Homogeneous bubble nucleation in H2O- and H2O-CO2-bearing basaltic melts: results of high temperature decompression experiments

Nolwenn Le Gall, Michel Pichavant

To cite this version:

HAL Id: insu-01378576
https://hal-insu.archives-ouvertes.fr/insu-01378576
Submitted on 11 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Homogeneous bubble nucleation in H$_2$O- and H$_2$O-CO$_2$-bearing basaltic melts: results of high temperature decompression experiments

Nolwenn Le Gall, Michel Pichavant

PII: S0377-0273(16)30381-X
DOI: doi:10.1016/j.jvolgeores.2016.10.004
Reference: VOLGEO 5940

To appear in: Journal of Volcanology and Geothermal Research

Received date: 1 December 2015
Revised date: 30 September 2016
Accepted date: 4 October 2016

Please cite this article as: Le Gall, Nolwenn, Pichavant, Michel, Homogeneous bubble nucleation in H$_2$O- and H$_2$O-CO$_2$-bearing basaltic melts: results of high temperature decompression experiments, Journal of Volcanology and Geothermal Research (2016), doi:10.1016/j.jvolgeores.2016.10.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Homogeneous bubble nucleation in H$_2$O- and H$_2$O-CO$_2$-bearing basaltic melts: results of high temperature decompression experiments

Nolwenn Le Gall a, *, Michel Pichavant a

a Université d’Orléans, ISTO, UMR 7327, 45071, Orléans, France, and CNRS/INSU, ISTO, UMR 7327, 45071, Orléans, France, and BRGM, ISTO, UMR 7327, BP 36009, 45060, Orléans, France
ABSTRACT

High pressure and temperature decompression experiments were conducted to provide experimental information on the conditions of homogeneous bubble nucleation in basaltic melts. Experiments were performed on H\textsubscript{2}O- and H\textsubscript{2}O-CO\textsubscript{2}-bearing natural melts from Stromboli. Three starting volatile compositions were investigated: series #1 (4.91 wt.% H\textsubscript{2}O, no CO\textsubscript{2}), series #2 (2.37–2.45 wt.% H\textsubscript{2}O, 901–1011 ppm CO\textsubscript{2}) and series #3 (0.80–1.09 wt.% H\textsubscript{2}O, 840–923 ppm CO\textsubscript{2}). The volatile-bearing glasses were first synthesized at 1200°C and 200 MPa, and second continuously decompressed in the pressure range 150–25 MPa and rapidly quenched. A fast decompression rate of 78 kPa/s (or 3 m/s) was applied to limit the water loss from the glass cylinder and the formation of a H\textsubscript{2}O-depleted rim. Post-decompression glasses were characterized texturally by X-ray microtomography. The results demonstrate that homogenous bubble nucleation requires supersaturation pressures (difference between saturation pressure and pressure at which homogeneous bubble nucleation is observed, \(\Delta P_{HoN}\)) \(\leq\) 50–100 MPa. \(\Delta P_{HoN}\) varies with the dissolved CO\textsubscript{2} concentration, from \(<\ 50\) MPa (no CO\textsubscript{2}, series #1) to \(\leq\ 50\) MPa (872 ± 45 ppm CO\textsubscript{2}, series #3) to \(<\ 100\) MPa (973 ± 63 ppm CO\textsubscript{2}, series #2). In series #1 melts, homogeneous bubble nucleation occurs as two distinct events, the first at high pressure (200 < \(P\ <\ 150\) MPa) and the second at low pressure (50 < \(P\ <\ 25\) MPa), just below the fragmentation level. In contrast, homogenous nucleation in series #2 and #3 melts is a continuous process. As well, chemical near-equilibrium degassing occurs in the series #1 melts, unlike in the series #2 and #3 melts which retain high CO\textsubscript{2} concentrations even for higher vesicularities (up to 23% at 25 MPa). Thus, our experimental observations underline a significant effect of CO\textsubscript{2} on the physical mechanisms of bubble vesiculation in basaltic melts. Our experimental decompression textures either reproduce or approach the characteristics of explosive basaltic eruptions, in terms of vesicularity, bubble shapes, sizes and number densities. Unimodal, exponential to power law bubble size distributions were encountered and correlated with the different melt series, textural characteristics and types of degassing.
Keywords:

Basalt
Degassing
Decompression
Volatile
Bubble nucleation
Bubble size distribution

* Corresponding author at: ISTO, UMR 7327, 1A rue de la Férollerie, 45071, Orléans Cedex 02, France

E-mail address: nolwenn.le-gall@cnrs-orleans.fr (N. Le Gall)
1. Introduction

CO$_2$-supersaturated basaltic melts have been generated during experimental simulations of magma ascent and degassing (Pichavant et al., 2013), questioning the commonly accepted view that, due to their relatively high temperatures and low viscosities, basaltic magmas degas near equilibrium (Sparks et al., 1994). The classical degassing model implies that volatiles (mainly H$_2$O and CO$_2$) exsolve following solubility laws (e.g. Dixon and Stolper, 1995; Dixon et al., 1995), with CO$_2$ being extensively lost to the gas phase at high pressure (therefore earlier upon ascent) and H$_2$O negligibly lost until the latest stages of degassing (Blundy et al., 2010).

Further observations that imply deviation from equilibrium degassing either under simple open- (the gas phase escapes from the magma) or closed-system (the gas phase stays with the magma) include (1) the occurrence of CO$_2$-rich melt inclusions and (2) basaltic explosive volcanism.

(1) Melt inclusions having CO$_2$ contents higher than predicted from equilibrium H$_2$O-CO$_2$ degassing paths have been commonly found at basaltic volcanoes (e.g. Etna, Stromboli and Vesuvius volcanoes in Italy, Jorullo volcano in Mexico, Marianelli et al., 2005; Spillaert et al., 2006; Johnson et al., 2008; Métrich and Wallace, 2008; Métrich et al., 2010). These data have been interpreted mainly to result from the percolation of CO$_2$-rich magmatic fluids of deep provenance (Blundy et al., 2010). Alternatively, mixing of ascending and descending magmas (Witham, 2011; Beckett et al., 2014) could possibility generate melt inclusions with CO$_2$ contents displaced compared to calculated degassing trends. Lastly, Pichavant et al. (2013) proposed that the generation of CO$_2$-rich melts is possible during basaltic magma ascent and degassing, as a result of a disequilibrium degassing behavior of CO$_2$. So far, disequilibrium degassing is an idea accepted for silicic compositions, like phonolitic or rhyolitic melts (e.g. Gonnermann and Manga, 2005; Iacono-Marziano et al., 2007), but not really considered for basalts.
(2) Basaltic volcanoes are commonly characterized by effusive to low-intensity Hawaiian and Strombolian explosive eruptions (Sable et al., 2006; Costantini et al., 2010). However, some of these volcanoes (e.g. Etna, Stromboli, Tarawera in New Zealand and Masaya in Nicaragua) may erupt occasionally in high-intensity paroxysmal, subplinian to Plinian explosive eruptions (e.g. Sable et al., 2006, 2009; Costantini et al., 2010). Magma degassing is thought to play a fundamental role in determining effusive versus explosive eruptive behavior (Gonnermann and Manga, 2005); the transition is thought to depend on the regime of gas bubble transfer and to be caused by changes in magma supply and ascent rates (e.g. Pioli et al., 2008; Métrich and Wallace, 2008; Edmonds, 2008).

Magma degassing involves the nucleation, growth and coalescence of gas bubbles and has been studied via characterization of natural samples (e.g. Polacci et al., 2006, 2008, 2009; Shea et al., 2010), theoretical modeling (e.g. Toramaru 1989, 1995, 2006, 2014; Yamada et al., 2005) and laboratory experiments (e.g. Mourtada-Bonnefoi and Laporte, 1999; Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 2002, 2004; Mangan and Sisson, 2005; Iacono-Marziano et al., 2007; Gardner and Ketcham, 2011). Experimental constraints are available for silicic melts, but are still lacking for basaltic melts. This type of work, which consists in determining when and how volatiles separate from magma, is nevertheless essential for the understanding of basaltic explosive volcanism (e.g. Bottinga and Javoy, 1990a; Herd and Pinkerton, 1997; Edmonds, 2008; Polacci et al., 2008; Gardner, 2012).

Although the experiments of Pichavant et al. (2013) were not specifically designed to study bubble nucleation, two characteristic distances controlling the degassing process of basaltic melts were identified: (1) the gas interface distance (distance between bubbles or to gas-melt interfaces at capsule walls) and (2) the volatile diffusion distance. In this way, on the basis of differing H$_2$O and CO$_2$ melt diffusivities, CO$_2$/H$_2$O concentration ratios may record nonequilibrium degassing (e.g. Gonnermann and Manga, 2005). Other studies have proposed that the rate of nucleation controls the final melt volatile concentrations through two fundamental parameters (Sparks 1978; Toramaru 1995; Cluzel et al., 2008): the pressure at which bubbles begin to nucleate and the number density of bubbles.
In line with these critical observations, continuous decompressions of H$_2$O- and H$_2$O-CO$_2$-bearing basaltic melts investigate the systematics of bubble nucleation, and improve our ability to model volatile evolution during magma ascent and degassing.

2. Theoretical background

During magma ascent and decompression, the melt can become supersaturated in volatiles. For a pressure (P) that becomes less than the volatile saturation pressure (P_{sat}), a critical level of volatile supersaturation is attained, and gas bubbles tend to nucleate to maintain chemical equilibrium. For homogeneous bubble nucleation to take place, a minimum pressure drop below P_{sat} is necessary (e.g. Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 2002). In that case, bubbles are not associated with interfaces or discontinuities within the melt (for example at the surface of mineral phases or experimental capsule walls, e.g. Hurwitz and Navon, 1994; Gardner et al., 1999; Gardner and Denis, 2004; Mangan et al., 2004; Gardner, 2007; Cluzel et al., 2008), as for heterogeneous bubble nucleation, and high degrees of volatile supersaturation are theoretically required. According to the classical nucleation theory, the minimum supersaturation pressure (defined as the difference between the volatile saturation pressure and the pressure where bubbles start to nucleate homogeneously, ΔP_{HoN}) necessary for bubble nucleation is related to the surface tension of the bubble-melt interface (σ, in N.m$^{-1}$) and the nucleation rate (J, in m$^{-3}$.s$^{-1}$) according to the following expression (Hurwitz and Navon, 1994; Mourtada-Bonnefoi and Laporte, 2002):

$$\Delta P_{\text{HoN}} = (16\pi\sigma^3/3kT\ln(J/J_0))^{0.5} \quad (1)$$

where k is the Boltzmann constant (1.38.10$^{-23}$ J.K$^{-1}$), T is the temperature (in K) and J_0 is the preexponential nucleation rate (in m3.s$^{-1}$). J_0 is given by (e.g. Mourtada-Bonnefoi and Laporte, 2004):

$$J_0 = 2\Omega_{L}n_0^2D_w/a_0(\sigma/kT)^{0.5} \quad (2),$$
where Ω_L is the volume of water molecules in the liquid ($\Omega_L = 3.10^{-29} \text{ m}^3$), n_0 is the number of water molecules per unit volume of liquid, a_0 is the mean distance between water molecules ($a_0 \approx n_0^{1/3}$) and D_w is the water diffusivity in the liquid. n_0 is defined as $6.02.10^{23} X_m \rho_{\text{liq}} / m$, where $6.02.10^{23}$ is the Avogadro number, X_m is the mass fraction of molecular water in the liquid, ρ_{liq} is the liquid density (2650 kg/m3), and m is the molar mass of water (0.018 kg/mol).

Eq. 1 indicates that homogeneous bubble nucleation in silicate melts can be viewed as a competition between volatile supersaturation (which tends to promote volatile exsolution) and the surface tension (which tends to resist the formation of a separate phase in the melt). The determination of the surface tension of silicate melts is difficult because it is highly sensitive to melt composition, temperature and dissolved volatile content (Bagdassarov et al., 2000; Mangan et al., 2004). The only data available for basaltic melts was determined by Khitarov et al. (1979) to range from 0.1 to 0.4 N.m$^{-1}$ (the lowest end of the range for hydrous compositions at 1200°C). More recently, Pichavant et al. (2013) obtained σ ranging between 0.177 and 0.188 N.m$^{-1}$ from the determination of ΔP_{HoN} and J, in decompression experiments on basaltic melts containing dissolved H$_2$O and CO$_2$. This is the approach followed in the present study to further constrain σ for basaltic melts, especially its dependence with the nature and concentration of dissolved volatiles.

Although the classical nucleation theory provides an adequate theoretical background for the experiments presented in this study, there are several specificities in our approach that are worth being outlined. First, natural basaltic magmas generally contain dissolved CO$_2$ and S species, in addition to H$_2$O. These volatile components have very contrasted individual solubilities in basaltic melts. It follows that conditions of melt saturation are not simply dependent on pressure (and of melt composition to some extent) but become a strong function of the respective dissolved volatile concentrations. The volatile saturation surface is no longer a line in pressure-H$_2$O concentration (e.g. Mourtada-Bonnefoi and Laporte, 1999, 2002) but an hypersurface in multicomponent space. In addition, degassing mechanisms take place at high temperature (> 1100°C) in basaltic melts, in a range where the diffusive mobility of volatiles (particularly H$_2$O, Zhang and Ni, 2010) is high and has a significant impact on the bubble nucleation process (e.g. Mangan and Sisson, 2000; Pichavant et al., 2013).
3. Experimental methods

3.1. Preparation of starting glasses

Decompression experiments were conducted on volatile-bearing glasses made from a Strombolian high-K basalt. The PST-9 “golden” pumice was used as starting material (Di Carlo et al., 2006; Pichavant et al., 2009, 2011). It was selected because it was previously used in phase equilibrium and crystallization experiments (Di Carlo et al., 2006; Pichavant et al., 2009, 2013), and because it is a sample well-characterized petrographically, mineralogically and geochemically (Pichavant et al., 2011). It is the most primitive golden pumice (Métrich et al., 2001; Bertagnini et al., 2003; Francalanci et al, 2004; Métrich et al., 2005; Di Carlo et al., 2006; Pichavant et al., 2009) and, as such, is representative of Stromboli pumices emitted during paroxysms and major explosions (Pichavant et al., 2011). Its bulk composition is given in Table 1. PST-9 is slightly porphyritic, containing about 10% of crystals of clinopyroxene, olivine and plagioclase, and lapilli are highly vesicular (~60 vol.% vesicles). To obtain a crystal- and bubble-free glass, the sample was hand-crushed to a fine powder, and then fused at 1 atm and 1400°C in a Pt crucible for 3 hours. This process gave a homogeneous glass whose composition is listed in Table 1. The glass was then either cored to cylinders (2.5 mm in diameter and about 10 mm long) or crushed to a fine powder (~10–50 µm).

For the synthesis experiments (Table 2), charges were made from glass cylinders (140.5–206.4 mg) or glass powder (about 30 mg). Using cylinders has the advantage of keeping a constant geometry in all samples, which facilitates the textural analysis. It also has the advantage of preventing the formation of bubbles in samples during the synthesis experiments. Nevertheless, glass powder was also used for practical reasons in a few experiments. Distilled water and carbon dioxide as silver oxalate (Ag₂C₂O₄) were added to generate volatile-bearing melts. Au₈₀Pd₂₀ capsules (2–3 cm height, 2.5 mm inner diameter, 0.2 mm wall thickness) were used as containers. Such a metal composition was adopted to minimize iron loss from the experimental charge to the capsule (Di Carlo et al., 2006; Pichavant et al., 2009). Three different proportions of H₂O and CO₂ were introduced in the capsules, corresponding to XH₂Oₙ (molar H₂O / (H₂O + CO₂)) = 1 (series #1: only H₂O
dissolved in glass, no CO$_2$ present), ~0.58 (series #2: H$_2$O and CO$_2$ both dissolved in glass, high dissolved H$_2$O/CO$_2$) and 0 (series #3: H$_2$O and CO$_2$ both dissolved in glass, low dissolved H$_2$O/CO$_2$, see below for the origin of H$_2$O).

For the decompression experiments (Table 3), the synthesized volatile-bearing glass cores (2.5 mm in diameter and about 4 mm long) were fitted in Au$_{80}$Pd$_{20}$ capsules. No additional volatile was introduced, and this resulted in low proportions of free fluid in the decompression charges. Capsules of identical diameter (2.5 mm) but variable lengths (up to 5 cm for the capsules decompressed to the lowest pressures) yielded variable and large void spaces to accommodate gas expansion during decompression.

All capsules were welded shut and weighed, and then reweighed after being placed several hours in an oven to ensure that no leaks occurred.

3.2. Equipment

Experiments were performed in an internally heated pressure vessel (IHPV) working vertically and fitted with a drop-quench device. To control the redox conditions, the vessel was pressurized with gas mixtures made of Ar and H$_2$. All synthesis and decompression experiments were performed with an initially applied pressure of 1 bar H$_2$. Then, Ar was pumped into the vessel up to the pressure needed to attain the final target conditions (Pichavant et al., 2013).

Determinations of experimental f_{H_2} have not been performed specifically for this study, for example with redox sensors (Taylor et al., 1992; Di Carlo et al., 2006). Below, we use f_{H_2} measurements made from Ni-NiPd sensors in similar experiments performed in the same IHPV and under the same P-T-f_{H_2} conditions (Le Gall and Pichavant, 2016). They indicate f_{O_2} conditions ranging from NNO–1.3 (series #3) to NNO+1.7 (series #1), NNO being the f_{O_2} of the Ni-NiO equilibrium at the P-T of interest.
The capsules were placed in a sample holder made of Al$_2$O$_3$. It was suspended by a thin Pt wire in a Mo furnace with a 2–3 cm long hotspot. Temperature was monitored with a Eurotherm controller and measured by two S-type thermocouples located along the capsules. Near-isothermal conditions (gradient < 2–3°C/cm) were maintained in the sample holder. Pressure and temperature were read continuously, with uncertainties of ± 20 bars and ± 5°C. At the end of the experiments, an electrical current was applied to the Pt suspension wire resulting in the sample holder falling to the cold part of the IHPV (< 100°C), leading to a quench rate of about 100°C/sec (Di Carlo et al., 2006).

3.3. Run procedure

The synthesis and decompression experiments (Tables 2 and 3) were generally performed independently from each other. Volatile-bearing melts were synthesized at a super-liquidus temperature of 1200°C (Di Carlo et al., 2006; Pichavant et al., 2009) and 200 MPa. Up to three capsules (one for each series#) were placed together in the vessel for durations of about 46–48 hours, in order to attain an equilibrium distribution of dissolved H$_2$O and CO$_2$ in the 2.5 mm diameter cores, according to the H$_2$O and CO$_2$ melt diffusion data (Zhang and Ni, 2010). The synthesized crystal- and bubble-free volatile-bearing glasses were then used as starting materials in the degassing experiments (Table 3).

The decompression runs also included up to three capsules. Experiments were conducted at a constant temperature of 1200°C, from an initial pressure (P_i) of 200 MPa to final pressures (P_f) varying between 150 and 25 MPa. All runs began with an approximately one-hour step at 200 MPa and 1200°C, to re-equilibrate the pre-synthesized glasses. Pressure was then decreased manually to P_f at a fast decompression rate of 78 kPa/s (equivalent to 3 m/s for an assumed rock density of 2650 kg/m3), which leads to decompression durations of 10–40 min depending on P_f. Decompression charges were isobarically quenched immediately (within ~1–2 s) after attainment of P_f.
Less frequently, synthesis and decompression steps were conducted in the same run. This is the case of three synthesis + decompression experiments which were performed using glass powder as starting material (Table 4). Consequently, in those three cases, glasses were not analyzed after being synthesized. Each synthesis + decompression experiment included only one capsule from the series #1. The synthesis step lasted for about 40–60 min at 1200°C and 200 MPa, assuming that gas-melt equilibrium is attained in a matter of a few minutes under the experimental conditions investigated here (Zhang and Stolper, 1991; Lesne et al., 2011b) and using powders. Then, the continuous decompression-step consisted in a manual reduction of pressure until P_f was attained (150, 100 and 25 MPa) at a fast rate of 78 kPa/s.

After quenching, capsules were weighed again to check that no volatile loss occurred during the experiments, and then opened.

4. Analytical methods

4.1. Sample preparation

After each synthesis, a part of the glass core obtained was analyzed to check for its volatile concentration and distribution. Sections were cut perpendicular to the long axis of the glass cylinders and double-polished. Volatile concentrations were determined by the Fourier transform infrared spectroscopy (FTIR) technique.

After decompression, the glass cylinders were carefully removed from their containers and imaged in their entirety by X-ray microtomography. Then, glass cylinders were subdivided into several sections cut perpendicular to the cylinder long axis. One section (or several sections when additional analyses were needed) was doubly-polished for the determination of the glass volatile contents by FTIR. Another section (or small glass fragments) was mounted in epoxy resin and polished for scanning electron microscope (SEM) imaging.
4.2. Textural analyses

Textures of all decompressed charges were analyzed by X-ray computed tomography (X-ray CT), using a GE Sensing, phoenix|x-ray, Nanotom 180 from ISTO operated between 90 and 101 kV with variable filament currents (40–170 µA). Glass cylinders were mounted on carbon fiber rods with thermoplastic adhesive, and between 750 and 1100 two-dimensional projections were acquired as they rotated by 360° with a resolution of 2.42–3.91 µm. The reconstruction of the tomographic projections, using phoenix software, creates an image stack of the sample, which can be processed with ImageJ (Abràmoff et al., 2004) to obtain a complete three-dimensional reconstruction. The total reconstructed volume \(V \) consists in void space \(v_2 \), a glass volume \(v_3 \) and a bubble volume \(v_4 \) (Fig. 1a). The void space volume corresponds to the volume left when excluding the volume of the sample \((v_3 + v_4) \) to the total volume investigated \((e.g. v_2 = V - (v_3 + v_4)) \). Both \(v_2 \) and \(v_4 \) can be measured using ImageJ. This allows the determination of \(v_3 \) (by subtracting the sum of the volumes of void space \(v_2 \) and bubbles \(v_4 \) to the total volume investigated \(V \), \(v_3 = V - (v_2 + v_4) \), Fig. 1a), and thus of the textural parameters (bubble size, bubble number density and vesicularity).

Image stacks \((V, \text{Fig. 1a}) \) were segmented by manual thresholding; the objects of interest (bubbles and void space, in gray (for illustration) and black on Fig. 1a) were separated from the glass (in white on Fig. 1a). Following segmentation, the volume of these objects, all labeled and counted, was measured using the 3D Object Counter plugin (Bolte and Cordelières, 2006). The fact that thresholded objects are labeled allows rejecting particles which are artifacts, like cracks or noise. This was carefully done after each image analysis.

Bubble sizes (expressed as diameters) were determined from the measured bubble volumes, assuming a spherical shape. This assumption was found to be valid in most cases, except for the largest bubbles in glasses decompressed to 25 MPa (Fig. 4a–c), and for bubbles in series #1 glasses decompressed from powders (Table 4). _Bubble number density_ (BND) was calculated as the number of bubbles per unit volume of bulk sample (glass + bubbles, BND, Tables 3 and 4) or per unit volume of melt (BND_melt, Tables 3 and 4). The BND_melt values were preferentially used because they remain invariant as bubbles grow (e.g. Proussevitch et
Vesicularity was calculated by dividing the measured bubble volumes by the combined volumes of melt and bubbles. As mentioned above, the volume of melt v3 depends on the void space volume v2, which includes open bubbles located at the rim of the glass cylinders. These bubbles were thus initially excluded from vesicularity measurements (Vc, Tables 3 and 4, Fig. 1a), resulting in significant underestimates for samples having large bubbly rims. To compensate for this issue, a sub-volume that included open edge bubbles (Vsub, Fig. 1b) together with Voxel Counter plugin was used instead of the total volume (V, Fig. 1a) and the 3D Object Counter plugin, yielding a more robust vesicularity value (Vd). Vd (given in tables 3 and 4 and used below in the text and figures) is the average of calculations performed on 4 representative regions in each sample.

For comparison with the vesicularities measured in our run products, equilibrium vesicularities were computed for the PST-9 melt composition. Two end-member cases were considered, corresponding to the degassing of pure H2O and pure CO2, respectively. The equilibrium vesicularity is given by (e.g. Cluzel, 2007):

\[V = \frac{(X_0 - X_s)}{(X_0 - X_s + \frac{(\rho_{\text{fluid}}/\rho_{\text{liq}})(1-X_0))}{\rho_{\text{fluid}}}} \] (3)

where \(X_0 \) is the weight fraction of initial water, \(X_s \) the solubility of the volatile species at a given pressure, \(\rho_{\text{fluid}} \) the density of the supercritical fluid and \(\rho_{\text{melt}} \) the density of the saturated silicate liquid.

The H2O and CO2 solubilities for PST-9 at 1200°C and the \(P \) of interest (25–200 MPa) were calculated based on the models of Lesne et al. (2011a, b). The density of the liquid is assumed to be constant and equal to 2.64 g.cm\(^{-3}\) (with H2O) and about 2.75 g.cm\(^{-3}\) (with CO2). The density of pure H2O supercritical fluid was determined at the pressure of interest, using the Holloway-Flowers version of the Redlich-Kwong equation of state (from Holloway, 1981; Ferry and Baumgartner, 1987). For the pure CO2 supercritical fluid, density was obtained from a regression of the fCO2 data of Dixon et al. (1995) at 1200 °C.
4.3. Scanning electron microscopy

Scanning electron microscope (SEM) imaging was used for the observation of < 4 µm bubbles that cannot be resolved by X-ray microtomography. Samples were imaged using the MIRA3 TESCAN FEG instrument at Orléans, with an accelerating voltage between 15–25 kV. Results were used only to refine the appearance of bubbles (nucleation) and no attempt was made to extract quantitative textural data on the images.

4.4. Glass volatile contents

H₂O and CO₂ (as CO₃²⁻) concentrations in the experimental glasses were determined by FTIR. A Nicolet 6700 spectrometer and a Continuum IR microscope equipped with an IR source, a KBr beamsplitter and a liquid nitrogen cooled MCT/A detector were used together. Profiles with 50–350 µm steps were performed to check for the homogeneity of H₂O and CO₂ concentrations. The diameter of the analyzed spot was 50 µm, 100 µm in a few cases. FTIR spectra were accumulated for 128 scans at a resolution of 4 cm⁻¹ on doubly polished samples, with thicknesses ranging between 29 and 171 µm (Table 5). H₂O and CO₂ concentrations were calculated from the Beer-Lambert law. For H₂O, the absorbance of the 3530 cm⁻¹ total H₂O band (H₂O_mol + OH⁻) was measured with a straight base line between ~3850 and ~2500 cm⁻¹. An extinction coefficient (ε₃5₃₀) of 64 L.mol⁻¹.cm⁻¹ was used (Dixon et al., 1995). For CO₂, the absorbance of the 1515 cm⁻¹ carbonate ions band was determined on subtracted spectra. The spectrum used for the subtraction was obtained on a starting glass without dissolved volatiles. We calculated an extinction coefficient (ε₁5₁₅) of 363 L.mol⁻¹.cm⁻¹ from the equation of Dixon and Pan (1995). Sample thicknesses were measured with an optical microscope to within 1–2 µm. Densities of experimental glasses were estimated from the density of the volatile-free starting glass measured using a Mettler balance equipped with a density accessory kit (ρ = 2.747 ± 0.001) and considering a partial molar volume of H₂O of 12 cm³.mol⁻¹ (Richet et al., 2000). In this way, we consider only the influence of dissolved H₂O on the glass density and assume that the effect of CO₂ is negligible (Lange, 1994; Bourgue and Richet, 2001; Lesne et al., 2011a).
5. Experimental results

5.1. Volatile contents of pre-decompression glasses

All glass cylinders obtained in the synthesis experiments (hereafter designated as pre-decompression glasses) were bubble-free. Considering the analytical uncertainty for CO$_2$ measurements (~100 ppm), glasses have homogeneous volatile contents. FTIR profiles reveal that H$_2$O and CO$_2$ are homogeneously distributed in the glass cylinders; near-rim volatile concentrations are identical within error to the other values (averaged H$_2$O and CO$_2$ contents in Tables 2 and 5). Pre-decompression glasses divide into three groups of compositions according to their synthesis conditions: series #1 (4.91 ± 0.01 wt.% H$_2$O, 0 ppm CO$_2$), series #2 (2.41 ± 0.04 wt.% H$_2$O, 973 ± 63 ppm CO$_2$) and series #3 (0.98 ± 0.16 wt.% H$_2$O, 872 ± 45 ppm CO$_2$). Their H$_2$O and CO$_2$ concentrations are within the range of experimental solubilities found both for PST-9 (Lesne et al., 2011a, b) and other basaltic melts (Shishkina et al., 2010) under similar P-T conditions. Although H$_2$O was not introduced in the series #3 capsules, it was found to be dissolved in all pre-decompression glasses of this series. This H$_2$O (concentration range: 0.80–1.09 wt.%, Tables 2 and 5) is generated during synthesis through the reduction of the ferric iron of the starting glass by H$_2$ from the pressurizing medium. The reduction reaction can be written (e.g. Lesne et al., 2011a):

$$\text{Fe}_2\text{O}_3(\text{melt}) + \text{H}_2(\text{vap/melt}) = 2\text{FeO}(\text{melt}) + \text{H}_2\text{O}(\text{melt})$$ (4)

However, part of the water in the series #3 glasses most probably comes from the silver oxalate used as the CO$_2$ source because reaction (Eq. 4) is not sufficient to account for the measured glass H$_2$O contents.

Glasses from the few synthesis + decompression experiments (#1, Table 4) were not analyzed and are assumed to have the same water content as glass S9#1 (4.91 wt.%, Table 2) since the conditions of synthesis are identical (XH$_2$O$_{in}$, P, T). Water diffusivity data for basaltic melts (Zhang and Ni, 2010) suggest that, under the P-T conditions investigated here, a few minutes is sufficient to homogenize the H$_2$O concentration in our basaltic glasses, when starting from powder (Lesne et al., 2011b).
5.2. Qualitative textural characteristics of post-decompression glasses

The glass cylinders from the decompression experiments and from the few synthesis + decompression experiments (hereafter designated as post-decompression glasses) were generally recovered as single cylindrical blocks, except a series #1 charge (S+D38#1, Table 4) which yielded a partially powdered run product, suggesting partial fragmentation (as also described in Le Gall and Pichavant, 2016). Microscopic observation revealed the presence of numerous bubbles in the fragmented part of S+D38#1. All run products were crystal-free with the exception of the D25#3 charge (Table 3) which contains some plagioclase. These crystals (5–10 µm long) are found exclusively near bubbles (but not attached to) and are absent from bubble-free glass areas. In the other charges, the absence of crystals was checked by optical microscopy on the doubly polished sections prepared for FTIR and by SEM. Almost all the charges contain some rare oxide crystals (Ti-bearing magnetite, Di Carlo et al., 2006). However, evidence for bubble nucleation on those micron-sized Fe–Ti oxides was infrequently observed, as it can be seen on Fig. 2a. Except the D31#2 charge (Fig. 2b, Table 3) which is completely devoid of bubbles, the post-decompression glasses show a densely nucleated core and a bubbly rim ranging from ~10 to 110 µm (Fig. 2c, Tables 3 and 4). A distinction was made between bubbles that nucleated inside the glass and those located at the glass-capsule interface. The latter are thought to result from heterogeneous nucleation along the glass-capsule interface (Mangan and Sisson, 2000) and are not considered further in this study (with the sole exception of vesicularity measurements). Given the nearly uniform spatial distribution of interior bubbles and the absence of crystals (hence of possible nucleation sites), we interpret the textures of our vesiculated glasses to result from homogeneous bubble nucleation. Charge D31#3 is characterized by a somewhat heterogeneous distribution of relatively large bubbles (8–42 µm, Table 3). However, SEM imaging revealed a population of smaller bubbles (< 5 µm, Fig. 2a) almost homogeneously distributed.

Interiors of post-decompression glasses are devoid of bubbles until $P_t = 150$ MPa for series #1 and #3, and until $P_t = 100$ MPa for series #2. In this study, no experimental check was performed at $P_t = 200$ MPa but similar work at a lower decompression rate confirmed that bubbles are initially absent (Le Gall and Pichavant, 2016).
5.3. Quantitative study of internal textures

Vesicularities range from 1.01 to 25.6 vol.% (series #1), 0 to 22.7 vol.% (series #2) and from 0 to 4.97 vol.% (series #3) (Tables 3 and 4, Fig. 3a). They generally increase with decreasing P_f from 150 to 25 MPa, especially between 50 and 25 MPa. Vesicularities are also a function of the volatiles in the system (Fig. 3a). The highest vesicularities are for the H$_2$O-only glasses from series #1. For the same final pressure $P_f = 25$ MPa, vesicularities decrease with increasing CO$_2$ content from 25.6% (series #1) to 22.7% (series #2) to 4.97% (series #3). Vesicularities for series #2 and #3 glasses are in qualitative agreement with the calculated equilibrium vesicularity curves (since they plot in-between the two end-members theoretical curves, Fig. 3a). Measured vesicularities in the series #1 glasses are low by comparison to the theoretical values (Tables 3 and 4, Fig. 3a).

The average bubble diameter (D) ranges from 28 to 218 µm (series #1), 10 to 31 µm (series #2) and from 10 to 12 µm (series #3) (Tables 3 and 4, Fig. 3b). In the fragmented part of the series #1 S+D38#1 charge, bubbles have sizes ranging from about 10 to 110 µm, much lower than in the non-fragmented part (76–414 µm). As for vesicularity, D generally increases with decreasing P_f although to a lesser extent for series #3 glasses (Fig. 3b). D is also a function of the concentration of dissolved volatiles (Figs. 3b and 4a–c). For the same final pressure of 25 MPa, bubble sizes decrease with lowering H$_2$O content from 218 µm (series #1, Figs. 3b and 4a) to 31 µm (series #2, Figs. 3b and 4b) to 12 µm (series #3, Figs. 3b and 4c).

Bubble number densities (BNDs) range from about 10^0 to 10^4 mm$^{-3}$ for the three glass series (Tables 3 and 4, Fig. 3c). Generally, BNDs of series #1 glasses decrease with decreasing P_f, from about 10^2 (150 MPa) to 10^1 mm$^{-3}$ (25 MPa). Conversely, BNDs of series #2 and #3 glasses generally increase when lowering P_f (from about 10^0 to 10^4 mm$^{-3}$), except between $P_f = 100$ and 50 MPa where BNDs decrease.
For each series, the evolution of bubble size distribution (BSD) along the experimental decompression path is documented from two charges, one representative of the initiation and the other of the last stage of the bubble nucleation process (Fig. 4d–f). Each of the three series shows a distinct evolution of BSD with decreasing pressure and, so, increasing experimental duration. At $P_f = 150$ MPa, the CO$_2$-free glasses (series #1, Fig. 4d) show a unimodal BSD with a slight dissymmetry at left. Then, at $P_f = 25$ MPa (Fig. 4d), the BSD shifts to multimodal as the number of large bubbles increases. For example, at $P_f = 150$ MPa bubble sizes range from 8 to 86 µm while at $P_f = 25$ MPa bubble sizes range between 76 and 414 µm (Table 4, Fig. 4d). For series #2 samples, the BSD initially (at $P_f = 100$ MPa, i.e. at the pressure where bubbles start to nucleate) has a power law shape (Fig. 4e). Upon decreasing P_f to 25 MPa, the BSD evolves to an unimodal shape with a strong dissymmetry at left implying that the number of small bubbles (< 10 µm) decreases (Fig. 4e). Lastly, series #3 glasses have power law distributions both at $P_f = 150$ and 25 MPa (Fig. 4f), with small bubbles (< 10 µm) predominating until the lowest P_f.

5.4. Volatile contents of post-decompression glasses

H$_2$O and CO$_2$ concentrations in glasses from decompression experiments are reported in Table 5 and shown in Fig. 5. The H$_2$O concentrations of series #1 post-decompression glasses range from 4.16 ($P_f = 150$ MPa) to 1.71 wt.% ($P_f = 25$ MPa). Thus, a general decrease of the concentration of dissolved H$_2$O is observed when decreasing the final pressure (Fig. 5). Considering that standard deviations (corresponding to the error bars in Fig. 5) are < 0.1% (Table 5), the H$_2$O contents of series #1 post-decompression glasses are in close agreement with H$_2$O solubilities calculated from VolatileCalc (Newman and Lowenstern, 2002); the correspondence between the data points and the calculated 150–25 MPa isobars is very close (Fig. 5). However, the correspondence is slightly less good if comparison is made with measured solubilities (Lesne et al., 2011b) rather than with VolatileCalc, especially at low pressure: post-decompression glasses have H$_2$O concentrations slightly exceeding solubilities (Fig. 6a). Most series #1 charges have near-equilibrium H$_2$O concentrations. The exception is charge S+D38#1 ($P_f = 25$ MPa) which shows a supersaturation of 0.15–0.40 absolute wt.% H$_2$O. In addition, analytical dispersions of H$_2$O contents along FTIR profiles are higher than typical analytical errors, suggesting some degrees of heterogeneity in the H$_2$O distribution in
post-decompression glasses (Fig. 6a). The spatial distribution of \(\text{H}_2\text{O} \) in all series #1 charges seems influenced by the proximity of the glass-capsule interface, as illustrated for example by D10#1 and S+D38#1 samples (Fig. 6a). The glass \(\text{H}_2\text{O} \) concentration is also affected by the proximity to gas bubbles, which shows that the \(\text{H}_2\text{O} \) concentration is close to the solubility value near the bubbles or the glass-capsule interface and slightly higher away from them (Fig. 6a, b), consistent with a mechanism of diffusive motion of \(\text{H}_2\text{O} \) inside the melt toward the gas phase.

Series #2 post-decompression glasses have \(\text{H}_2\text{O} \) concentrations ranging from 1.96 to 0.95 wt.% and \(\text{CO}_2 \) concentrations ranging between 786 and 206 ppm (Table 5). Taken globally, concentrations of dissolved \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) in post-decompression glasses progressively decrease with decreasing \(P_f \) (Fig. 5). However, the drop in \(\text{H}_2\text{O} \) concentration is not linear with \(P_f \) contrary to \(\text{CO}_2 \). For example, the glass decompressed to \(P_f = 150 \text{ MPa} \) has a lower \(\text{H}_2\text{O} \) content (1.28 wt.%, D31#2) than two glasses decompressed to 100 (1.55 wt.%, D34#2) and 50 MPa \(P_f \) (1.96 wt.%, D9#2). The glass decompressed to 25 MPa (0.95 wt.%, D28#2) has the lowest \(\text{H}_2\text{O} \) concentration. Post-decompression glass \(\text{CO}_2 \) concentrations progressively decrease from 786 (D31#2, \(P_f = 150 \text{ MPa} \)), 613–678 (D34#2 and D23#2, \(P_f = 100 \text{ MPa} \)), 556 (D9#2, \(P_f = 50 \text{ MPa} \)) to 206 ppm (D28#2, \(P_f = 25 \text{ MPa} \)). The trend of decreasing \(\text{H}_2\text{O} \) and \(\text{CO}_2 \) concentrations upon decreasing pressure differs from the closed-system equilibrium decompression trend in that the observed \(\text{H}_2\text{O} \) loss is more important than theoretically expected. At \(P_f = 150 \text{ MPa} \), the measured \(\text{CO}_2 \) concentration is in agreement with the gas-melt saturation isobar calculated with VolatileCalc (Newman and Lowenstern, 2002) despite that the \(\text{H}_2\text{O} \) content is much lower than the concentration expected along the theoretical degassing trend. In comparison, the data points at \(P_f = 100 \) and 50 MPa plot well above their respective gas-melt saturation isobars. Measured \(\text{CO}_2 \) contents in these post-decompression glasses (556–678 ppm) largely exceed the calculated values (< 250 ppm at 100 MPa and < 50 ppm at 50 MPa) for closed-system equilibrium degassing, the departure from equilibrium being the most marked for the 50 MPa \(P_f \) point. The \(P_f = 25 \text{ MPa} \) point also plots above its respective gas-melt saturation isobar.
Post-decompression glasses from series #3 have H$_2$O concentrations between 1.06 and 0.49 wt.% and CO$_2$ concentrations ranging from 777 to 423 ppm (Table 5). With decreasing pressure, melt CO$_2$ contents decrease progressively at approximately constant H$_2$O concentrations, except for charge D25#3 which lost most of its water (from 1.09 wt.% H$_2$O at 200 MPa to 0.49 wt.% H$_2$O at 25 MPa, Table 5 and Fig. 5). However, the decompressed glasses keep CO$_2$ concentrations that plot generally above their respective gas-melt saturation isobars. For example, the glass decompressed to $P_f = 50$ MPa has a higher CO$_2$ content (619 ppm, D9#3) than the calculated value (< 200 ppm) for closed-system equilibrium degassing. FTIR profiles show that H$_2$O and CO$_2$ are homogeneously distributed in the post-decompression glasses.

6. Interpretation and discussion of experimental observations

6.1. Supersaturation pressures required for homogeneous bubble nucleation

Two main arguments support the homogeneous nature of bubble nucleation in our samples. (1) The lack of crystals, with the exception of some rare Fe–Ti oxides, in our experimental charges implies that there are no or little discontinuities to serve as nucleation sites in the melts. Although we can miss the non-resolved oxides by X-ray CT, because of their small size, we estimated the proportion of heterogeneously nucleated bubbles to be negligible (i.e. for each charge less than a few % of total bubbles, see also Le Gall, 2015). (2) The quite homogeneous distribution of the bubbles within samples, when they appear (Fig. 2a, c), is consistent with a general rather than a local bubble nucleation mechanism (as would be observed if bubble nucleation occurs on capsule walls). In addition, there are variations neither in the average size nor in the number density of bubbles inside samples (away from capsule walls) once bubble nucleation takes place.

The supersaturation pressure required for homogenous bubble formation, i.e. the difference between the starting pressure ($P_{in} = P_{sat}$) and the final pressure at which bubbles begin to nucleate homogeneously, can be determined from our decompression experiments. We observed almost homogeneously distributed bubbles in the core of series #1 glasses.
(initial melt H$_2$O concentration = 4.91 wt.%) from $P_f = 150$ MPa (S+D36#1, Table 4). However, the bubbles appear to have been formed at a much higher pressure. Indeed, most of the bubbles have a subspherical shape attesting of slight deformation after being formed. Furthermore, small bubbles (< 10 µm) are almost absent (2%, Fig. 4d) and bubble growth seems already efficient (main peak diameter of 25 µm, Table 4 and Fig. 4d). Accordingly, the supersaturation pressure required to nucleate bubbles homogeneously in our H$_2$O-bearing, CO$_2$-free, melts must be much less than 50 MPa ($\Delta P_{HoN} << 50$ MPa). It should be noted that the 150 MPa P_f series #1 charge (S+D36#1) was obtained from powder starting materials which could have facilitated bubble nucleation, thus lowering ΔP_{HoN}. In the same way, the fact that bubbles are slightly deformed in charge S+D36#1 is interpreted to result from the use of starting powders instead of cylinders. The ΔP_{HoN} value determined for series #1 glasses ($<< 50$ MPa) is lower than supersaturation pressures found for more evolved compositions. For example, the degree of supersaturation required to trigger homogeneous bubble nucleation is ~60–90 MPa in dacite melts (H$_2$O ~5 wt.%, Mangan and Sisson, 2005; Gardner and Ketcham, 2011), ~100 MPa in phonolite (H$_2$O ~5 wt.%, Iacono-Marziano et al., 2007) and ~95–150 MPa in rhyolite melts (for ~5–7 wt.% H$_2$O, Mangan and Sisson, 2000; Mourtada-Bonnefoi and Laporte, 2004; Gardner and Ketcham, 2011). Therefore, ΔP_{HoN} values $<< 50$ MPa as found in this study appear specific of basaltic compositions and suggest that bubble nucleation is an easy process taking place at low supersaturations in hydrous basaltic melts.

In series #2 (initial melt H$_2$O concentration = 2.37–2.45 wt.% and CO$_2$ = 901–1011 ppm), the charge decompressed to 150 MPa P_f (D31#2, Table 3) yielded a bubble-free glass by X-ray CT (Fig. 2b), which was confirmed by SEM examination. In contrast, the two charges decompressed to 100 MPa P_f (D23#2 and D34#2, Table 3 and Fig. 2c) contain small and nearly equal-sized bubbles (main peak diameters of 6–7 µm) uniformly distributed, suggesting that homogeneous bubble nucleation takes place between 150 and 100 MPa P_f. Therefore, a critical supersaturation pressure of 100 MPa maximum and 50 MPa minimum is inferred for our series #2 H$_2$O- and CO$_2$-bearing basaltic melts. For comparison, Pichavant et al. (2013) found a supersaturation pressure of 150 MPa maximum in their experiments performed on compositions similar to our series #2 melts. However, no data were given for $P_f > 50$ MPa, and so it cannot be excluded that, in their decompression experiments, homogeneous bubble nucleation would have started at pressures > 50 MPa, leading to $\Delta P_{HoN} << 150$ MPa. A critical supersaturation pressure of 200 ± 100 MPa was found by Lensky et al.
(2006) for CO₂ bubbles in a synthetic mafic melt decompressed from 1.5 GPa, which is in the same range or larger than determined here for series #2 melts. However, it is worth specifying that Lensky et al. (2006) worked on nominally H₂O-free melts. For more evolved melts, ΔP_HoN values determined for H₂O- and CO₂-bearing rhyolitic melts (4.6 wt.% H₂O and 800–1100 ppm CO₂, Mourtada-Bonnefoi and Laporte, 2002) range from 160 to 350 MPa, significantly above our ΔP_HoN values for series #2 melts. Therefore, it appears that the influence of CO₂ in increasing supersaturation pressures and ΔP_HoN values is lower for basaltic than for rhyolitic melts.

In series #3 glasses (initial melt H₂O concentration = 0.8–1.09 wt.% and CO₂ = 840–923 ppm), bubbles begin to nucleate from P_f = 150 MPa (D31#3, Table 3, Fig. 2a). These bubbles are so small (< 5 µm) that they were mostly undetected by X-ray CT (smallest bubble size detected in D31#3: 8 µm). Thus, a critical ΔP_HoN of 50 MPa maximum is also inferred for the series #3 melts. These results confirm the relatively low supersaturation pressures and ΔP_HoN values for basaltic melts, even when H₂O-poor and CO₂-bearing.

Our experimental results for basaltic melts suggest that the H₂O concentration has a small and, in detail, a complex effect on the critical supersaturation pressure needed to overcome the nucleation barrier (expressed as the ΔP_HoN value). The H₂O-richer (4.91 wt.%, series #1) and the H₂O-poorer (0.98 ± 0.16 wt.%, series #3) melts require apparently the same range of ΔP_HoN values (either < or ~50 MPa). Nevertheless, ΔP_HoN differences between our three series can be masked by our relatively large P_f steps (50 MPa). In this sense, the available textural evidence for the series #1 melts suggests that ΔP_HoN is in fact much lower than 50 MPa. In contrast, for series #3 melts, textural evidence for bubble nucleation at P_f >> 150 MPa is lacking, suggesting that ΔP_HoN is in fact very close to 50 MPa. Comparison between results for series #1 and #3 implies a negative but small influence of the melt H₂O concentration on ΔP_HoN. However, the increase of ΔP_HoN observed between series #3 (ΔP_HoN ≤ 50 MPa, 0.98 ± 0.16 wt.% H₂O) and series #2 glasses (ΔP_HoN < 100 MPa, 2.41 ± 0.04 wt.% H₂O) is not in agreement with a linear decrease of ΔP_HoN with increasing the dissolved H₂O content. Our experiments do not reveal a systematic influence of the H₂O concentration on bubble nucleation in basaltic melts, as suggested for example in the case of rhyolitic melts (e.g. Gondé et al., 2011).
The presence of dissolved CO$_2$ has been considered to influence the degree of supersaturation required for homogeneous bubble nucleation. Although the individual influence of CO$_2$ is difficult to separate from H$_2$O (since the two volatile concentrations usually vary together in the experiments) there are indications for supersaturation pressures and ΔP_{HoN} are positively correlated with the melt CO$_2$ concentration (Mourtada-Bonnefoi and Laporte, 2002; Bai et al., 2008). In our experiments, ΔP_{HoN} appears to increase linearly (although moderately) with increasing the melt CO$_2$ content, from $<<$ 50 MPa (no CO$_2$, series #1) to \leq 50 MPa (872 ± 45 ppm CO$_2$, series #3) to $<$ 100 MPa (973 ± 63 ppm CO$_2$, series #2). Although other factors (redox state) would need to be considered, our experimental results for the three series are consistent with a moderately important inhibiting role of CO$_2$ on bubble nucleation in basaltic melts.

Melt-bubble surface tensions have been calculated from our experimentally-determined supersaturation pressures and nucleation rates computed from our measured bubble number densities and decompression timescales, using Eqs. 1 and 2. D_w was taken from the equation of Zhang and Ni (2010) which takes into consideration the effects of H$_2$O content and temperature. Ω_l and X_m parameters are poorly constrained in basalt melts and we have used the values given by Mourtada-Bonnefoi and Laporte (2004), determined for rhyolitic liquids. Checks were performed to evaluate their influence on the calculated results and found to be small ($<$ 0.001 N.m$^{-1}$). In the same way, the choice of the D_w equation leads to very small ($<$ 0.001 N.m$^{-1}$) differences in σ. Because our P_f steps are large (50 MPa) and so supersaturation pressures given are maxima, calculated surface tensions are upper limits. Results give σ values of 0.058–0.059 N.m$^{-1}$ for series #1 and #3 melts, respectively, and of 0.091 N.m$^{-1}$ for series #2 melts. For comparison, Khitarov et al. (1979) obtained surface tensions of 0.1 to 0.4 N.m$^{-1}$ for basaltic melts at 1200°C and 100–500 MPa, the lowest end of the range corresponding to hydrous compositions. Pichavant et al. (2013) fitted σ data from their decompression experiments performed on compositions similar to our series #2 melts. They found a maximum σ of 0.18 N.m$^{-1}$ higher than in this study but consistent with their higher ΔP_{HoN} values.
6.2. Physical mechanisms of degassing and textures

Below we discuss the physical mechanisms of degassing that occur in our experiments, from nucleation, growth and coalescence of gas bubbles to magma fragmentation. Emphasis is placed on textural differences between the three series of post-decompression glasses.

6.2.1. Viscularities

The data for the three glass series show a general increase in vesicularity upon decompression due to magma ascent and decreasing P_f (Fig. 3a). More in detail, specificities appear between the different series (vesicularities of series #3 glasses are always very low below 5%). Viscularities of CO$_2$-bearing melts are lower than those of H$_2$O-rich melts, but we note that our CO$_2$-bearing compositions have reduced melt H$_2$O concentrations compared to our H$_2$O-rich melts. It is also worth noting that for series #1 and #2 glasses, the increase in vesicularity is more important between $P_f = 50$ and 25 MPa. Our measured vesicularities never reach the range for Stromboli pumices which have values between 47 and 67% (Polacci et al., 2006). However, it is recalled that the series #1 25 MPa P_f sample is partially fragmented, suggesting that the measured vesicularity is a minimum. The progressive increase in vesicularity with decreasing P_f is consistent with a mechanism of progressive melt vesiculation which is associated with decompression. This melt vesiculation mechanism is the result of different sub-processes that include bubble nucleation, growth, coalescence and outgassing, up to fragmentation. These different sub-processes are examined below.
6.2.2. Nucleation events

Textural evidence (bubble size distributions and bubble number densities) can be used to distinguish between single vs. multiple bubble nucleation events (or pulses) in our experiments. In series #1 glasses, the presence of numerous (1908) bubbles in the charge decompressed to \(P_f = 150 \) MPa (S+D36#1, Table 4), as well as its unimodal BSD (Fig. 4d), imply that a single event of nucleation occurred at \(P_f > 150 \) MPa. Then, \(BND \) remains relatively constant from \(P_f = 150 \) to 100 MPa, and even decrease slightly (from 275 to 210 mm\(^{-3}\), Table 4 and Fig. 3c). This plateau marks the end of this nucleation event (as supported by the lack of small (< 10 µm) newly formed bubbles at 100 MPa \(P_f \)), and the beginning of bubble growth, deformation and coalescence (e.g. Martel and Iacono-Marziano, 2015). Therefore, this event of nucleation appears to begin before \(P_f = 150 \) MPa and to end between \(P_f = 150 \) and 100 MPa, i.e. it is restricted to a narrow \(P_f \) range. In contrast, the presence of newly nucleated bubbles (< 5–110 µm) in the fragmented part of S+D38#1 sample (25 MPa \(P_f \)) is remarkable because it implies that a second bubble nucleation event occurs between \(P_f = 50 \) and 25 MPa. Thus, two distinct nucleation events take place in our \(\text{H}_2\text{O} \)-only melts (series #1), each restricted to narrow \(P_f \) intervals and both driven by melt \(\text{H}_2\text{O} \) supersaturation (Fig. 6a).

In series #2 samples, a strong increase of \(BND \) is observed from \(P_f = 150 \) (\(BND_{\text{melt}} = 0 \) mm\(^{-3}\)) to 100 MPa (\(BND_{\text{melt}} = 269–10331 \) mm\(^{-3}\)) (Table 3, Fig. 3c) which corresponds to the beginning of the homogeneous bubble nucleation process. Below 100 MPa, two cases are possible, either a continuous increase of the \(BND \) (D23#2) or a decrease of the \(BND \) (D34#2). The first case suggests the continuation of the same process of bubble nucleation below 100 MPa, an interpretation supported by the continuous increase in the number of bubbles, from 1692 (\(P_f = 100 \) MPa, D23#2), 11609 (\(P_f = 50 \) MPa, D9#2) to 16187 (\(P_f = 25 \) MPa, D28#2). In addition, bubble diameters give evidence for the appearance of small (< 10 µm) newly formed bubbles, and thus indicate the occurrence of secondary nucleation events. The second case is interpreted to reflect the combination of bubble coalescence and continuous bubble nucleation. The distance between bubbles in charge D34#2 is 28 µm, significantly lower (96 µm) than in the other charge (D23#2) for the same \(P_f \), consistent with the possibility that
coalescence can take place, thus decreasing the BND. In both cases, the evolution below 50 MPa and down to 25 MPa P_f is marked by an increase of BNDs which is interpreted as the continuation of the nucleation process.

In series #3 samples, as in series #2, the BND first increases from 150 to 100 MPa P_f ($BND_{melt} = 4$ to 836 mm$^{-3}$, Fig. 3c, Table 3). Then, it decreases at 50 MPa ($BND_{melt} = 17$ mm$^{-3}$) because of bubble coalescence (the number of bubbles is reduced from 5768 to 160, Table 3), before increasing again at 25 MPa ($BND_{melt} = 8799$ mm$^{-3}$). This increase is interpreted as the continuation of the same bubble nucleation process. This is supported by the observation that, as degassing continues, small (< 10 µm) bubbles begin to form along the decompression path from 150 to 25 MPa P_f. In addition, this indicates the occurrence of multiple nucleation events.

In series #2 and #3 post-decompression glasses, no BND stabilization (which would mark by a horizontal line in Fig. 3c) is observed. According to the classical nucleation theory, BND stabilization would reflect the end of a nucleation event (e.g. Toramaru, 2006). Consequently, the BND results for series #2 and #3 are consistent with a continuous, rather than limited to narrow P_f ranges, bubble nucleation, as observed in series #1 glasses and in other studies as well (e.g. Mourtada-Bonnefoi and Laporte, 2002; Cluzel et al., 2008). Continued multiple nucleation events have been proposed to yield power law distributions because small bubbles continue to form as volatile supersaturation is maintained (Blower et al., 2001, 2002; Yamada et al., 2005; Bai et al., 2008). This is precisely what is observed in series #2 and #3 which are both characterized by power law distributions (see below) and CO$_2$ melt concentrations in excess of the equilibrium solubilities.

We conclude to a major difference in the mechanism of bubble nucleation between series #1, on the one hand, and series #2 and #3, on the other hand. In series #1 glasses, a discontinuous mechanism of nucleation takes place, leading to two bubble nucleation events in narrow P_f intervals. Both nucleation events are driven by melt H$_2$O supersaturation. In contrast, in series #2 and #3 glasses, a single continuous mechanism of bubble nucleation occurs, leading to multiple discrete bubble nucleation pulses. In series #2 and #3, nucleation
takes place over a substantial P_f interval along the decompression path, and is driven by the generation of CO$_2$ supersaturated melts. Preservation of volatile supersaturated melts sustains continuous bubble nucleation during the entire duration of the decompression path.

In addition to differences concerning mechanisms of bubble nucleation between the three series, effects on bubble growth are also expected. It is likely that bubble growth occurs as a mechanism in our experiments in addition to bubble nucleation. The effect of bubble growth would be the most strongly marked in the longest decompression experiments, i.e. for the lowest P_f. We interpret the systematic differences in bubble size between the three series (Fig. 4a–c) to reflect the combined influence of bubble nucleation and growth. The largest bubbles are for the series #1 charge, followed by the series #2 and then the series #3 charges. Bubble growth is mainly controlled by volatile diffusion (Bai et al., 2008), as well as by gas volume expansion (larger at low pressures). H$_2$O having a higher melt diffusivity than CO$_2$ (Zhang and Ni, 2010), it is expected that bubbles would grow larger in series #1 than in series #2 and #3 if comparison is made at constant pressure so that the influence of gas volume expansion is neglected. The 25 MPa P_f charges (Fig. 4a–c) confirm this general trend since the highest bubble sizes occur in the series #1 charge.

6.2.3. Bubble coalescence

Bubble coalescence takes place in our H$_2$O-only glasses (series #1) although, in detail, differences appear along the decompression path. From $P_f = 150$ to 100 MPa, bubble coalescence is evidenced by a slight decrease of the bubble number density, from 275 (S+D36#1) to 210 mm$^{-3}$ (S+D39#1, Table 4, Fig. 3c). Common coalescence structures of dimpling (Castro et al., 2012) are present in charge S+D36#1. In addition, the number of bubbles decreases from 150 (1908) to 100 MPa (776, Table 4) while, at the same time, the average and main bubble sizes increase (Table 4, Fig. 3b). Lastly, the evolution of the bubble size distribution from unimodal to exponential (see below) indicates the presence of larger bubbles interpreted to result from coalescence (Fig. 9a). Therefore, in series #1 glasses bubble coalescence begins very early along the decompression path.
Bubble coalescence is most extensively marked between 100 (S+D39#1) and 50 (D10#1) MPa P_f. This is evidenced by a sharp decrease of BND (from 210 to 8 mm$^{-3}$, Tables 3 and 4, Fig. 3c), a strong decrease in the number of bubbles (from 776 to 38, Tables 3 and 4) and a sharp increase in the average bubble size (from 47 to 161 µm, Tables 3 and 4, Fig. 3b). Processes of bubble deformation and coalescence are preserved in 50 MPa P_f, as well as in 25 MPa P_f charges, suggesting that the mechanism of bubble coalescence continues below 50 until 25 MPa P_f. In the latter charge, typical coalescence textures (Fig. 7) are characterized by deformed bubble walls, interpenetrating bubbles, dome-into-dimple shapes and vestiges of dimple structures, suggesting bending, stretching and dimpling mechanisms (Castro et al., 2012; Martel and Iacono-Marziano, 2015). It is worth mentioning that bubble coalescence is also observed in the fragmented parts of S+D38#1 sample. Bubble loss by buoyancy (outgassing) has to be considered, especially between 100 and 50 MPa P_f (contributing to lower BNDs), although it must be limited by the short duration of the decompression (~11 min). Indeed, calculations of the gravity-driven upward movement of H$_2$O bubbles in charge S+D39#1 (which appears to be the most critically impacted by bubble loss), using the Hadamard-Rybcynski bubble velocity equation (Bottinga and Javoy, 1990b), give vertical travel distances of ~0.5–1 mm for bubbles of 50 µm diameter (and 7–18 mm for bubbles of 190 µm, bubble sizes from Table 4). Although the results depend sensitively on the bubble diameter, as well as on the gas density and the viscosity of the melt, they demonstrate that outgassing possibly occurs in our experiments, and can contribute to the loss of the larger bubbles and result in vesicularities below the equilibrium values.

In contrast with series #1, typical coalescence textures generally cannot be observed in series #2 and #3 glasses. In the absence of textural evidence, coalescence is demonstrated by a decrease of BNDs and bubble numbers, associated with an increase in bubble sizes. In comparison, bubble growth would mark by a similar increase in bubble sizes, but at constant BNDs and bubble numbers. Generally, coalescence is much less marked in CO$_2$-bearing than in CO$_2$-free melts. In series #2, coalescence is not systematic. BND values can either decrease or increase between 100 and 50 MPa P_f (Table 3, Fig. 3c). We interpret this difference to reflect variations in distances between bubbles in the two series #2 100 MPa P_f charges. The average distance between bubbles in charge D23#2 (96 µm) is larger than in charge D34#2 (28 µm), consistent with the absence of bubble coalescence when starting from a 100 MPa charge such as D23#2. Between 50 and 25 MPa P_f, the mechanism of bubble coalescence
continues despite an increase of the BND (Fig. 3c). However, coalescence textures were observed in a series #2 glass at $P_f = 25$ MPa (D28#2, Table 3). The mechanism of bubble coalescence is partially hidden by the continuing bubble nucleation.

We conclude that bubble coalescence occurs and that it is more strongly marked in the same pressure range (100–50 MPa) for the three glass series.

6.2.4. Fragmentation

Fragmentation was observed (although partially) in one series #1 charge decompressed to $P_f = 25$ MPa, but never at $P_f = 50$ MPa. In an analogous way, Le Gall and Pichavant (2016) obtained several fragmented charges at the same P_f in slower (39 kPa/s) decompression experiments. Therefore, the available evidence suggests a fragmentation threshold near 25 MPa. A detailed discussion of the fragmentation mechanisms is outside the scope of this paper. However, our data, combined with those of Le Gall and Pichavant (2016), provide clear evidence that fragmentation is intimately related to the second bubble nucleation event that occurs between 50 and 25 MPa in series #1 melts. It is worth reminding that the small bubbles that result from the second nucleation event were observed only in the fragmented part of S+D38#1. The existence of a second nucleation event enhancing magma fragmentation has been previously proposed by e.g. Massol and Koyaguchi (2005).

6.3. Equilibrium vs. non-equilibrium degassing

Chemical equilibrium, as classically assumed for basaltic melts (Sparks et al., 1994), is reached or approached in our H$_2$O-only melts (series #1). Melts decompressed to 150, 100 and 50 MPa P_f exhibit near-equilibrium H$_2$O concentrations (Fig. 5). However, deviation from equilibrium is encountered in the charge decompressed to 25 MPa P_f (S+D38#1) which shows glass H$_2$O contents in slight excess (supersaturation of 0.15–0.40 wt.% absolute H$_2$O, Fig. 6) of the equilibrium solubility (Lesne et al., 2011b). Although this charge is particular (partially fragmented), we interpret our measured H$_2$O concentrations to indicate the
possibility of non-equilibrium degassing in series #1 melts at very low pressures, providing the driving force for the occurrence of the second bubble nucleation event. Despite chemical equilibrium being approached, textural equilibrium (defined by computed values of the volume fraction of bubbles expected from the equilibrium degassing of either a H$_2$O- or a CO$_2$-bearing basaltic melt, see Fig. 3a) is not reached in the series #1 melts which have vesicularities lower than expected from equilibrium degassing (Fig. 3a). This apparent contradiction between near-equilibrium melt H$_2$O concentrations and non-equilibrium vesicularities can be explained alternatively by a mechanism of diffusive motion of H$_2$O from inside the melt toward the gas phase (gas bubbles and capsule-melt interface) or by bubble outgassing. Concerning the former hypothesis, there is some evidence for H$_2$O diffusion in our series #1 samples (Fig. 6) but no indication for massive diffusive transfer of H$_2$O that would lead to H$_2$O loss out of melt cylinders. Texturally, no systematic bubble-depleted rims have been observed in our series #1 samples. About the latter hypothesis, bubble outgassing has been demonstrated above (see Bubble coalescence) to be operative in our experiments. We conclude that the lowering of our experimental vesicularities is mainly due to bubble outgassing.

Non-equilibrium degassing occurs systematically in the CO$_2$-bearing melts (series #2 and #3). CO$_2$ is retained within these melts at elevated concentration levels. In parallel, H$_2$O is lost in significant amounts. The combination of high melt CO$_2$ concentrations and H$_2$O losses generates a degassing trend that is in marked contrast with theoretical equilibrium closed-system degassing trends (Fig. 5). The unusual degassing trends observed in our experiments for the series #2 and #3 melts were previously found in the decompression experiments of Pichavant et al. (2013). The authors stressed the importance of two characteristic distances (the distance between bubbles and the volatile diffusion distance) in the control of the degassing process. This model attributes an important role to differences in diffusivities between the volatile components in the melt, as emphasized by Yoshimura (2015) who developed a diffusive fractionation model of H$_2$O and CO$_2$ degassing. As an illustration, at P_f = 50 MPa (D9#2), the calculated distance for CO$_2$ diffusion is only 150 µm in the time interval of the decompression experiment (Zhang and Ni, 2010) while the H$_2$O diffusion is 1060 µm, i.e. 7 times faster. In that charge the average distance between bubbles is 62 µm which would appear to be small enough for equilibrium degassing to be reached. However, this is not what is observed since CO$_2$ is kept at concentrations much higher than expected
along the 50 MPa isobar (Fig. 5). As an explanation, it is worth mentioning that the distance between bubbles is an average and also that there are large uncertainties on the timescales used for the diffusion distance calculations. Despite the general non-equilibrium behavior in all series #2 and #3 charges, the series #2 charge decompressed to \(P_f = 25 \text{ MPa} \) (D28#2) approaches equilibrium CO\(_2\) concentration. This charge is characterized by relatively large (31 \(\mu \text{m} \)) gas bubbles and a high vesicularity (23\%). The glass CO\(_2\) concentration vs. vesicularity plot (Fig. 8) shows a negative trend (Pichavant et al., 2013). In comparison, e.g. Cluzel et al. (2008) emphasized the importance of the \(\text{BND} \) parameter, the extent of degassing being positively correlated with the \(\text{BND} \). However, our data show high and variable \(\text{BNDs} \) correlated with large supersaturations in CO\(_2\). Equilibrium degassing requires both numerous and large bubbles, i.e. the expression of a high vesicularity. This demonstrates that the mode of degassing and the textural parameters are related.

7. Volcanological applications

7.1. Comparison between experimental and natural textural parameters

Despite the fact that our experimental products do not simulate the last stages of degassing near the surface and post-fragmentation processes, the comparison of bubble textures between experimental and eruptive products can provide insights on degassing processes occurring in the volcanic conduit. The comparison focuses on products from three well-documented basaltic Plinian eruptions (Tarawera in 1886, Masaya and Etna in 122 BC, Sable et al., 2006, 2009; Costantini et al., 2010) and on products of Strombolian paroxysms (Polacci et al., 2006, 2009). At \(P_f = 25 \text{ MPa} \) (i.e. at the pressure corresponding to the shallowest depth in our experiments, \(\sim 1 \text{ km} \)), the H\(_2\)O-only charge (S+D38#1, Fig. 4a) exhibits a population of relatively large (76–414 \(\mu \text{m} \)) interconnected bubbles which are similar to the bubble-chains observed in products of the basaltic Plinian eruptions (Sable et al., 2006, 2009; Costantini et al., 2010). From our results, these bubble-chains would be generated by interaction between coalesced bubbles, in agreement with previous interpretations (Sable et al., 2006, 2009; Costantini et al., 2010). In addition, at \(P_f = 25 \text{ MPa} \), the CO\(_2\)-bearing charges (D28#2 and D25#3, Fig. 4b, c) exhibit a population of small (< 10 \(\mu \text{m} \)) to larger (up to 0.4 mm) bubbles. The products of basaltic Plinian eruptions and
Strombolian paroxysms also show a wide range of bubble sizes. The former have bubble sizes which range from 2–10 µm to 3–5 mm (Tarawera and Etna samples; Sable et al., 2006, 2009) up to 1.2 cm (Masaya samples; Costantini et al., 2010). The latter have a narrower range of bubble sizes ranging from 21–23 µm to 1 mm (Polacci et al., 2009). In both cases, the natural products exhibit larger bubbles than our experimental products. In the Plinian eruptions, the bubbles have either spherical to subspherical shapes or complex shapes (as discussed above). In contrast, the pumices from the paroxysmal Stromboli explosions display only the spherical to subspherical bubbles. From our results, the larger bubbles could have grown from high pressure, as a result of the combination of growth and coalescence processes. In contrast, the presence of small bubbles is always indicative of a mechanism of continuous nucleation occurring up to magma fragmentation, in agreement with the interpretation of Costantini et al. (2010). However, the absence of bubbles < 20 µm in the Strombolian pumices suggests that the mechanism of nucleation was ended before magma fragmentation. The lack of large (> 1 mm) bubbles with complex shapes implies that coalescence was not the dominant process, as observed in our CO₂-bearing charges.

Our experimental products have low vesicularities which extend up to 25.6% (series #1), 22.7% (series #2) and 4.97% (series #3). These values are much lower than the vesicularities measured in basaltic explosive products. For comparison, vesicularities of Strombolian pumices range from 47 to 67% (Polacci et al., 2006; Fig. 3a) and those of the Plinian products from the Masaya eruption are even higher, ranging between 70 and 78% (Costantini et al., 2010). It is reasonable to expect that the field of Stromboli pumices can be attained by extrapolating the data for the series #2 compositions to \(P_f \ll 25 \text{ MPa} \). For the H₂O-rich compositions, the 25 MPa \(P_f \) charge is partially fragmented and the measured vesicularity is a minimum.

The \(BNDs \) found in Strombolian pumices \((6–9.10^3 \text{ mm}^3, \text{Polacci et al., 2009; Fig. 3c}) \) are in the same range as the \(BNDs \) measured in our CO₂-bearing run products \((\text{up to } 10^4 \text{ mm}^3 \text{ in series #2 and #3}) \). In detail, at \(P_f = 25 \text{ MPa} \), the natural pumices have \(BNDs \) lower by one order of magnitude than the series #2 and #3 charges. The H₂O-rich charges \((\text{series #1, Fig. 3c}) \) are much less bubble-rich. The basaltic Plinian products from the Masaya eruption have \(BNDs \) \((3–8.10^4 \text{ mm}^3, \text{Costantini et al., 2010}) \) higher than all our experimental products.
We conclude that our decompression experiments either reproduce or approach the natural textures of explosive basaltic eruptions, in terms of vesicularity, bubble textures, sizes and number densities.

7.2. Use of BSD systematics

Below, we extend the comparison between our experimental products and the basaltic explosive products selected above to include BSDs. Vesicle size distribution is one of the most common textural parameters measured to understand processes of bubble nucleation and growth in natural products (e.g. Blower et al., 2001; Shea et al., 2010). Volcanic rocks are typically characterized by power law and exponential distributions of vesicle sizes (e.g. Gaonac’h et al., 1996; Bai et al., 2008; Polacci et al., 2009), but these were generally not reproduced in experiments, wherein a single event of nucleation is recorded and interactions between bubbles are limited (e.g. Lyakhovsky et al., 1996; Mourtada-Bonnefoi and Laporte, 1999; Gardner et al., 1999; Mourtada-Bonnefoi and Laporte, 2002; Cluzel et al., 2008), producing a unimodal BSD (Blower et al., 2002). However, in some experiments, products with BSDs more complex than unimodal have been encountered, such as in the study of Simakin et al. (1999), the analogue experiments of Blower et al. (2001, 2002) and in the degassing experiments of Bai et al. (2008, 2010, 2011), Polacci et al. (2008) and Masotta et al. (2014). Below, methods developed for the interpretation of natural BSDs are applied to our experimental results.

To do so, we have represented our experimental BSDs in cumulative number density plots, as commonly used (Fig. 9). These were obtained by regressing the number of bubbles per mm3 against the bubble volume. In doing so, two main BSD types were encountered in our experimental samples: exponential and power law. Regressions were performed with Excel software. Very good fits were generally obtained yielding $R^2 > 0.99$ for more than 50% charges. One charge (S+D36#1) yielded a relatively poor exponential fit ($R^2 = 0.86$), consistent with its unimodal BSD (Figs. 4d, 9a).
The three post-decompression glass series show a different evolution of the BSD (Figs. 4d–f and 9). Upon decreasing P_t, the BSD of series #1 glasses evolves from a unimodal (S+D36#1, $P_t = 150$ MPa, Figs. 4d and 9a), mixed power law–exponential (S+D39#1, $P_t = 100$ MPa, Fig. 9a) to an exponential distribution (D10#1 and S+D38#1, $P_t = 50–25$ MPa, Fig. 9a). The mixed distribution recognized in charge S+D39#1 corresponds to two classes of bubble sizes. The small to medium bubbles (volumes $\sim 10^2–10^5 \mu m^3$) can be fitted by an exponential function whereas the larger bubbles (volumes $\sim 10^5–10^6 \mu m^3$) are best described by a power law with an exponent of 1.45. Texturally, it is clear that these large bubbles result from coalescence.

In series #2 samples, both power law and exponential bubble size distributions were observed when decreasing P_t from 100 to 25 MPa (Fig. 9b). At $P_t = 100$ MPa (i.e. at the pressure where bubbles start to nucleate), the BSDs of the two D23#2 and D34#2 duplicate charges are best described by power laws (Fig. 9b). In contrast, at $P_t = 50$ and 25 MPa, the BSDs in charges D9#2 and D28#2 can be described by mixed power law–exponential distributions: the small-to-medium sized bubbles can be fitted with an exponential relation (Fig. 9b) whereas the medium-to-large bubbles follow a power law relation. Series #2 power law exponents range from 0.78 to 2.24. The low and high values of the range are for the two duplicate charges decompressed to 100 MPa P_t. If the power law exponents of these two charges are averaged ($\alpha = 1.51$), all series #2 power law exponents appear to be tightly grouped (1.38–1.62).

In series #3 post-decompression glasses (Fig. 9c), only power law distributions were observed when decreasing P_t from 150 to 25 MPa, with the exception of the medium-sized bubbles (volumes $\sim 10^3–10^5 \mu m^3$) in the D9#3 charge ($P_t = 50$ MPa) which are best fitted with an exponential distribution (bubble coalescence effect). The series #3 glasses display power law exponents of 0.62 to 1.23, slightly lower than in series #2 glasses.
We conclude to a systematic change in the BSD evolution with decreasing P_f between the three glass series. The H_2O-rich, CO$_2$-free, post-decompression glasses (series #1) are the only ones with a unimodal distribution and also the only ones with exponential distributions for all classes of bubble sizes. In contrast, the CO$_2$-bearing post-decompression glasses (series #2 and #3) are characterized by power law distributions. Among the CO$_2$-bearing glasses, only the series #2 show a transition from a power law to a mixed power law–exponential distribution. Series #3 glasses are characterized by predominantly power law BSDs.

Two distinct mechanisms have been invoked to explain the occurrence of power law bubble size distributions in volcanic rocks. A mechanism of diffusive bubble growth, allowing “cascading” coalescence, was involved by Gaonac’h et al. (1996) whereas, according to Blower et al. (2001, 2002), such distributions would be more indicative of far-from-equilibrium degassing, leading to a mechanism of continuous bubble nucleation and multiple nucleation events (in the absence of bubble coalescence). Exponential distributions would result from steady-state bubble nucleation and growth and thus would imply near-equilibrium degassing (Baker et al., 2006; Bai et al., 2008).

In our experiments, a unimodal distribution was found in the H_2O-only melts at a high P_f (in S+D36#1, $P_f = 150$ MPa), the closest to the beginning of the nucleation mechanism. The latter takes place in a narrow P_f interval, leading to a single bubble nucleation event. The melt H_2O concentration in that charge is equal to the solubility. Therefore, the S+D36#1 charge provides evidence that a unimodal bubble size distribution implies gas-melt equilibrium, despite the fact that its vesicularity is significantly less than the theoretical value. Exponential distributions are also specific to the H_2O-only series whose post-decompression glasses have generally (except the partially fragmented charge S+D38#1) equilibrium melt H_2O concentrations. Again, our experimental data support the interpretation that exponential BSDs are generated by a system evolving under near-equilibrium conditions (Blower et al., 2001; Baker et al., 2006; Bai et al., 2008) despite vesicularities being lower than theoretical values. The evolution from a unimodal to an exponential distribution would thus result from post-nucleation mechanisms (growth and coalescence), leading to larger bubble sizes and lower bubble number densities. Power law distributions are specific to the CO$_2$-bearing charges which are characterized by a single mechanism of continuous nucleation, leading to
multiple bubble nucleation events. Small bubbles continue to form because the level of volatile supersaturation in the melts is maintained. This is consistent with the preservation of high out-of-equilibrium CO$_2$ concentrations in the glasses. Therefore, our data confirm the model of Blower et al. (2001, 2002) in that power law distributions are associated with far-from-equilibrium degassing. Mixed power law–exponential distributions would thus correspond to an intermediate case where bubble nucleation is dominated by a coalescence process.

On this basis, we examine below natural textures of the selected basaltic explosive eruptions above. The microtextural data available for those different explosive products exhibit a range of BSDs. The bubble size distributions of Plinian eruptions products (Sable et al., 2006, 2009; Costantini et al., 2010) follow power law trends with exponents of the order of 1.5 (when exponents are expressed as volume, Baker et al., 2012), i.e. in the range of our experimental power law exponents for the H$_2$O- and CO$_2$-bearing melts (series #2). In comparison, pumice samples from Strombolian paroxysmal explosions are best fit by mixed power law–exponential distributions with a power law exponent of 1.4 (Polacci et al., 2009, again as the experimental power law exponent of our 25 MPa P_f series #2 charge (D28#2). From our results, the power law distributions found for the Plinian products imply disequilibrium degassing, leading to continuous bubble nucleation and growth, in agreement with previous interpretation (Costantini et al., 2010). The mixed power law–exponential found in Strombolian pumices would be indicative of a system where coalescence is superimposed on a continuous bubble nucleation process. This would correspond to a disequilibrium degassing situation and to an evolution toward equilibrium (e.g. Polacci et al., 2009).
8. Conclusions

We have performed high pressure and temperature decompression experiments to study the systematics of homogeneous bubble nucleation in basaltic magmas. Compared to previous works (Lensky et al., 2006; Pichavant et al., 2013) this study is the first to provide systematic textural information along the decompression path for three series of volatile concentrations. The main conclusions are the following:

(1) Degrees of supersaturation required for homogeneous bubble nucleation (\(\Delta P_{\text{HoN}}\)) are \(\leq 50–100\) MPa, weakly dependent on the melt H\(_2\)O concentration but possibly dependent on the melt CO\(_2\) concentration. These \(\Delta P_{\text{HoN}}\) are significantly lower than found for silicic melt compositions which stresses that bubble nucleation in basaltic magmas is comparatively easy.

(2) In the H\(_2\)O-rich melts, homogeneous nucleation occurs as two distinct events taking place in narrow \(P_t\) intervals. The first and most important nucleation of bubbles occurs at high \(P_t\) (\(200 < P_t < 150\) MPa) and the second nucleation of bubbles is restricted to low \(P_t\) (\(50 < P_t < 25\) MPa), in close association with fragmentation. In contrast, in the CO\(_2\)-bearing melts, a single continuous mechanism of nucleation occurs over a substantial \(P_t\) interval along the decompression path, leading to multiple bubble nucleation events.

(3) Post-nucleation mechanisms include bubble growth, coalescence and outgassing, and lead to larger bubble sizes and lower BNDs. Specific bubble coalescence textures and progressive BND decreases were observed with decreasing \(P_t\). In both H\(_2\)O-rich and CO\(_2\)-bearing melts, coalescence is the more strongly marked in the same pressure range of 100–50 MPa.
(4) Both near-equilibrium and disequilibrium degassing occur in our experiments. The former is associated with the H$_2$O-rich, CO$_2$-free, melts while the latter occurs systematically in the CO$_2$-bearing melts. Post-decompression glasses retain CO$_2$ concentrations much higher than equilibrium values. There is a systematic link between textures and mode of degassing (equilibrium vs. disequilibrium). Near-equilibrium degassing requires both numerous and large bubbles and so high vesicularities.

(5) Partial fragmentation occurred in one H$_2$O-rich charge decompressed to 25 MPa, intimately related to the second event of bubble nucleation.

(6) Our experiments underline a significant effect of CO$_2$ on mechanisms (ΔP_{HoN} values, vesicularities, bubble sizes and densities) of basaltic melt degassing. The main difference between CO$_2$-bearing and CO$_2$-free melts concerns the mechanism of nucleation, continuous vs. discontinuous in the case of CO$_2$-bearing vs. CO$_2$-free melts.

(7) Our experimental decompression textures approach the characteristics of basaltic products from explosive eruptions. Vesicularities, BNDs, bubble textures and sizes bring constraints on degassing processes occurring in the conduit.

(8) Our experimental products exhibit different BSDs, unimodal, exponential and power law with the volatile series. A relation is established between mechanisms of melt degassing, textures, volatile concentrations and type of BSDs. This provides a test on existing BSD based models to interpret natural degassing mechanisms.
Acknowledgments

This project has been financially supported by the VUELCO (EC FP7) and DEGAZMAG (ANR 2011 Blanc SIMI 5-6 003-02) projects. We are very grateful to A. Burgisser for help with the X-ray microtomography analysis technique and to I. Di Carlo for assistance with SEM analyses. We thank M.J. Rutherford for his editorial work, as well as T. Shea and D.R. Baker for their detailed and constructive reviews which helped to improve the manuscript. Previous comments from D. Laporte were also highly appreciated.
References

Figure captions

Fig. 1 Three dimensional representations of the samples and methods of vesicularity determination used in this study. V: total volume investigated; v2: void space volume; v3: melt volume; v4: bubble volume. (a) Vesicularity (V^c, Tables 3 and 4) determined from the total sample volume V ($V^c = 100*v4/(v3+v4)$), see text for the determination of v3 and v4. (b) Vesicularity (V^d, Tables 3 and 4) determined from a delimited sub-volume V_{sub} ($V^d = 100*v4/(v3+v4)$), see text for the determination of v4. The open bubbles located at the rim of the glass cylinder appear in black in both (a) and (b). In (a), these are considered as voids (v2), while in (b) these are counted as bubbles (v4). In (a), the trace of the sub-volume is delimited by the dashed square.

Fig. 2 Representative textures of post-decompression glasses. (a) Detailed transmitted light microscopic photograph of a double-polished section of a sample (D31#3, $P_f = 150$ MPa) showing a homogeneous distribution of newly formed small (< 5 µm) bubbles and no oxides or obvious heterogeneities which could have facilitated their nucleation. (b) Tomographic slice of a sample quenched at a pressure above the critical pressure of homogeneous bubble nucleation (sample D31#2, $P_f = 150$ MPa): the sample is bubble-free. (c) Tomographic slice of a sample quenched at a pressure just below the pressure of homogeneous bubble nucleation (sample D34#2, $P_f = 100$ MPa): the sample is densely vesiculated with small and almost homogeneously distributed bubbles. The black arrow indicates the bubbly rim. See Table 3 for details about the experimental conditions and textural results.

Fig. 3 (a) Vesicularity V, (b) average bubble diameter D and (c) bubble number density per unit volume of melt BND_{melt} plotted as a function of final pressure P_f for the post-decompression glasses of this study. Experimental data in Tables 3 and 4. For the partially fragmented sample S+D38#1, data from the unfragmented part are from Table 4. See text for bubble diameters in the fragmented part. The three glass series are distinguished (see text). Series #1: black circles; series #2: gray circles; series #3: white circles. In (a), equilibrium vesicularities (thick black and gray lines) calculated respectively for pure H$_2$O and CO$_2$ degassing (see text) are shown for comparison with the experimental data. The V, D and BND_{melt} values for Strombolian pumices and Masaya clasts (for this one only BND_{melt} values are shown) are plotted (data come from Polacci et al., 2006, 2009 and Costantini et al., 2010, respectively) for comparison with the experimental data points.
Fig. 4 Bubble textures of series (a) #1, (b) #2 and (c) #3 glasses decompressed to 25 MPa P_f. Evolution of the bubble size distribution (BSD) with decreasing pressure in series (d) #1, (e) #2 and (f) #3 post-decompression glasses. For each series, two post-decompression glasses are detailed, one representative of the early and the other of the late stage of the nucleation process. Histograms show frequencies (normalized to 100) of individual bubble diameters in the glass population using size classes of 10 µm each. Numbers in parentheses are bubble numbers for each population (n in Tables 3 and 4). Details about experimental conditions and other textural data in Tables 3 and 4.

Fig. 5 H_2O and CO_2 concentrations in glasses from the synthesis and decompression experiments. Black symbols: series #1 glasses; gray symbols: series #2 glasses; white symbols: series #3 glasses. Circles: pre-decompression glasses synthesized at 200 MPa P_i (initial pressure); rectangles: glasses decompressed to 150 MPa P_f (final pressure); triangles: glasses decompressed to 100 MPa P_f; squares: glasses decompressed to 50 MPa P_f; diamonds: glasses decompressed to 25 MPa P_f. Error bars (standard deviations, Table 5) are indicated on the data points. Thin continuous lines: fluid-melt equilibrium saturation isobars (25–250 MPa); dashed curves: equilibrium decompression paths calculated for a series #2 and a series #3 pre-decompression melt assuming closed-system behavior. Isobars and decompression paths both calculated with VolatileCalc (Newman and Lowenstern, 2002).

Fig. 6 H_2O distribution profiles measured in the series #1 glasses decompressed to 150–25 MPa P_f, perpendicular to the long axis of the cylinder as a function of the distance from the edge. The farthest point of each FTIR profile was acquired as close as possible to the other edge. Average H_2O concentration data are given in Table 5. (a) H_2O supersaturation vs. distance plot. H_2O supersaturation is defined relative to the H_2O solubility at each P_f (Lesne et al., 2011b) as: H_2O supersaturation = measured melt H_2O concentration at a specific position – H_2O solubility. The dashed horizontal line (H_2O supersaturation = 0) represents the solubility values for each P_f. Note that three profiles are available for the 25 MPa P_f charge (S+D38#1). The H_2O distribution profile for sample D10#1 (P_f = 50 MPa) is illustrated in (b).

Fig. 7 Typical coalescence structures frozen in sample S+D38#1 decompressed to 25 MPa P_f. Inter-bubble melt films (IBFs) are thinned by stretching (a), bending (b), and dimpling (c, d) (see also Castro et al., 2012; Martel and Iacono-Marziano, 2015). See Table 4 for experimental conditions.
Fig. 8 H_2O (a) and CO_2 (b) concentrations in post-decompression glasses (Table 5) plotted as a function of vesicularity (expressed as vol% bubbles, V^d in Tables 3 and 4). In (a), only data for series #1 and #2 glasses are shown and data for series #2 and #3 in (b). Black symbols: series #1 glasses; gray symbols: series #2 glasses; white symbols: series #3 glasses. Rectangles: glasses decompressed to 150 MPa P_f (final pressure); triangles: glasses decompressed to 100 MPa P_f; squares: glasses decompressed to 50 MPa P_f; diamonds: glasses decompressed to 25 MPa P_f. Dashed horizontal lines: pure H_2O (a) and CO_2 (b) solubilities for each P_f (Lesne et al., 2011a, b). Error bars (standard deviations, Table 5) are indicated within the data points.

Fig. 9 Cumulative BND plots. Bubble size distributions (BSD) expressed as log-log plots of bubble number density (BND_{melt}, in mm$^{-3}$) vs. bubble volume for all post-decompression glasses from this study. For each glass sample, the bubble population is characterized by a range of bubble size (expressed as diameters in Tables 3 and 4) and a bubble number density value (Tables 3 and 4). Each point along the distribution curve corresponds to the number of bubbles with a volume strictly larger than a given volume. (a) Series #1 glasses, (b) series #2 glasses, (c) series #3 glasses. Rectangles: glasses decompressed to 150 MPa P_f (final pressure); triangles: glasses decompressed to 100 MPa P_f; squares: glasses decompressed to 50 MPa P_f; diamonds: glasses decompressed to 25 MPa P_f. The continuous lines are power law fits and the continuous curves are exponential fits, both regressed with Excel software. α is the power law exponent.
Figure 1
Figure 2
Figure 3
Figure 4

Figure 4 illustrates the bubble diameter distribution for different series. The images and graphs show the variation in bubble size under different conditions, with series #1, #2, and #3 presented in panels a, b, and c, respectively. The graphs depict the frequency distribution of bubble diameters for each series, with bars indicating the percentage of bubbles within specific size ranges.
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Table 1. Composition of PST-9 golden pumice and starting glass

<table>
<thead>
<tr>
<th>Label</th>
<th>PST-9<sup>a</sup></th>
<th>Glass<sup>b</sup> (n = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO<sub>2</sub></td>
<td>49.4</td>
<td>50.9 (3)<sup>c</sup></td>
</tr>
<tr>
<td>TiO<sub>2</sub></td>
<td>0.79</td>
<td>0.81 (8)</td>
</tr>
<tr>
<td>Al<sub>2</sub>O<sub>3</sub></td>
<td>15.75</td>
<td>15.99 (28)</td>
</tr>
<tr>
<td>Fe<sub>2</sub>O<sub>3</sub></td>
<td>1.3</td>
<td>nd</td>
</tr>
<tr>
<td>FeO</td>
<td>6.5</td>
<td>7.7 (6)</td>
</tr>
<tr>
<td>MnO</td>
<td>0.15</td>
<td>0.16 (8)</td>
</tr>
<tr>
<td>MgO</td>
<td>7.96</td>
<td>7.21 (41)</td>
</tr>
<tr>
<td>CaO</td>
<td>12.73</td>
<td>12.34 (24)</td>
</tr>
<tr>
<td>Na<sub>2</sub>O</td>
<td>2.27</td>
<td>2.39 (9)</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>1.85</td>
<td>1.90 (12)</td>
</tr>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>0.43</td>
<td>0.55 (17)</td>
</tr>
<tr>
<td>Cr<sub>2</sub>O<sub>3</sub></td>
<td>–</td>
<td>0.03 (4)</td>
</tr>
<tr>
<td>NiO</td>
<td>–</td>
<td>0.05 (6)</td>
</tr>
<tr>
<td>Total</td>
<td>99.1</td>
<td>97.4 (10)</td>
</tr>
</tbody>
</table>

^a Whole-rock analysis (from Di Carlo et al., 2006). Major elements (wt.%) analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES); total includes LOI (loss of ignition) = 0.62 wt.%; trace elements analyzed by inductively coupled plasma mass spectrometry (ICP-MS; Cr 259 ppm; Ni 75 ppm; Ba 920 ppm; La 45 ppm; Eu 2.0 ppm; Lu 0.3 ppm). Analysis performed at the Centre de Recherches Pétrographiques et Géochimiques (CRPG, Nancy, France).

^b Electron microprobe analysis (normalized to 100%) of PST-9 glass, with all Fe reported as FeO; oxides are in wt.%.

^c One standard deviation in terms of last digit.

n: number of analyses.

nd: not determined.
Table 2. Synthesis experiments

<table>
<thead>
<tr>
<th>Run</th>
<th>XH₂Oᵢ₀</th>
<th>T (°C)</th>
<th>P (MPa)</th>
<th>t (min)</th>
<th>H₂O glass (wt.%)</th>
<th>CO₂ glass (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile: H₂O (#1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9#1</td>
<td>1</td>
<td>1200</td>
<td>201.8</td>
<td>2795</td>
<td>4.91 (1)</td>
<td>0 (0)</td>
</tr>
<tr>
<td>Volatile: H₂O+CO₂ (#2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6#2</td>
<td>0.56</td>
<td>1200</td>
<td>202.2</td>
<td>2760</td>
<td>2.37 (1)</td>
<td>1011 (106)</td>
</tr>
<tr>
<td>S13#2</td>
<td>0.58</td>
<td>1200</td>
<td>201.5</td>
<td>2878</td>
<td>2.45 (2)</td>
<td>1008 (21)</td>
</tr>
<tr>
<td>S16#2</td>
<td>0.59</td>
<td>1200</td>
<td>201.8</td>
<td>2873</td>
<td>2.42 (3)</td>
<td>901 (104)</td>
</tr>
<tr>
<td>Volatile: H₂O+CO₂ (#3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6#3</td>
<td>0</td>
<td>1200</td>
<td>202.2</td>
<td>2760</td>
<td>0.80 (3)</td>
<td>852 (57)</td>
</tr>
<tr>
<td>S13#3</td>
<td>0</td>
<td>1200</td>
<td>201.5</td>
<td>2878</td>
<td>1.09 (3)</td>
<td>923 (132)</td>
</tr>
<tr>
<td>S16#3</td>
<td>0</td>
<td>1200</td>
<td>201.8</td>
<td>2873</td>
<td>1.06 (1)</td>
<td>840 (64)</td>
</tr>
</tbody>
</table>

XH₂Oᵢ₀ = initial molar H₂O / (H₂O + CO₂) added in the charge.

T: run temperature; P: run pressure; t: duration of the synthesis experiment.
<table>
<thead>
<tr>
<th>Sa.</th>
<th>Start m/ing (M (M<sub>mp</sub>)</th>
<th>P<sub>i</sub> (Pa)</th>
<th>P<sub>f</sub> (Pa)</th>
<th>t<sub>ramp</sub> (s)</th>
<th></th>
<th>dP/dt</th>
<th>(kPa/s)</th>
<th>Bubble 3D characterics</th>
<th>n</th>
<th>pk. size (µm)</th>
<th>range D<sub>a</sub> (µm)</th>
<th>BND<sub>a</sub> (mm<sup>3</sup>)</th>
<th>BND<sub>melt</sub> BND<sub>lat</sub> (mm<sup>3</sup>)</th>
<th>S (µm)</th>
<th>V<sub>e</sub> (vol. %)</th>
<th>V<sub>d</sub> (vol. %)</th>
<th>V<sub>Equi.</sub>H<sub>2</sub>O (vol. %)</th>
<th>V<sub>Equi.</sub>CO<sub>2</sub> (vol. %)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>n</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>19 78</td>
<td>38</td>
<td>22*</td>
<td>16</td>
<td>7.8</td>
<td>8.1</td>
<td>30</td>
<td>2.9</td>
<td>9.8</td>
<td>51.0</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>S9#1</td>
<td>200 50</td>
<td>19 78</td>
<td>368</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S16#</td>
<td>200 150</td>
<td>64 78</td>
<td>109</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>S13#</td>
<td>200 100</td>
<td>13 78</td>
<td>104</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9#</td>
<td>S6#2</td>
<td>200 50</td>
<td>19 78</td>
<td>28</td>
<td>09</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S16#</td>
<td>200 25</td>
<td>23 78</td>
<td>106</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S13#</td>
<td>200 25</td>
<td>23 78</td>
<td>72</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

- **Volatile:** H₂O (#1)
- **Volatile:** H₂O+CO₂ (#2)
- **Volatile:** H₂O+CO₂ (#3)

Table 3. Decompression experiments: run conditions and textural information

- P_i (initial pressure): pressure at the beginning of decompression ramp; P_f (final pressure): pressure at which the experiment was quenched; t_{ramp}: duration of the ramp; |dP/dt|: decompression/ascent rate (=10⁶(P_i-P_f)/(gd_{ramp})), with g = 9.81 m/s² and d = 2650 kg/m³.
X-ray microtomographic data acquired on entire charges (except V^d).

n: number of bubbles counted in the analyzed volume.

pk. size: main peak diameter in bubble size distribution histograms.

range: total range of bubble diameters.

D: average bubble diameter.

a BND: bubble number density expressed in number of bubbles per mm3 of the total sample (glass + bubbles).

b BND_{melt}: bubble number density per melt volume (without bubbles, following Proussevitch et al., 2007).

S: average spacing between bubbles calculated from BND_{melt} ($S = (3/4\pi BND_{melt})^{1/3}$; Lyakhovsky et al., 1996; Baker et al., 2006).

c V: vesicularity (volume fraction of bubbles, vol.%) measured from the total sample.

d V: vesicularity measured from representative sub-volumes.

$V_{\text{Equi.} \text{H}_2\text{O}}$ and $V_{\text{Equi.} \text{CO}_2}$: equilibrium vesicularities computed for the PST-9 composition considering the degassing of pure H$_2$O and pure CO$_2$, respectively (see text).
Table 4. Synthesis + Decompression experiments: run conditions and textural information

Sample	P_{in} (MPa)	t (min)	P_f (MPa)	t_{ramp} (s)	$	dP/dt	$ (kPa/s)	Bubble 3D characteristics				
						n (pk. size)	range (µm)	D (µm)	BND^a (mm3)	BND_{neh}^b (mm3)	S (µm)	
Volatile: H$_2$O (#1)												
S+D36#1	202.0	41	150	642	78	1908	25	8–86	28	274	275	9
S+D39#1	202.2	54	100	1344	78	776	43	10–190	47	207	210	1
S+D38#1	202.2	60	25	2372	78	20	—	76–414	218	9.3	10	2

The synthesis + decompression experiments are divided in two steps: synthesis at P_{in} and decompression between P_{in} and P_f. P_{in} (initial pressure): pressure at the beginning of decompression ramp; t: duration of the synthesis step; P_f (final pressure): pressure at which the experiment was quenched; t_{ramp}: duration of the decompression step; $|dP/dt|$: decompression rate ($=10^6(P_{in}-P_f)/(gd_{ramp})$), with $g = 9.81$ m/s2 and $d = 2650$ kg/m3.

X-ray microtomographic data acquired on entire charges (except V^d).

Bubble 3D characteristics abbreviations as in Table 3.

S+D38#1 X-ray CT data concern the unfragmented part of the charge.
Table 5. FTIR data

<table>
<thead>
<tr>
<th>Glass</th>
<th>Thickness (µm)</th>
<th>Absorbance 3530 cm(^{-1})</th>
<th>(\text{H}_2\text{O}) (wt.%)</th>
<th>Absorbance 1515 cm(^{-1})</th>
<th>(\text{CO}_2) (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthesis experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}) (#1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S9#1</td>
<td>6 29 (2)(^b)</td>
<td>1.337 (94)</td>
<td>4.91 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}+\text{CO}_2) (#2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6#2</td>
<td>5 31 (1)</td>
<td>0.698 (34)</td>
<td>2.37 (1)</td>
<td>0.070 (9)</td>
<td>1011 (106)</td>
</tr>
<tr>
<td>S13#2</td>
<td>7 42 (2)</td>
<td>0.976 (44)</td>
<td>2.45 (2)</td>
<td>0.118 (13)</td>
<td>1008 (21)</td>
</tr>
<tr>
<td>S16#2</td>
<td>6 32 (2)</td>
<td>0.734 (50)</td>
<td>2.42 (3)</td>
<td>0.065 (11)</td>
<td>901 (104)</td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}+\text{CO}_2) (#3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S6#3</td>
<td>7 149 (1)</td>
<td>1.147 (48)</td>
<td>0.80 (3)</td>
<td>0.287 (18)</td>
<td>852 (57)</td>
</tr>
<tr>
<td>S13#3</td>
<td>8 111 (5)</td>
<td>1.168 (75)</td>
<td>1.09 (3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S16#3</td>
<td>8 48 (3)</td>
<td>0.496 (34)</td>
<td>1.06 (1)</td>
<td>0.092 (12)</td>
<td>840 (64)</td>
</tr>
<tr>
<td>Decompression experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}) (#1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D10#1</td>
<td>9 72 (5)</td>
<td>1.523 (85)</td>
<td>2.22 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}+\text{CO}_2) (#2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D31#2</td>
<td>10 55 (5)</td>
<td>0.675 (69)</td>
<td>1.28 (5)</td>
<td>0.098 (20)</td>
<td>786 (108)</td>
</tr>
<tr>
<td>D23#2</td>
<td>5 84 (1)</td>
<td>0.973 (19)</td>
<td>1.20 (3)</td>
<td>0.105 (18)</td>
<td>678 (103)</td>
</tr>
<tr>
<td>D34#2</td>
<td>7 118 (5)</td>
<td>1.752 (132)</td>
<td>1.55 (13)</td>
<td>0.066 (16)</td>
<td>613 (127)</td>
</tr>
<tr>
<td>D9#2</td>
<td>12 58 (2)</td>
<td>1.059 (92)</td>
<td>1.91 (15)</td>
<td>0.088 (15)</td>
<td>668 (120)</td>
</tr>
<tr>
<td>D25#3</td>
<td>7 73 (4)</td>
<td>0.350 (40)</td>
<td>0.49 (4)</td>
<td>0.118 (14)</td>
<td>423 (45)</td>
</tr>
<tr>
<td>Synthesis+Decompression experiments</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Volatile: (\text{H}_2\text{O}) (#1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S+D36#1</td>
<td>10 38 (5)</td>
<td>1.480 (184)</td>
<td>4.16 (5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S+D39#1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S+D38#1</td>
<td>10 102 (7)</td>
<td>1.590 (92)</td>
<td>1.61 (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) Average thickness for each experiment.
\(^{b}\) Standard deviation for each experiment.
D9#2 and S+D38#1 analyzed in duplicate. Average H_2O and CO_2 concentrations (av.) and standard deviations are reported. These are calculated by using all analytical spots.

\(^a\) Number of analytical spots.

\(^b\) One standard deviation in terms of the last digit.
Highlights

- Decompressions provide information on homogenous bubble nucleation in basalts
- Use of volatile-bearing melt compositions to simulate magma ascent at Stromboli
- Significant effect of CO$_2$ on physical mechanisms of basaltic melt degassing
- Both near-equilibrium and disequilibrium degassing occur in our experiments
- Decompression textures approach those of basaltic products from explosive eruptions