θ in estimating x0:Z . We obtain an es-

timate from the marginal posterior distribution given y1:Z ,

where θ is marginalized out:

p(x0:Z|y1:Z)=

∫
p(x0:Z|y1:Z,θ)p(θ |y1:Z)dθ . (22)

Since yz is conditionally independent of xz′ given xz when

z′ 6= z,

p(yz|x0:z,θ)= p(yz|xz,θ). (23)

Hence, p(x0:Z|y1:Z,θ) satisfies the following recurrence

equation:

p(x0:z|y1:z,θ)

∝ p(yz|xz,θ)p(x0:z|y1:z−1,θ)

= p(yz|xz,θ)p(xz|xz−1,θ)p(x0:z−1|y1:z−1,θ). (24)

By applying Eq. (24) recursively, we can obtain

p(x0:z|y1:z,θ) for any z. Thus, sampling from p(x0:z|y1:z,θ)

can be achieved using the sequential Monte Carlo (SMC)

method (Doucet et al., 2001; Liu, 2001). If z in Eq. (24) is

set at the depth at the bottom of the ice core (i.e., z= Z), we

obtain p(x0:Z|y1:Z,θ), which provides the estimate of the

age given all the data for the entire ice core.

We can also estimate the parameter θ . The posterior dis-

tribution of θ given y1:Z in Eq. (22) is calculated using the

following equation:

p(θ |y1:Z)∝ p(y1:Z|θ)p(θ). (25)

The vector θ contains all of the unspecified parameters used

above. The full definition of θ is as follows:

θ =
(
A0 a b µ p s σν ση σw

)T
. (26)

An approximation of p(y1:Z|θ) can be calculated using the

SMC method. Therefore, if the prior p(θ) is given, the pos-

terior of θ can readily be obtained. In this study, we use flat

prior distributions. Since it is unreasonable to allow the pa-

rameters except a and b to be negative, the prior distributions

for these non-negative parameters were assumed to be a uni-

form distribution on the non-negative real line. The prior dis-

tributions for the other parameters a and b were assumed to

be a uniform distribution on the real line. The shape of the

posterior thus corresponds to that of the likelihood function

in this study.

Since the present accumulation A0 is not specified in the

above sequential model, A0 is treated as one of the unspec-

ified parameters and is included in θ . The parameter vec-

tor θ also contains three hyper-parameters σν , ση, and σw,

which represent the variabilities in the model. These hyper-

parameters are estimated so as to well explain the variability

observed in the data. For example, if σν is taken to be too

small, the estimated age would not fit the data well. On the

other hand, if σν is taken to be too large, large variations in

the age ξ are allowed. Thus, the result could be sensitive to

the noise contained in the data. The posterior given the data

provides an appropriate value of σν so that it is large enough

to achieve a good fit, but not too large. The posterior of σw
indicates the typical magnitude of dispersion of δ18O data

from the predicted δ18O based on the estimated accumula-

tion rate. We did not include σε in θ , but we set a fixed value

for σε for each tie point, as shown in Table 1; the values were

determined according to Kawamura et al. (2007).

4 Estimation algorithm

In order to approximate the conditional distributions

p(x0:Z|y1:Z,θ) and p(θ |y1:Z), we employ the PMCMC

method (Andrieu et al., 2010), a non-Gaussian hybrid

method that combines the SMC and MCMC methods. In

this method, the posterior distributions for the uncertain pa-

rameters in the model are computed using standard MCMC,

with the exception that the likelihood of the parameters is

approximated using the SMC method. Meanwhile, the age–

depth relationship is estimated by performing many repe-

titions of the SMC procedure under iterations of MCMC.

www.nonlin-processes-geophys.net/23/31/2016/ Nonlin. Processes Geophys., 23, 31–44, 2016
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The SMC method can be used to obtain p(x0:Z|y1:Z,θ) un-

der a given θ , but it can not be used to obtain p(θ |y1:Z).

In principle, MCMC could be used to obtain any proba-

bility distribution, including p(x0:Z|y1:Z,θ), p(θ |y1:Z), and

p(x0:Z|y1:Z). However, this would require prohibitive com-

putational cost for high-dimensional problems. Thus, use of

MCMC is not practical for obtaining high-dimensional distri-

butions like p(x0:Z|y1:Z,θ) and p(x0:Z|y1:Z). By combining

SMC and MCMC, we can obtain p(x0:Z|y1:Z,θ), p(θ |y1:Z),

and p(x0:Z|y1:Z) with an acceptable computational cost.

Below, we first present the SMC method on which the

PMCMC method is based. We then describe the PMCMC

method and explain how approximations of p(x0:Z|y1:Z,θ)

and p(θ |y1:Z) can be obtained.

4.1 Sequential Monte Carlo method

The SMC method, which is sometimes referred to as the par-

ticle filter/smoother in time-series analysis (Gordon et al.,

1993; Kitagawa, 1996; Doucet et al., 2001), is used for

sampling from the conditional distribution p(x0:Z|y1:Z,θ).

The SMC method approximates a probability distribution

by a set of N particles, which are the samples drawn

from the distribution. Let x
(i)
0:z−1|z−1 be the ith sample from

p(x0:z−1|y1:z−1,θ); we have the following approximation:

p(x0:z−1|y1:z−1,θ)≈
1

N

N∑
i=1

δ
(
x0:z−1− x

(i)
0:z−1|z−1

)
, (27)

where δ(·) denotes the Dirac delta function. If we draw a

particle x
(i)
z|z−1 for each i according to

x
(i)
z|z−1 ∼ p

(
xz|xz−1 = x

(i)
z−1|z−1,θ

)
, (28)

then the set of particles {x
(i)
0:z|z−1} provides an approximation

of p(x0:z|y1:z−1,θ):

p(x0:z|y1:z−1,θ)≈
1

N

N∑
i=1

δ
(
x0:z− x

(i)
0:z|z−1

)
. (29)

An approximation of the distribution conditioned by the ob-

servation yz at z can be obtained using the importance sam-

pling scheme (e.g., Liu, 2001; Robert and Casella, 2004):

p(x0:z|y1:z,θ)=
p(yz|xz,θ)p(x0:z|y1:z−1,θ)

p(yz|y1:z−1,θ)

≈

N∑
i=1

β(i)z δ
(
x0:z− x

(i)
0:z|z−1

)
. (30)

The weight β
(i)
z for each i is defined as

β(i)z =
p
(
yz|x

(i)
z|z−1,θ

)
∑N
i=1p

(
yz|x

(i)
z|z−1,θ

) , (31)

where p(yz|x
(i)
z|z−1,θ) is called the likelihood of the particle

x
(i)
z|z−1.

Equation (30) indicates that p(x0:z|y1:z,θ) can be approx-

imated by weighting the particles {x
(i)
0:z|z−1}. However, the

weights are usually highly unbalanced and many of the par-

ticles have only negligible weights. Because particles with

negligible weights no longer contribute to the estimation, this

destroys the efficiency of the approximation. In order to re-

solve the imbalance in the weights, a new set of N parti-

cles {x
(i)
0:z|z} is obtained by resampling the original particles

{x
(i)
0:z|z−1} such that each x

(i)
0:z|z−1 is drawn with a probability

of β
(i)
z (see Nakano et al., 2007; van Leeuwen, 2009). Af-

ter resampling, the original particles in {x
(i)
0:z|z−1} that have

low weights are removed, and those that have high weights

are duplicated. The number of the duplicates of x
(i)
0:z|z−1, n

(i)
z ,

becomes approximately equal toNβ
(i)
z . The newly generated

particles then provide an approximation of p(x0:z|y1:z,θ) as

follows:

p(x0:z|y1:z,θ)≈

N∑
i=1

β(i)z δ
(
x0:z− x

(i)
0:z|z−1

)
≈

N∑
i=1

n
(i)
z

N
δ
(
x0:z− x

(i)
0:z|z−1

)
=

1

N

N∑
i=1

δ
(
x0:z− x

(i)
0:z|z

)
. (32)

Applying the procedure from Eqs. (27) to (32) recursively

up to z= Z, we obtain samples from the conditional dis-

tribution p(x0:Z|y1:Z,θ). If only the marginal distribution

p(xz|y1:z,θ), where x0:z−1 is marginalized out, is of inter-

est, it is not necessary to keep the whole sequence of x
(i)
0:z|z

for each particle; instead, at each iteration, it is sufficient to

keep only the element x
(i)
z|z and discard the remaining x

(i)
1:z−1.

4.2 Particle Markov chain Monte Carlo method

An approximation of the marginal likelihood p(y1:Z|θ) in

Eq. (25) can be calculated using SMC (Kitagawa, 1996). If

we decompose p(y1:Z|θ) as

p(y1:Z|θ)= p(y1:Z−1|θ)p(yZ|y1:Z−1,θ)

= p(y1|θ)

Z∏
z=2

p(yz|y1:z−1,θ), (33)

we can obtain p(yz|y1:z−1,θ) for each z, from the following

equation:

p(yz|y1:z−1,θ)

=

∫
p(yz|xz,θ)p(x0:z|y1:z−1,θ)dx0:z. (34)

Since samples from p(x0:z−1|y1:z−1,θ) can be obtained

by SMC, a Monte Carlo approximation of the integral in

Nonlin. Processes Geophys., 23, 31–44, 2016 www.nonlin-processes-geophys.net/23/31/2016/



S. Nakano et al.: Sequential Bayesian approach 37

Eq. (34) can be obtained as follows:

p(yz|y1:z−1,θ)

≈
1

N

N∑
i=1

∫
p(yz|xz,θ) δ

(
x0:z− x

(i)
0:z|z−1

)
dx0:z

=
1

N

N∑
i=1

p(yz|x
(i)
0:z|z−1,θ), (35)

where we used Eq. (23). We can then approximate the loga-

rithm of p(y1:Z|θ):

log p̂(y1:Z|θ)=

Z∑
z=1

log

[
1

N

N∑
i=1

p(yz|x
(i)
0:z|z−1,θ)

]
, (36)

and an approximation of the posterior p(θ |y1:Z) in Eq. (25)

can accordingly be obtained. As a matter of fact, however,

the approximation given in Eq. (36) for the log likelihood is

too sensitive to the parameter θ because of the large amount

of δ18O data. We thus introduce the following relaxation:

log p̂(y1:Z|θ)=

Z∑
z=1

log[
1

N

N∑
i=1

p
(
δ18Oz|x

(i)
0:z|z−1,θ

)λ
p
(
τkz |x

(i)
0:z|z−1,θ

)]
, (37)

where we set λ= 1/5 so that the information of tie points

becomes effective enough.

Using the Monte Carlo approximation of the marginal

likelihood p̂(y1:Z|θ), we can obtain an approximation of the

marginal posterior distribution of θ using MCMC, which se-

quentially produces samples that obey the target distribution.

This is the basic idea of the PMCMC method. There are some

variants of the PMCMC method such as the particle Gibbs

method with ancestor sampling (Lindsten et al., 2014). In this

study, because of the ease of implementation, we employ the

Metropolis method to obtain an approximation of p(θ |y1:Z).

In the Metropolis method, at the kth iteration, a proposal

sample θ∗ is drawn from the proposal density q(θ |θ (k−1)),

which is conditioned by the sample θ (k−1) obtained at the

previous iteration:

θ∗ ∼ q(θ |θ (k−1)). (38)

In this paper, the proposal distribution q was taken to be a

zero-mean Gaussian distribution with a fixed variance for

each element of θ . This means we assume a symmetrical pro-

posal distribution satisfying

q(θ |θ ′)= q(θ ′|θ) (39)

for any θ and θ ′. The variance of q(θ |θ ′) was tuned by pre-

liminary runs. In obtaining the final results, the variances

were set at 0.05,0.1,0.1,0.001,0.2,0.01,5.0,0.0002, and

0.005 for the parameters A0,a,b,µ,p,s,σν,ση, and σw, re-

spectively, in order that the Markov chain rapidly moves

around in the parameter space. The proposal sample θ∗ is

accepted with the following probability:

min

(
1,

p̂(y1:Z|θ
∗)p(θ∗)

p̂(y1:Z|θ
(k−1))p(θ (k−1))

)
, (40)

where p̂(y1:Z|θ) is an approximation of the marginal like-

lihood obtained by SMC as written in Eq. (37). If θ∗ is

accepted, we set θ (k) = θ∗; otherwise, we set θ (k) = θ (k−1)

and thus p̂(y1:Z|θ
(k))= p̂(y1:Z|θ

(k−1)). Using θ (k), the pro-

posal sample at the next iteration can be obtained accord-

ing to Eq. (38). Iterating the above procedure generates a

large number of samples that obey the posterior distribution

p(θ |y1:Z). A short summary of PMCMC is also found in a

pseudo-code in the original paper by Andrieu et al. (2010).

In the above algorithm, an approximated value of the

marginal likelihood p(y1:Z|θ) is computed using the SMC

method at each iteration of the Metropolis method. It should

be noted that Eq. (34) can be modified as follows:

p(yz|y1:z−1,θ)=

∫
p(yz|xz,θ)p(xz|xz−1,θ)

·p(xz−1|y1:z−1,θ)dxz−1 dxz. (41)

Thus, in calculating p(y1:Z|θ) in Eq. (33), it is not necessary

to consider the joint distribution of the sequence x0:Z; it is

sufficient to consider the marginal distribution p(xz|y1:z,θ)

for each z. As mentioned above, sampling from p(xz|y1:z,θ)

can be achieved when discarding x1:z−1. This greatly re-

duces the computational cost because it can skip some pro-

cedures for handling the whole sequence of 2510 time steps

(Z = 2510 in this paper) for 5000 particles. In addition, the

memory cost is also remarkably reduced, although the mem-

ory cost could be reduced by using another efficient algo-

rithm by Jacob et al. (2015). We then discard x1:z−1 in order

to obtain an approximation of p(y1:Z|θ) at each iteration of

the Metropolis method.

As mentioned in Sect. 3, if we retain the samples for

the whole sequence x0:Z from a run of SMC with a given

θ , we obtain samples from p(x0:Z|y1:Z,θ). The Metropo-

lis procedure sequentially generates a large number of sam-

ples that obey the marginal posterior distribution p(θ |y1:Z).

By combining the SMC samples with various θ values that

obey p(θ |y1:Z), we can obtain the samples representing

the marginal posterior distribution p(x0:Z|y1:Z) where θ is

marginalized out according to Eq. (22). If samples that obey

p(θ |y1:Z) are obtained in advance, the sampling procedures

from p(x0:Z|y1:Z,θ) for various θ can be performed in par-

allel, and an approximation of the marginal posterior distri-

bution p(x0:Z|y1:Z) can be obtained efficiently.
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5 Results

We applied the PMCMC method to the Dome Fuji ice core.

In this study, the thickness of the ice sheet H is assumed

to be 3031 m. The bottom of the core Z is 2505 m. Fol-

lowing a burn-in period, we performed 250 000 iterations

of the Metropolis sampling, and we retained a sample ev-

ery fifth iteration. We thus drew 50 000 samples from the

marginal posterior distribution of θ , p(θ |y1:Z). For each run

of SMC, 5000 particles were used to obtain samples from

p(x0:Z|y1:Z,θ
(k)).

Figure 2 shows the marginal histograms for the esti-

mated posterior distribution for each parameter. The poste-

rior mean and standard deviation of the present accumula-

tion rate A0(= A(0)) were 0.0278 and 0.0019 (m yr−1), re-

spectively. This result is in good agreement with the mea-

surements by Kameda et al. (2008), who reported the surface

mass balance at Dome Fuji to be 27.3± 1.5kg (m−2 yr−1),

which corresponds to about 0.0273myr−1. The maxima of

the posterior distributions for µ and s were estimated to be

near 0. This result is similar to that obtained in a previous

study that used the Metropolis-Hastings method (Parrenin

et al., 2007). The result in Fig. 2 suggests thatµ is most likely

between 0 and 2 % of the accumulation rate. Considering that

the accumulation rate A was mostly less than 0.03myr−1,

we can guess that the basal melting rate is mostly less than

0.0006myr−1(= 0.6mmyr−1). This roughly agrees with the

result by Parrenin et al., who showed that the basal melt-

ing rate is likely to be less than 0.4mmyr−1. Such a small

value of m is consistent with our assumption of the pseudo-

steady state, in which the ratio m/A is constant as described

in Sect. 2. In the result by Parrenin et al. (2007), the posterior

of p peaks around 3, and another peak was suggested around

p = 2. On the other hand, the results obtained in this study

suggest that the posterior of p peaks around 3, and it is not

clear whether there is another mode. It should be noted that

these two results were based on different models of the accu-

mulation rate. In addition, the setting of the thinning factor in

this study is different from that used by Parrenin et al. as dis-

cussed later. Thus, it should not be expected that they would

necessarily provide similar results.

In the posterior distribution, some of the parameters are

correlated with each other. Figure 3 shows two-dimensional

histograms of the marginal posterior distribution of a and b

(a), the marginal posterior distribution of a and ση (b), and

the marginal posterior distribution of b and ση (c). Close cor-

relations between the three parameters a, b, and ση are ob-

served in this posterior distribution. These three parameters

are related to the accumulation rate and δ18O data. Thus, the

accuracy of the estimation for these three parameters could

be much improved if any of the three parameters could be

effectively constrained.

Figure 4 shows the estimated age as a function of depth.

The red solid line indicates the median of the posterior dis-

tribution and the red dotted lines indicate the 10th and 90th

percentiles of the posterior distribution. For reference, the re-

sult by Parrenin et al. (2007) is indicated by a grey line. The

black crosses in this figure indicate the tie points used for the

estimation. In order to verify the convergence of the SMC

sampling, we repeated sampling from the marginal posterior

distribution p(x0:Z|y1:Z) five times with different seeds and

confirmed that there were no apparent differences between

the results of the five trials. (The figures shown in this paper

show the result of one of the five trials.) Thus, the estimate

shown in Fig. 4 is considered reliable. The SMC method of-

ten suffers from the degeneracy problem, especially when the

number of steps is large. In PMCMC, this problem is over-

come by collecting a large number of SMC samples from the

iterations of the Metropolis method. In Fig. 4, it is difficult

to discriminate the 10th and 90th percentiles from the me-

dian because the width of the posterior distribution is much

smaller than the range of Fig. 4. In order to make the width of

the posterior visible, the 10th and 90th percentiles of the pos-

terior distribution are indicated by red dotted lines around the

median of the posterior distribution in Fig. 5. Black crosses

show the difference between each tie point and the median of

the posterior. The uncertainty of age is minimized at each tie

point, where the age is known with high accuracy, although

it is not possible to completely remove any uncertainty. In

Fig. 5, a grey line indicates the difference between the esti-

mate by Parrenin et al. (2007) and the median of the posterior

obtained by the proposed method. Note that this line tends to

deviate further from the median than do the black crosses.

This means that the estimate with the proposed method fits

the tie points more closely than does the estimate by Parrenin

et al., although the difference between the two results is about

3000 years at the greatest.

Figure 6 shows the estimated thinning factor as a function

of depth. Again, the red solid line indicates the median of

the posterior distribution and the red dotted lines indicate the

10th and 90th percentiles of the posterior distribution. The

estimate by Parrenin et al. (2007) is indicated by a grey line.

Since, by definition, 2= 1 at the surface, the width of the

posterior distribution is almost 0 near the surface, and the un-

certainty becomes larger in the deeper core. The profiles of

the thinning factor indicated by the red solid line and the grey

line differ, and this is probably caused by the assumption of

a constant ice thickness. While Parrenin et al. (2007) allowed

the ice thickness H to vary, we assumed that it was constant;

it would be instructive to examine the effect of this assump-

tion in a future work. Figure 7 shows the estimated accumu-

lation rate as a function of depth. As in Fig. 4, the red solid

line indicates the median of the posterior distribution, and the

red dotted lines indicate the 10th and 90th percentiles of the

posterior distribution. The difference between the 10th and

90th percentiles, which corresponds to the 80 % confidence

interval, is indicated by a blue dotted line. In this way, we can

estimate the age and related variables, and we can also obtain

information about the accuracy of these estimates. The accu-

mulation rate can also be considered as a function of age. As
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Figure 2. Estimated marginal distributions of the posterior distributions for the nine parameters.

shown in Fig. 7, we have the posterior distribution of the ac-

cumulation rate given depth p(A|z). The accumulation rate

with respect to age is estimated after considering the uncer-

tainty of age:

p(A|ξ)=

∫
p(A|z)p(z|ξ)dz (42)

where we assume p(z) to be a uniform distribution when ob-

taining p(z|ξ):

p(z|ξ)=
p(ξ |z)p(z)∫
p(ξ |z)p(z)dz

. (43)

Figure 8 shows the estimate of the accumulation rate with

respect to age.

6 Discussion

In order to evaluate the robustness, we obtained the estimate

without using the last five tie points at below 2400 m depth.

We estimated the parameters and the age–depth relationship

from the other 20 tie points and the δ18O data. Figure 9 shows

the histograms of the marginal posterior distributions of the

nine parameters. The results without using the five tie points

are indicated by blue lines and the results with all the tie

points, which are the same as the results in Fig. 2, are indi-

cated as red lines. The posterior distributions obtained with-

out some of the tie points are very similar to the result shown

in Fig. 2. However, the posterior distributions of the three

parameters a, b, and ση are slightly different. Since ση was

estimated to be larger when the five tie points were not used,

this might indicate that the variation in the accumulation rate

was noisier near the bottom. The marginal posterior distri-

bution for a and b could accordingly be modified due to the

correlation with ση shown in Fig. 3. However, more careful

evaluation would be required to determine the reason.

Figure 10 shows the estimates of the age as a function of

depth are compared between the result without using the last

five tie points and that with all the tie points. In order to make

the differences visible, this figure shows the differences from

the median of the posterior without the last five tie points like

in Fig. 5. The red lines indicate the estimate without the last

five tie points, and the grey lines indicate the estimate with

all the tie points. The dotted lines indicate the 10th and 90th

percentiles of the posterior distributions. The tie points used

for the estimation are shown with black crosses. The devia-

tion of the grey lines tended to be large near the bottom of the

ice core. However, the grey lines were within the range of un-

certainty shown with the red dotted lines. This suggests that

our model does a good job of representing the uncertainties

due to the lack of the information.

The accumulation rate as a function of age was also esti-

mated without using the five tie points at the bottom of the ice

core. Figure 11 shows the estimate of the accumulation rate

as a function of age. The red lines indicate the estimate with-

out using the last five tie points, and for reference, the grey
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Figure 3. Two-dimensional histograms of the marginal posterior

distribution of a and b (a), the marginal distribution of a and ση
(b), and the marginal distribution of b and ση (c).

line indicates the estimate using all the tie points. The solid

lines indicate the median of the posterior, and the 10th and

90th percentiles are indicated by dotted lines. The difference

is remarkable below the depth where the age is 300 000 years.

However, the difference was mostly within the uncertainty

between the 10th and 90th percentiles. Thus, this difference

near the bottom is acceptable.

The proposed technique requires a high computational

cost because the SMC sampling is performed at each itera-
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Figure 4. Estimated age as a function of depth. The solid line in-

dicates the median of the posterior distribution. The 10th and 90th

percentiles of the posterior are indicated by red dotted lines. The

black crosses indicate the tie points. The result obtained by Parrenin

et al. (2007) is also indicated by a grey line.
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Figure 5. Difference of the 10th and 90th percentiles of the poste-

rior distribution from the median of the posterior (red dotted lines),

difference of each tie point from the median of the posterior (black

crosses), and difference of the estimate by Parrenin et al. (2007)

from the median of the posterior obtained in this study (grey line).

tion of the Metropolis method. At present, it takes about 43 h

to complete 250 000 iterations of the Metropolis sampling

with 5000 particles for the SMC on a workstation with two

Intel Xeon processors (12 cores for each processor; 2.7 GHz).

The efficiency could be improved by using a better proposal

distribution used in SMC (e.g., Doucet et al., 2001). This

problem should be addressed in the future.

There may be room for improvement in the model for the

accumulation rate described by Eq. (12). Equation (12) rep-

resents the transition of the accumulation rate by a random

walk model with a Gaussian perturbation. However, we could

consider another model such as an auto-regressive model for
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Figure 6. Estimated thinning factor 2 as a function of depth. The

median of the posterior is indicated by a red solid line, the 10th and

90th percentiles are indicated by red dotted lines, and the estimate
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Figure 7. Estimated accumulation rate as a function of depth. The

median of the posterior is indicated by a red solid line, the 10th

and 90th percentiles are indicated by red dotted lines, the difference

between the 10th and 90th percentiles is indicated by a blue dotted

line, and the estimate by Parrenin et al. (2007) is indicated by a grey

line.

the transition and another distribution for the perturbation.

There are a large number of choices for the model for the

accumulation rate, and the goodness of fit could be evalu-

ated using some metric such as Bayes factors. However, it

would require a great deal of time to evaluate a wide variety

of choices, and so such a search is beyond the scope of this

study.

This study used the δ18O data and tie points deduced from

O2/N2 data to estimate the age–depth relationships. How-

ever, PMCMC allows us to use various kinds of data. Thus,

data from other various sources could also be used to improve

the accuracy of the estimates. For example, deuterium-excess
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Figure 8. Estimated accumulation rate as a function of age. The

median of the posterior is indicated by a red solid line, the 10th

and 90th percentiles are indicated by red dotted lines, the difference

between the 10th and 90th percentiles is indicated by a blue dotted

line, and the estimate by Parrenin et al. (2007) is indicated by a grey

line.

data have been used to estimate temperatures (Uemura et al.,

2012), and this could be used for improving the accuracy of

the accumulation rate. Some recent studies have provided

simultaneous estimates of the age as a function of depth at

multiple sites (e.g., Lemieux-Dudon et al., 2010; Veres et al.,

2013). The SMC approach could be extended to include in-

formation at multiple sites; this would be a useful area for

future work.

7 Concluding remarks

We have developed a technique for the dating of an ice core

by combining information obtained from age markers at var-

ious depths with a model describing the accumulation of

snow and glaciological dynamics. This technique provides

estimates of unspecified parameters in the model from the

posterior distributions calculated with the PMCMC method.

In the PMCMC method, the marginal posterior distributions

of the parameters are obtained using the Metropolis method;

this is similar to other existing techniques (Parrenin et al.,

2007), but here the likelihood of the set of parameters is

estimated with the SMC method. The age as a function of

depth can also be estimated from the marginal posterior dis-

tributions where the parameters are marginalized out. The

marginal posterior distribution of age at each depth is ob-

tained by collecting the SMC samples produced by many it-

erations of the Metropolis method. We applied this PMCMC

method to the data of the ice core at Dome Fuji. The esti-

mates of the age–depth relationship and the parameters were

successfully obtained.

www.nonlin-processes-geophys.net/23/31/2016/ Nonlin. Processes Geophys., 23, 31–44, 2016



42 S. Nakano et al.: Sequential Bayesian approach

0.
0

0.
5

1.
0

1.
5

2.
0

6 8 10 12 14 16 18 20

0.
00

0.
10

0.
20

−74 −72 −70 −68 −66 −64 −62 −60

0.
00

0.
10

0.
20

0.
30

0.00 0.01 0.02 0.03 0.04

0
20

60
10
0

0 1 2 3 4 5 6 7

0.
0

0.
1

0.
2

0.
3

0.
4

0.0 0.1 0.2 0.3 0.4

0
2

4
6

8
10

50 100 150 200 250

0.
00
0

0.
00
5

0.
01
0

0.
01
5

0.010 0.015 0.020 0.025

0
50

10
0

15
0

0.30 0.32 0.34 0.36 0.38 0.40

0
5

10
20

30

A0 a b

p sμ

σν ση σw

0.020 0.025 0.030 0.035 0.040

Figure 9. Estimated marginal distributions of each of the nine parameters: without using the last five tie points (blue) and with all the tie

points (red).
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rior distribution from the median of the posterior (red dotted lines)

for the result without using the last five age markers. The difference

of each tie point from the median of the posterior (black crosses)

and the difference between the estimate with all the tie points and

the estimate without using the last five tie points (grey line) are also

shown.

The main advantage of the proposed technique is that it

can be applied to general nonlinear non-Gaussian situations.

Since the relationship between accumulation rate and a tem-

perature proxy is typically nonlinear, it is not necessarily

justified to assume linearity and Gaussianity when using a

temperature proxy to date an ice core. The PMCMC method

allows us to use various kinds of data that are expected to

have a nonlinear relationship with the model variables. An-
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Figure 11. Estimated accumulation rate as a function of age: with-

out using the last five tie points (red) and with all the tie points

(grey). The solid lines indicate the median of the posterior distribu-

tion. The 10th and 90th percentiles of the posterior are indicated by

dotted lines.

other advantage is that the PMCMC method estimates the

model parameters simultaneously with the age as a function

of depth. The uncertainty of age is therefore evaluated after

taking into account the uncertainties in the model parameters.
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Appendix A

Table A1. Definition of the variables used in this paper.

z Vertical coordinate

Z Vertical coordinate at the bottom

H Thickness of the ice sheet

ξ Age

A Accumulation rate

2 Thinning factor

µ, p, s Parameters for 2

U Vertical velocity

ζ Rescaled vertical coordinate

u Rescaled velocity

ω Flux shape function

m Basal melting rate

νz/
√
Az2z System noise for age

σ 2
ν Variance of νz
ηz/
√
Az2z System noise for accumulation rate

σ 2
η Variance of ηz

τk Tie point (age marker)

εk Observation noise for tie point

σε Variance of τk
δ18O δ18O

a, b Parameters of the observation model for δ18O

wz Observation noise for δ18O

σw Variance of w

xz State at depth z
(
xz = (ξz Az)

T
)

yz Observation at depth z
(
yz = (τkz δ

18Oz)
T
)

θ Parameter vector
(
θ = (A0 a b µ p s σν ση σw)

T
)
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