A. Abdollahzadeh, Estimation of Distribution Algorithms Applied to History Matching, SPE Reservoir Simulation Symposium. Society of Petroleum Engineers, 2011.

T. K. Al-ameri, A. J. Al-khafaji, and J. Zumberge, Petroleum system analysis of the Mishrif reservoir in the Ratawi, Zubair, North and South Rumaila oil fields, southern Iraq, GeoArabia, vol.14, issue.4, pp.91-108, 2009.

A. S. Al-yami, J. Schubert, Z. Medina-cetina, and O. Yu, Drilling Expert System for the Optimal Design and Execution of Successful Cementing Practices, IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, 2010.

A. S. Al-yami, J. J. Schubert, and F. E. Beck, Expert System for the Optimal Design and Execution of Successful Completion Practices Using Artificial Bayesian Intelligence, Brasil Offshore, 2011.
DOI : 10.2118/143826-MS

Y. Asgari-nezhad, S. Sherkati, and B. Tokhmechi, Differentiation between vugular porosity and other kinds of porosities using signal processing operators. Exploration & Production Oil & Gas, pp.91-98, 2012.

Y. Asgarinezhad, B. Tokhmechi, A. K. Roohani, S. Sherkati, and A. Jamali, Ranking of well logs in identification of vugs, 29rd Symposium on Geosciences. Geological survey of Iran, 2011.

J. Bleiholder and F. Naumann, Data fusion, ACM Computing Surveys, vol.41, issue.1, pp.1-41, 2008.
DOI : 10.1145/1456650.1456651

P. Bobko, A Review of the Correlation Coefficient and Its Properties, Correlation and Regression, SAGE, 2001.

G. F. Cooper and E. Herskovits, A Bayesian method for the induction of probabilistic networks from data, Machine Learning, pp.309-347, 1992.
DOI : 10.1007/BF00994110

O. Doguc and J. E. Ramirez-marquez, A generic method for estimating system reliability using Bayesian networks, Reliability Engineering & System Safety, vol.94, issue.2, pp.542-550, 2009.
DOI : 10.1016/j.ress.2008.06.009

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification, 2000.

E. Fethi, M. Nabil, S. El-djoudi, M. , P. Andrew et al., How to integrate Wireline Formation Tester, Logs, Core and Well Test Data to get Hydraulic Flow Unit Permeability, 2010.

S. M. Ghoraishy, J. T. Liang, D. W. Green, and H. C. Liang, Application of Bayesian networks for predicting the performance of gel-treated wells in the arbuckle formation, Kansas. 16th SPE/DOE Improved Oil Recovery SymposiumIOR: Now More Than Ever, pp.702-708, 2008.

H. B. Helle, A. Bhatt, and B. Ursin, Porosity and permeability prediction from wireline logs using artificial neural networks: a North Sea case study, Geophysical Prospecting, vol.189, issue.4, pp.431-444, 2001.
DOI : 10.1190/1.1438217

R. Hermann, Water Production Surveillance Workflow using Neural Network and Bayesian Network Technology: A Case Study of Bongkot North Field, Thailand, International Petroleum Technology Conference. International Petroleum Technology Conference, 2011.

I. Sami, N. Adel, and M. , Permeability Prediction from Wireline Well Logs Using Fuzzy Logic and Discriminant Analysis, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, 2010.

A. Ja-'fari, A. Kadkhodaie-ilkhchi, Y. Sharghi, and K. Ghanavati, Fracture density estimation from petrophysical log data using the adaptive neuro-fuzzy inference system, Journal of Geophysics and Engineering, vol.9, issue.1, pp.105-114, 2012.
DOI : 10.1088/1742-2132/9/1/013

J. Lichaei, M. , N. Bidhendi, and M. , Comparison between Multiple Linear Regression and Artificial Neural Networks for Porosity and Permeability Estimation, Geosciences Scientific Quarterly Journal, vol.61, pp.140-149, 2006.

J. L. Jensen and J. Y. Menke, Some Statistical Issues in Selecting Porosity Cutoffs for Estimating Net Pay, PetroPhysics, vol.47, issue.4, pp.315-320, 2006.

P. Kannan, Bayesian networks: Application in safety instrumentation and risk reduction, ISA Transactions, vol.46, issue.2, 2006.
DOI : 10.1016/j.isatra.2006.11.003

A. R. Khaz-'ali, F. J. Farahani, and M. N. Ahmadabadi, Bayesian network -A new probabilistic method for petroleum reservoir production prediction and history matching, Petroleum Science and Technology, issue.7, pp.29-745, 2011.

K. C. Khor, C. Y. Ting, and S. P. Amnuaisuk, From Feature Selection to Building of Bayesian Classifiers: A Network Intrusion Detection Perspective, American Journal of Applied Sciences, vol.6, issue.11, pp.1949-1960, 2009.
DOI : 10.3844/ajassp.2009.1948.1959

E. Lauría, An Information-Geometric Approach to Learning Bayesian Network Topologies from Data, Innovations in Bayesian Networks. Studies in Computational Intelligence, pp.187-217, 2008.
DOI : 10.1007/978-3-540-85066-3_8

L. Rodgers, J. Nicewander, and W. A. , Thirteen ways to look at the correlation coefficient. The American Statistician, pp.59-66, 1988.

S. Mahbaz, H. Sardar, M. Namjouyan, and Y. Mirzaahmadian, Optimization of reservoir cut-off parameters: a case study in SW Iran, Petroleum Geoscience, vol.17, issue.4, pp.355-363, 2011.
DOI : 10.1144/1354-079311-005

A. J. Mansure, G. L. Whitlow, G. P. Corser, J. Harmse, and R. D. Wallace, A Probabilistic Reasoning Tool for Circulation Monitoring Based on Flow Measurements, SPE Annual Technical Conference and Exhibition, 1999.
DOI : 10.2118/56634-MS

G. Martinelli, J. Eidsvik, R. Hauge, and M. D. Førland, Bayesian networks for prospect analysis in the North Sea, AAPG Bulletin, vol.95, issue.8, pp.95-1423, 2011.
DOI : 10.1306/01031110110

G. Martinelli, J. Eidsvik, R. Sinding-larsen, S. Rekstad, and T. Mukerji, Building Bayesian networks from basin-modelling scenarios for improved geological decision making, Petroleum Geoscience, vol.19, issue.3, pp.289-304, 2013.
DOI : 10.1144/petgeo2012-057

P. Masoudi, F. Hourfar, M. Torei, and A. , An Improvement in Estimating Petrophysical Parameters by Utilizing Normalizing Mapping on Inputs of Artificial Neural Networks, 8th Iranian Student Mining Engineering Conference, pp.1-8, 2011.

P. Masoudi, B. Tokhmechi, A. Jafari, M. Zamanzadeh, S. M. Sherkati et al., Application of Bayesian in determining productive zones by well log data in oil wells, Journal of Petroleum Science and Engineering, vol.94, issue.95, pp.94-95, 2012.
DOI : 10.1016/j.petrol.2012.06.028

URL : https://hal.archives-ouvertes.fr/insu-01382398

P. Masoudi, B. Tokhmechi, A. Bashari, and M. A. Jafari, Identifying productive zones of the Sarvak formation by integrating outputs of different classification methods, Journal of Geophysics and Engineering, vol.9, issue.3, pp.282-290, 2012.
DOI : 10.1088/1742-2132/9/3/282

URL : https://hal.archives-ouvertes.fr/insu-01382411

P. Masoudi, B. Tokhmechi, M. A. Jafari, and B. Moshiri, Application of fuzzy classifier fusion in determining productive zones in oil wells, Energy, Exploration & Exploitation, vol.8, issue.4, pp.403-415, 2012.
DOI : 10.1260/0144-5987.30.3.403

URL : https://hal.archives-ouvertes.fr/insu-01382442

P. Masoudi, B. Tokhmechi, A. Zahedi, and M. A. Jafari, Developing a Method for Identification of Net Zones Using Log Data and Diffusivity Equation, Journal of Mining and Environment, vol.2, issue.1, pp.53-60, 2011.
URL : https://hal.archives-ouvertes.fr/insu-01382415

M. Mehri, Optimization of Permeability Estimation by Using Hydraulic Flow Units in Hydrocarbon Reservoirs, 2010.

D. Niedermayer, An Introduction to Bayesian Networks and Their Contemporary Applications, Innovations in Bayesian Networks, Theory and Applications. Studies in computational intelligence, pp.117-130, 2008.
DOI : 10.1007/978-3-540-85066-3_5

P. Olofsson, Probability, statistics, and stochastic processes, 2011.

. Oxforddictionaries, Oxford Dictionaries, 2010.

J. Pearl, Fusion, propagation, and structuring in belief networks, Artificial Intelligence, vol.29, issue.3, pp.241-288, 1986.
DOI : 10.1016/0004-3702(86)90072-X

M. Rajabi, S. Sherkati, B. Bohloli, and M. Tingay, Subsurface fracture analysis and determination of in-situ stress direction using FMI logs: An example from the Santonian carbonates (Ilam Formation) in the Abadan Plain, Iran, Tectonophysics, vol.492, issue.1-4, pp.1-4, 2010.
DOI : 10.1016/j.tecto.2010.06.014

M. A. Rajaieyamchee and R. B. Bratvold, Real Time Decision Support in Drilling Operations Using Bayesian Decision Networks, SPE Annual Technical Conference and Exhibition, pp.1517-1533, 2009.
DOI : 10.2118/124247-MS

S. Rasheva and R. B. Bratvold, A New and Improved Approach for Geological Dependency Evaluation for Multiple-Prospect Exploration, SPE Annual Technical Conference and Exhibition, pp.3422-3431, 2011.
DOI : 10.2118/147062-MS

F. Russo and G. Ramponi, Fuzzy methods for multisensor data fusion. Instrumentation and Measurement, IEEE Transactions on, vol.43, issue.2, pp.288-294, 1994.

M. Saemi, M. Ahmadi, and A. Y. Varjani, Design of neural networks using genetic algorithm for the permeability estimation of the reservoir, Journal of Petroleum Science and Engineering, vol.59, issue.1-2, pp.97-105, 2007.
DOI : 10.1016/j.petrol.2007.03.007

M. B. Shahvar, R. Kharrat, and R. Mahdavi, Incorporating Fuzzy Logic and Artificial Neural Networks for Building a Hydraulic Unit-Based Model for Permeability Prediction of a Heterogeneous Carbonate Reservoir, International Petroleum Technology Conference, 2009.

S. Sherkati and J. Letouzey, Variation of structural style and basin evolution in the central Zagros (Izeh zone and Dezful Embayment), Iran. Marine and Petroleum Geology, pp.535-554, 2004.

O. S. Timothy, B. Dennis, K. Praveer, and T. Rohit, Mangala Field Permeability Measurements: Comparison of Core, Wireline, and Well Test Data, SPE Indian Oil and Gas Technical Conference and Exhibition, 2008.

B. Tokhmchi, H. Memarian, and M. R. Rezaee, Estimation of the fracture density in fractured zones using petrophysical logs, Journal of Petroleum Science and Engineering, vol.72, issue.1-2, pp.206-213, 2010.
DOI : 10.1016/j.petrol.2010.03.018

B. Tokhmechi, H. Memarian, V. Rasouli, H. A. Noubari, and B. Moshiri, Fracture detection from water saturation log data using a Fourier???wavelet approach, Journal of Petroleum Science and Engineering, vol.69, issue.1-2, pp.129-138, 2009.
DOI : 10.1016/j.petrol.2009.08.005

J. D. Van-wees, A Bayesian belief network approach for assessing the impact of exploration prospect interdependency: An application to predict gas discoveries in the Netherlands, AAPG Bulletin, vol.92, issue.10, pp.92-1315, 2008.
DOI : 10.1306/06040808067

P. F. Worthington, Net Pay--What Is It? What Does It Do? How Do We Quantify It? How Do We Use It?, SPE Reservoir Evaluation & Engineering, vol.13, issue.05, pp.812-822, 2010.
DOI : 10.2118/123561-PA

M. M. Zerafat, N. Mehranbod, and D. Barzegari, Bayesian Network Analysis as a Tool for Efficient EOR Screening, SPE Enhanced Oil Recovery Conference, 2011.

Y. Zuo and E. Kita, Stock price forecast using Bayesian network, Expert Systems with Applications, vol.39, issue.8, pp.6729-6737, 2012.
DOI : 10.1016/j.eswa.2011.12.035