Impacts of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

Léonard Bernard-Jannin, Stéphane Binet, Sébastien Gogo, Franck Le Moing, Renata Zocatelli, Nevila Jozja, Christian Défarge, Fatima Laggoun-Défarge

To cite this version:

Impact of rewetting on hydrological functioning and dissolved organic carbon flux in a degraded peatland (La Guette, France)

Léonard Bernard-Jannin¹, Stéphane Binet¹,², Sébastien Gogo¹, Franck Le Moing¹, Renata Zocatelli¹, Nevila Jozja³, Christian Défarge¹,³ and Fatima Laggoun-Défarge¹

¹-ISTO-Université d’Orléans, CNRS, BRGM - UMR7327, Orléans, France / ²-ECOLAB, Université de Toulouse, CNRS, UPS, INPT - UMR 5245, Toulouse, France / ³- CETRAHE, cellule R&D, Université d’Orléans, France

contact: leonard.bernard-jannin@univ-orleans.fr

1-INTRODUCTION:
Sphagnum-dominated peatlands contain about 30% of the world’s soil C stock (Fig 1). This C sink function is largely controlled by the low rate of organic matter (OM) decomposition due to hydrological conditions that favour soil waterlogging. Rewetting is a widespread method that has been used for restoration of degraded peatland ecosystems. The aim of this study is to assess the impact of rewetting on hydrology and dissolved organic carbon (DOC) dynamics that can affect carbon sink function of these environments.

2-STUDY SITE : La Guette Peatland (France)
Area: 20 ha
Mean precipitation: 732 mm per year
Mean evapotranspiration: 831 mm per year
Vegetation: Sphagnum spp, Calluna vulgaris, Erica tetralix, Molinia caerulea and Betula spp
Two sub-watersheds (Fig 2):
• Upstream: natural conditions
• Downstream: drainage by a road ditch

Restoration work:
• Upstream: nothing (control)
• Downstream: rewetting started in February 2014 (installation of 8 weirs, Fig 2)

Data collection in monitoring piezometers:
- Continuous water level recordings in 2 points since 2010 (one in each catchment)
- Manual sampling since February 2014 (10 campaigns) in 2 transects: upstream (n=5) and downstream (n=10).
 - Physico chemical parameters (EC, pH, T and water table depth)
 - ions (Cl, Mg²⁺, Na⁺, K⁺, NO₃⁻)
 - DOC analysis (concentration and SUVA₂₅₄)

3-IMPACT OF REWETTING ON HYDROLOGY
- Water level is higher in both catchments after the restoration (Fig 3)
- Precipitation might explain the changes: rainfall in summer 2014 = 268 mm; average rainfall in summer (2010-2015) = 193 mm.

4- DOC CONCENTRATIONS DYNAMICS AFTER THE REWETTING
- DOC concentrations are lower in 2015 than in 2014 which has a particularly wet summer (Fig 5)
- In 2015, DOC concentrations were higher in the rewetted sub-watershed than in the control sub-watershed and could be related to a higher water table level in the former area than in the latter area (Fig 5)
- There are no significant spatio-temporal patterns for the recorded specific UV absorbance at 254 nm (SUVA₂₅₄)

5- SPATIO-TEMPORAL VARIABILITY OF PORE WATER CHARACTERISTICS

6 - CONCLUSION
- The restoration work led to an increase of the water level in the downstream catchment
- DOC production by micro-organisms is the highest in summer. Newly produced DOC is then flushed when the water table rises, leading to high DOC concentrations in wetter summer.
- This process could also reflect the long-term drainage of the peatland in the downstream catchment. DOC has accumulated before the rewetting because of the low water table (high oxygen content stimulating microbial decomposition). It is now flushed due to the high water level caused by the rewetting. It could explain higher DOC concentrations in the rewetted than in the control catchment in summer 2015.
- Longer dataset is needed to better assess the role of restoration on peatland hydrochemistry.
- Ongoing modelling studies would help to improve the understanding of the system and to identify key factors controlling hydrology and DOC dynamics.