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Abstract: 

Exploration specialists conventionally utilize a cut-off-based method to 
find productive zones inside the oil wells. Using conventional method, pay 
zones are separated crisply from non-pay zones by applying cut-off values on 
some petrophysical features. 

In this paper, a Bayesian technique is developed to find productive 
zones (net pays), and Bayesian Network is used to select the most appropriate 
input features for this newly developed method. So, two Bayesian methods 
were developed: the first one with conventional pay determination inputs 
(shale percent, porosity and water saturation), the other with two inputs, 
selected by Bayesian Network (porosity and water saturation). Two 
developed Bayesian methods are applied on well log dataset of two wells: 
one well is dedicated for training and testing Bayesian methods, the other for 
checking generalization ability of the proposed methods. Outputs of two 
presented methods were compared with the results of conventional cut-off-
based method and production test results (i.e. a direct procedure to check 
validation of proposed methods).  

Results show that the most prominent advantage of developed 
Bayesian method is determination of net pays fuzzily with no need to identify 
cut-offs, in addition to higher precision of classification: nearly 30% 
improvement in precision of determining net pays of first well (training well), 
and about 50% improvement in precision of determining productive zones 
through the generalizing well. 

 

Key words: net pay; productive zone; Bayesian Network; petrophysics; well 
test 
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1. Introduction 

After drilling an oil well, exploration specialists should determine 
productive zones through the well by means of well tests and logs. To 
commence production, explored productive zones should be perforated to let 
the hydrocarbon flow from the reservoir to the well bore. Conventionally, by 
applying cut-off values on well logs, productive zones are determined crisply. 

Probably, the oldest and simplest methods, used to distinguish net pay 
zones from non-pays, were direct techniques determined while drilling. Two 
direct techniques, namely gas-metric and flour-metric, have been referred in 
the literature (Connell et al., 1986; Millikan, 1925). In these two techniques, 
fluid samples withdrawn from the wells are tested by specific processes, and 
net pay horizons are identified from the analysis of the tests results. The other 
group of methods to determine productive zones is indirect techniques that 
utilize wire line well log data for pay determination.  

Pioneer petrophysicists used combination of gamma and resistivity 
logs (Snyder, 1971) and sonic-shear-wave and resistivity logs (Flower, 1983) 
to determine net pay (productive) zones. Later, formation pressure tester was 
introduced as a quick-look indicator of net pays (Cooke-Yarborqugh, 1984). 
Another investigation was fulfilled on detecting low contrast pays in a gas 
reservoir on an integrated dataset, which consists of image-log 
interpretations, conventional logs and core capillary pressures (Deakin and 
Manan, 1998). Based on dominated geological features, Worthington 
classified low-resistivity pays to six classes. In addition, he proposed a 
single-universal algorithm for detecting all classes of low-resistivity pay 
zones (Worthington, 2000). In a pioneer work, geochemical analysis of side-
wall cores were incorporated to detect net pays (Mathur et al., 2001). 

Cut-off of petrophysical parameters, e.g. porosity, shale volume and 
water saturation, is the most popular mean to determine net pays up to now. 
Worthington and Cosentino provided a comprehensive study on the role of 
cut-offs in determining net pays. They collected and summarized different 
combinations of cut-offs of shale volume, porosity, permeability, water 
saturation, resistivity and moveable hydrocarbon index (MHI), which have 
been used in 31 previous investigations from 1980 to 2002 (Worthington and 
Cosentino, 2005). A statistics-based procedure was introduced to determine 
cut-offs in a way to minimize error of calculating net to gross ratio (Jensen 
and Menke, 2006). Worthington also fulfilled another valuable research that 
determines cut-offs dynamically in accordance with depletion strategy 
(Worthington, 2008). A pioneer work of pay zone detection on seismic 
sections was later published (Singleton, 2008). 
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In a recently published paper, definition of different nets, especially net 
pay, is provided and application of net pay in petroleum industry is discussed 
(Worthington, 2010). Recently in another article a data-driven approach to 
identify cut-offs is proposed (Worthington, 2011). Masoudi et al. have 
proposed two new free of cut-off procedures to find productive zones fuzzily. 
One of them is based on flow equation (Masoudi et al., 2011), the other is 
based on Sugeno integral, which is a fuzzy operator (Masoudi et al., 2012). 

The novelty of the current work is to develop a fusion-based 
methodology to identify net pays fuzzily without determining cut-offs and 
give priority to each depth. The results of this newly developed method are 
compared with conventional net pay determination and well test results. 

1.1. Definition of Net Pay and Cut-off 

Although there is no universal definition of net pay, Worthington 
(2010) introduced an acceptable definition on which this investigation is 
based on. In his classification, total evaluation interval of an oil well is called 
gross rock, potential reservoir is named net sand, and net reservoir is defined 
as a subset of net sand that has supracritical amount of porosity and 
permeability. Finally, net pay includes some intervals of net reservoir, which 
contain supracritical amounts of recoverable hydrocarbons, and can produced 
oil or gas (Worthington, 2010). 

Above mentioned nets, net sand, net reservoir and net pay, are 
distinguished from each other easily by applying cut-off values on 
petrophysical features. In other words, cut-offs are some criteria on 
petrophysical parameters to determine nets from each other. It means that 
intervals, which contain shale percentages of less than cut-off of shale, are 
considered as net sand. The range of cut-off of shale is between 30% to 50%. 
Those intervals of net sand that contain porosity of higher than cut-off of 
porosity (between six to eight percent for sandstones and between four to five 
percent for carbonates) are classified as net reservoir that are capable of 
containing economical amounts of hydrocarbon in the rock pores. Finally, net 
pay is some part of net reservoir in which water saturation is less than cut-off 
of water saturation (the range of cut-off of water saturation is between five to 
six percent) (Worthington and Cosentino, 2005). 

2.Dataset 

This investigation is applied on well log data of interval of Sarvak 
Formation through two wells, located on an oil field in Abadan Plain, SW 
Iran. Raw data of this work are conventional well logs, porosity and 
permeability values (measured from cores) and well tests of the wells. Table 
1 presents a summary of utilized dataset. 
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Table 1 

Dataset, which was available from two wells of the oil field. 
“npv” stands for “net pay value”. npv=1 means that the 
interval of testing is not oil producing, npv=2 means that the 
tested interval produces oil less than  

3 1500 0.001104 bbl oil m
day sec

� �
�� �

� �
, and npv=3 means that the 

corresponding interval produces oil more than 
3 1500 0.001104 bbl oil m

day sec
� �
�� �

� �
. 

  Well 1 Well 2 

N
o.

 o
f W

el
l 

Te
st

 
In

te
rv

al
s npv=1 2 1 

npv=2 1 1 

npv=3 2 1 

Pe
tro

ph
ys

ic
al

 W
el

l L
og

s 

Caliper (CALI) � � 

Gamma Rey (GR) � � 

Corrected Gamma Rey (CGR) � � 

Sonic Log (DT) � � 

Neutron Porosity (NPHI) � � 

Bulk Density (RHOB) � � 

Density Correction (DRHO) � � 

Deep Laterolog Resistivity (LLD) � � 

Shallow Laterolog Resistivity (LLS) � � 

Microspherically Focused Log 

(MSFL) 
� � 

Photoelectric Effect Log (PEF) � � 

C
or

e 
Te

st
s Porosity � � 

Permeability � � 

 

Sarvak Formation is a shallow carbonate reservoir rock with the age of 
Upper Albian to Upper Turonian, which is conformably laid on Kazhdumi 
Formation.  The  unconformity is interpreted as an erosional unconformity 
occurred after the formation deposition (Ghabeishavi et al., 2010). In the 
studied field, Laffan Formation is overlaid on Sarvak Formation above this 
sharp unconformity. 
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3.Methodologies: Cut-off and Bayesian 
3.1. Conventional Method: Based on Cut-off 

As mentioned earlier, conventionally net pays are determined by 
applying cut-off values on some petrophysical or well log data (Deakin and 
Manan, 1998; Svec and Grigg, 2000; Worthington, 2010; Worthington and 
Cosentino, 2005). In this work, to determine net pay zones by conventional 
method, the following process is utilized: 

1.Calculating shale volume (Vsh) by normalizing CGR log. For this purpose, 
simply CGR values of each well are rescaled within zero and one by equation 
(1) (Darling, 2005); and water saturation is calculated from Archie relation, 
which is shown on equation (2) (Johnson and Pile, 2002). 

 min
sh

max min

CGR CGRV
CGR CGR

	



	
 (1)

 

 w o
w

t t

FR RS
R R


 
  (2)

 

2.Effective porosity is estimated by an Artificial Neural Network (MLP-
structured) on input logs: CGR, DT, LLD, LLS, MSFL, NPHI and RHOB.  
The concept of Artificial Neural Network (ANN) and its application in 
petroleum industry is comprehensively explained in earlier works (Jalali 
Lichaei and Nabi Bidhendi, 2006; Mohaghegh et al., 2000). 

3.Determining net pays by applying cut-offs of porosity, shale volume and 
water saturation on estimated petrophysical parameters, i.e. those intervals, 
with porosity values of higher than cut-off of porosity, in addition to shale 
percentage of lower than cut-off of shale volume and water saturation of 
lower than cut-off of water saturation, are considered as net pay zones, 
whereas other intervals are defined as not producing zones or non pays. 

3.2. Fusion-Based Method: Bayesian Classifier 

Bayesian technique has been used as a method to fuse data (Challa and 
Koks, 2004; Hall and Llinas, 2001). Fusing data reduces error of 
identification (Hall and Llinas, 2001), and consequently lessens uncertainty 
and risk. Bayes theorem offers a method to calculate conditional probability 
of a happening, i.e. probability of occurrence of a phenomenon by 
considering the effect of other evidences (Niedermayer, 2008). The 
mathematical formula of Bayes is: 
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 � � ( ) ( | )|
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P A P B AP A B
P B




  (3)

where P(A) and P(B) are probabilities of A and B respectively. P(B|A) is the 
probability of B, considering A, known as “priory knowledge”, and reversely 
P(A|B) is the probability of A, considering B, known as “posterior 
probability”. The algorithm, used in this investigation is introduced as 
follows: 

1. One of the wells is considered as training well, that Bayesian technique 
should be trained on, the other is considered as generalization well to check 
generalization ability of Bayesian technique through it. 

Whole data of training well is divided into three classes according to 
production rate: if a specific depth interval does not produce hydrocarbon, net 
pay value is considered 1, if the corresponding depth produces hydrocarbon 

less than 
3 1500 0.001104 bbl oil m

day sec
� �
�� �

� �
, then net pay value is 2, and finally if that 

specific depth produces hydrocarbon more than 
3 1500 0.001104 bbl oil m

day sec
� �
�� �

� �
; 

then, net pay value is 3. The intervals are shown on Figure 7 and 8 for training 
and generalization wells respectively. 

2. Randomly, dataset of each class is divided into two parts: 70% for training 
Bayesian classifier, and 30% for testing the efficiency and validity of trained 
classifier. 
3. In each production class (i.e. npv=1, 2 or 3), probability distribution 
function (PDF) of intake features are determined by training data. Features 
are generated curves, derived by the means of petrophysical relations or ANN 
from raw logs as were mentioned previously. E.g. PDF of porosity is 
determined three times by randomly selected training data: one time within 
intervals of npv=1, another time in intervals with npv=2, and the last time in 
the intervals, which npv=3. The same PDF determinations are done for other 
features: water saturation and shale volume. 
4. Probability of belongings of each test data (30% of whole dataset) to each 
possible net pay value is calculated by the equation 4 (Duda et al., 2000). 

 � �
1

( | ) ( )
n

i i
i

P npv P npv d P d




 
�  (4)

where n is number of input features, P(di) is probability of occurrence of  i-th 
feature, which can be calculated simply by counting number of occurrences, 
divided by all samples, “npv” stands for “net pay value” and is described 
previously, P(npv|di) is named priory knowledge and can be calculated easily 
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by counting number of occurrences of a specific npv in all specific di 
conditions. This equation is called discrimination function and is a none-
parametric type of Bayesian classifier. 

5. The most probable net pay value is selected for each test data. E.g. if P(1) 
is bigger than P(2) and P(3), then npv is defined 1 for that specific interval, 
hence the interval only produces water. 
6. For comparing these net pay determination methods, Confusion Matrix 
(CM) and Classification Correctness Rate (CCR) are calculated. 

In the present research, net pay value is determined two times by 
Bayesian classifier (two different procedures). The difference between these 
procedures is their input features. The inputs of first procedure are those of 
conventional cut-off based method (porosity, shale percentage and water 
saturation). But the inputs of second procedures are determined by Bayesian 
Network (porosity and water saturation). 

3.3. Confusion Matrix and CCR 

Confusion matrix evaluates preciseness of classifiers. This matrix 
shows that in which fraction, data of actual classes are classified among all 
possible classes (Theodoridis and Koutroumbas, 2003). CCR is a parameter 
which is calculated from confusion matrix, and is an index for evaluating the 
classifier. It is calculated by dividing summation of accepted cells (mostly on 
the trace of confusion matrix) by number of classes. In this work, CCR is 
calculated in two states: crisp (CCRc) and fuzzy (CCRf). Crisp state is when 
the expected output only accepts two values (i.e. binary: 0 or 1) but fuzzy 
state is when expected output can accept more than two states that is three 
here (i.e. npv=0, 1 or 2). For better understanding of difference of crisp and 
fuzzy states, look at Figure 7 and 8. 

 

3.4. Bayesian Network 

Bayesian Network (BN) is a directed acyclic graph. Each node of this 
graph represents a variable, and directed edges, outgoing of a node, show 
children of the parent node (note that occurrence of children nodes is 
dependent on the occurrence of parent nodes). The BN is useful in managing 
variables when an event is dependent on the probability of other events 
(Niedermayer, 2008). 

Methods and algorithms for constructing Bayesian Networks are 
classified into two classes: constraint-based and score-based methods (Lauría, 
2008). In this paper, a score-based method called K2 algorithm, is utilized to 
construct BN. For running this algorithm, the inputs should be ordered in a 
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way that shows dependency of parameters. The algorithm K2 is presented in 
appendix A. For a better understanding about BN and K2 algorithm, the 
respected reader is referred to (Doguc and Ramirez-Marquez, 2009). 

4.Results of Cut-off and Bayesian Methodologies 

Both cut-off-based and fusion-based (Bayesian technique) methods are 
applied on datasets of two available wells. For the proposed method (fusion-
based), one of the wells is used as training, the other as checking 
generalization ability. Conventional method serves sharp results whereas 
fusion-based method provides fuzzy output. The Classification Correctness 
Rate (CCR) is calculated for conventional output crisply (CCRc), and for 
fusion-based method is calculated both crisply (CCRc) and fuzzily (CCRf). 

The Confusion Matrices and CCR values of net pay determination by 
these two methods (inputs are the same) in training well are shown on Figure 
1. As it is revealed in the table, crisp CCR of Bayesian method shows an 
improvement of 9%, in comparison to crisp CCR value of conventional 
method. It is important to note that even fuzzy CCR of Bayesian method is 
higher than crisp CCR value of conventional method. 

 True Output (well test)   True Output (well test) 

D
ec

id
ed

 (C
on

ve
nt

io
na

l) 

 

1      2      3
0 0.73 0.08 0.04
1 0.27 0.92 0.96

� �
� �
� �

 

 

D
ec

id
ed

 (B
ay

es
ia

n)
 

 

1      2      3
1 0.99 0.08 0.02
2 0.01 0.87 0.11
3 0.00 0.05 0.87

� �
� �
� �
� �� �

 

 

 

0.73 0.92 0.96 0.87
3

CCRc � �

 


 

 CCRf NAN
  

 

 

 
 

0.99 0.87 0.11 0.05 0
3

CCRc � � � �



 

 
0.99 0.87 0.87 0.91

3
CCRf � �


 
  

 

A) Confusion Matrix and CCR of 
conventional (cut-off-based) method 

B) Confusion Matrix and CCR of fusion-
based method 

Figure 1: Confusion Matrices and the way CCRs are calculated for both results of 
conventional and fusion-based methods (input parameters: shale volume, porosity and 

water saturation) in classifying whole well test intervals of training well. A) 
Conventional method. B) Fusion-based method

The trained Bayesian classifier (trained in the first well) is applied on 
the other well data (generalization well) to check generalization ability of the 
proposed method. The results of generalization are shown on Figure 2. 
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Higher precision of newly developed method is obvious when comparing 
crisp CCR values of these two methods: CCRc of fusion-based method (94%) 
is 34% higher than CCRc of conventional method (60%). Whereas CCRf of 
proposed method is lower than CCRc of conventional method, but it is not a 
drawback for fusion-based method, because its corresponding CCRc is higher 
than CCRc of cut-off-based method. 

 True Output (well test)   True Output (well test)  

D
ec

id
ed

 (C
on

ve
nt

io
na

l) 

 

1      2      3
0 0.01 0.00 0.20
1 0.99 1.00 0.80

� �
� �
� �

 

 

D
ec

id
ed

 (B
ay

es
ia

n)
 

 

1      2      3
1 1.00 0.00 0.17
2 0.00 0.01 0.65
3 0.00 0.99 0.18

� �
� �
� �
� �� �

 

 

 

 

0.01 1.00 0.80 0.80
3

CCRc � �

 


 

 CCRf NAN
  

 

 
 

 

1.00 0.01 0.99 0.65
3

CCRc � � � �



 

 

1.00 0.01 0.18 0.40
3

CCRf � �

 


  

A) Confusion Matrix and CCR of 
conventional (cut-off-based) method 

B) Confusion Matrix and CCR of fusion-
based method 

Figure 2: Confusion Matrices and the way CCRs are calculated for both results of 
conventional and fusion-based methods (input parameters: shale volume, porosity and 
water saturation) in classifying whole well test intervals of generalization well. A) 
Conventional method. B) Fusion-based method

4.1. Input Selection by Bayesian Network 

For selecting inputs of fusion-based method, one can simply choose 
conventional net pay determination inputs, like those utilized previously 
(shale percent, porosity and water saturation). The other choice is to run a 
specific input selection method. Here, Bayesian Network is used to select 
input features. To do so, K2 algorithm is utilized to generate the network. The 
available features to check the dependency of net pay value on them are: 
shale percent, porosity, permeability and water saturation. The order of input 
features, fed to the algorithm is: 

shale percent- porosity- permeability- water saturation- net pay 
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The reason for selecting the mentioned order is that: Net pay is fixed at 
the end of this order to check its dependency on the other features. Porosity 
and permeability are located after shale percent, because porosity and 
permeability features are mainly controlled by lithological and structural 
phenomena. On the other hand, Shale volume is a parameter that lithology is 
based on. So, lithology is controlled by shale percentage, and porosity and 
permeability are controlled by lithology. It shows dependency of porosity and 
permeability on shale volume. 

Porosity and permeability have interacting effect on each other (see Figure 3). 
Permeability is located after porosity, because permeability is a more sensitive 
parameter in comparison with porosity. To support this idea, crossplot of 
porosity- permeability is shown on Figure 3. In this figure, linear trend line 
with the equation of y=1.8x-9.2 shows that the angle between this line and 
horizontal line is approximately 60 degrees (i.e. 1tan 1.8 61	 � o ), which is higher 
than 45 degree. So, any move on the porosity axis, results in a larger move on 

the axis of permeability due to sketched trend line. On the other hand: 1.8dy
dx


 , 

which is higher than one. It shows higher speed of increase in y axis in 
comparison with x axis. Furthermore, permeability is a more sensitive 
parameter than porosity. 

Mentioned math-based conclusion can be supported by this geological 
fact: In the same pore size, different pore arrangement will lead to different 
permeability values. In other words, different permeability values can occur 
for the same porosity, especially in carbonates where various types of pore 
arrangement exist, which are controlled by complex geometry of fractures. 
This rule is less true in the same porosity value, based on semi-vertical trend 
line on the Figure 3. Based on conclusions, it is considered that permeability 
is sensitive to porosity or porosity is a controlling factor of permeability. 
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Figure 3: Crossplot of porosity-permeability with linear 
regression line. Equation of this line shows that the angle, 
created by this line and horizontal line is: 1tan 1.8 61	 � o . 
So, because of the angle being higher than 45 degree, any 
increase in porosity value, results in higher increase in 
permeability value. 

Finally, water saturation is considered dependent on shale percent, 
porosity and permeability because usually this parameter is fixed after the 
others (on time series, water saturation fixes after hydrocarbon migration, 
whereas porosity and permeability are mostly constant before and after 
hydrocarbon migration). Figure 4 shows Bayesian Network, constructed by 
K2 algorithm. 
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Figure 4: Bayesian Network constructed by K2 
algorithm that shows dependency relation between 

petrophysical parameters and net pay. 
As it is visible in the generated Bayesian Network, the net pay feature 

is directly dependent on porosity and water saturation parameters. It is also 
indirectly dependent on shale percent value. But permeability value is not an 
affecting feature on net pay value in presence of the other three parameters. 
Absence of permeability has two positive effects: One of them is to remove 
error of estimation of permeability; the other is to keep procedure of net pay 
determination as simple as possible in absence of permeability in 
calculations. 

By considering results of BN, all three parameters of shale percent, 
porosity and water saturation (those features that are being used in 
conventional method) are effective features on net pay value but for 
continuing this investigation, only direct features are selected for net pay 
determination to compare its accuracy with previous fusion-based net pay 
determination procedure, which used three input features. The confusion 
matrices and CCR values of net pay determination by two input features 
(porosity and water saturation) are presented below. Figure 5-A and B show 
confusion matrices and CCR values of net pay determination in training and 
generalization wells, respectively. 

 True Output (well test)  True Output (well test)  

D
ec

id
ed

 (B
ay

es
ia

n)
 

 

1      2      3
1 1.00 0.13 0.02
2 0.00 0.78 0.10
3 0.00 0.09 0.88

� �
� �
� �
� �� �

 

 

D
ec

id
ed

 (B
ay

es
ia

n)
 

 

1      2      3
1 1.00 0.00 0.09
2 0.00 0.01 0.76
3 0.00 0.99 0.15

� �
� �
� �
� �� �

 

 

 

 

1.00 0.78 0.10 0.09 0
3

CCRc � � � �



 

 
1.00 0.78 0.88 0.89

3
CCRf � �


 
  

 

 

 
 

1.00 0.01 0.99 0.76
3

CCRc � � � �



 

 

1.00 0.01 0.15 0.39
3

CCRf � �

 


  

A) Confusion Matrix and CCR of net pay 
determination in training well 

B) Confusion Matrix and CCR of net pay 
determination in generalization well 

Figure 5: Confusion Matrices and the way CCRs are calculated in net pay 
determination by fusion-based method with two input parameters (porosity and water 

saturation) in classifying whole well test intervals of A) training well, and B) 
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generalization well.
 

5.Discussion: the Best Approach 

Figure 6 compares all three introduced net pay determination 
procedures. On Figure 6-A, crisp CCR values are compared. It is obvious that 
conventional cut-off-based method (black bars) has lower accuracy in 
comparison with two proposed fusion-based methods (based on lower CCRc) 
in both training and generalization wells. Hence; the most important 
advantage of the proposed methodology is its higher precision in comparison 
with conventional cut-off-based method. 

There are two indices (CCRc and CCRf) for comparing two proposed 
methods with each other. Considering CCRc values (Figure 6_A), it is 
impossible to give priority to one of the Bayesian methods. Because three-
input-Bayesian procedure shows higher precision in training well while two-
input-Bayesian procedure shows higher precision in generalization well. 
Hence; in crisp determination, these two procedures have the same precision. 

Although three-input-Bayesian procedure shows higher CCRf, 
difference of CCRf values is negligible (only 2%). Furthermore; it is logical 
to use two-input-Bayesian procedure not to include error of estimation of 
shale percent, and keep the model as simple as possible. 

 
A) Crisp CCR values (CCRc) of three mentioned methods 
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B) Fuzzy CCR values (CCRf) of two fusion-based method. 

 
Figure 6: Comparing CCR values of mentioned methods in determining net pays. 

A) Comparison of crisp CCRs B) Comparison of fuzzy CCRs 
To have a more realistic sense and better understanding of differences 

between results of these methodologies, determined net pay values are 
sketched and compared to well tests in both training and generalization wells 
(Figure 7Figure 7 and 8). Though two fusion-based methods and well test 
results are relatively similar to each other, there are considerable differences 
between conventional method and well tests. 

Comparing Outputs in well Test Intervals 
of Training Well 
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Figure 7: Results of three net pay determination procedures are compared with well 
test in training well. The track (A) is results of conventional cut-off-based method; 

track (B) shows results of Bayesian method with three input features (porosity, water 
saturation and shale content); and right track (C) reveals results of Bayesian method 

with two input features (porosity and water saturation). 
According to Figure 8, conventional method has classified nearly all 

the depths as productive zone, which is fully incompatible with well test 
results. But Bayesian method has determined productive zones from non-
productive zones precisely. Outputs of both Bayesian methods are very close 
to each other, so it is difficult to give priority to each of them. A drawback of 
these fusion-based methods is in distinguishing high rate and low rate 
productive zones that are classified reversely in generalization well. 

Comparing Outputs in well Test Intervals 
of Generalization Well 

Figure 8: results of three net pay determination procedures are compared with well test 
results (in generalization well). The track (A) is results of conventional cut-off-based 

method; track (B) shows results of Bayesian method with three input features (porosity, 
water saturation and shale content); and right track (C) reveals results of Bayesian 

method with two input features (porosity and water saturation). 
Above figures show that performance of conventional method is weak 

below the oil water contact (OWC), i.e. lowermost well test, whereas 
proposed method performs so precisely below OWC. Definitely by removing 
lower OWC from investigation, preciseness of conventional method will 
increase. However, because there is no need to find oil water contact to 
determine net pays, it is still a great advantage of the proposed method in 
comparison with the conventional method. It is worthy of note that finding 
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OWC is usually difficult and sometimes impossible, specifically in fractured 
carbonate reservoirs. Besides, usually there is no sharp boundary for OWC, 
because it is a transition zone. 

A fundamental drawback of proposed method is its higher resolution of 
well logs in comparison with well test intervals. As it is shown on both 
Figure 7 and 8, each well test interval contains interpreted thinner layers with 
different productivity rates. Although in each well test there are thinner layers 
with different productivity rates, the same rate is considered for all of them to 
train Bayesian classifier. Despite this fundamental disadvantage, newly 
developed method is still better than conventional method because of final 
outputs. Based on outputs, Bayesian method represents a more precise 
classification in comparison with conventional method. So, newly developed 
method is recommended for net pay determination. To diminish effect of this 
resolution inconsistency, it is suggested to increase number of well tests and 
decrease thickness of each test interval. 

The other disadvantage of proposed method is that it may not result in 
satisfactory outputs in heterogeneous environments in which samples and 
observations do not cover all different situations. This pitfall rises from 
essence of data driven techniques that Bayesian is one of them. 

6. Conclusion

In this paper, a new methodology for net pay determination is developed, and 
its results are compared to a well-known conventional cut-off-based method.  

Bayesian technique can be used as a fusing method to integrate 
petrophysical data/information to determine net pays more precisely. Eight to 
37% improvement in preciseness of classifying net pays in comparison with 
conventional cut-off-based method. 

By means of Bayesian theory, it is possible to determine net pays 
fuzzily with appropriate preciseness. CCR of training well is around 90% and 
around 40% for CCR of generalization well. 

Bayesian Network is a suitable tool for feature selection (reduction in 
dimension of input features) for net pay determination by Bayesian 
technique. Bayesian Network introduces porosity, water saturation and shale 
volume as the most suitable features to determine productive zones. 

A great advantage of net pay determination by proposed method is that 
there is no need to find oil water contact (OWC) to find net pays. Sometimes 
it is difficult to find this boundary mostly because there is not a sharp line or 
boundary. Actually OWC is a transition zone. 
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Also, there is no need to identify cut-offs for proposed method. It is 
another great advantage of Bayesian method in complex reservoirs. Cut-off 
determination is usually difficult, and sometimes impossible in some 
reservoir rocks. 

Although each well test interval consists of different conditions, 
Bayesian method considers productivity of whole interval of each well test 
the same. It is the main drawback of Bayesian method. But based on the 
outputs, newly developed method is more precise than conventional 
methodology. For solving this problem and coming to more reliable results, it 
is suggested to use thin-interval well tests and as much available well tests as 
there are. 

The other pitfall of Bayesian method is due to essence of data driven 
methods. That is insufficient training of Bayesian classifier, when there are 
different conditions, and the available data do not cover all variations, 
consequently will result in inappropriate outputs. 
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Appendix A 

Algorithm K2(T,u), from (Doguc and Ramirez-Marquez, 2009): 

Input: T is a matrix with n columns (i.e. features or nodes) and m rows (i.e. 
observations), and u is the maximum possible number of parents for each 
node. 

Output: An acyclic directed graph, called BN. 

1.For column i=1 to n in dataset T: 
• Create node Xi and add it to BN. 
• Consider �i=  for node Xi. 

Calculate scoring function, � �, if i � , using empty set: 
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where qi is number of subsets of the parent set for node Xi, di is size of the 
input domain, which here is six (each continuous input value is converted to 
six discrete values: 0, 1, 2, 3, 4 and 5. ijk�  is number of rows that both parent 
set j and node Xi have the same value of k: 0, 1, 2, 3, 4 or 5, and finally ij�  is 

summation of all ijk�  values, i.e.  
1

id

ijk ijk
k

� �




� . 

• Until the size of �i is equal or less than u: 
o Consider Xz as a node prior to the node Xi. 

Calculate scoring function another time, using Xz:  � �� �, i zf i X� �  

If � �� � � �, ,i z if i X f i� ���  then add Xz to �i. 

2.Return BN. 
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