Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes (Corrigendum) - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Astronomy and Astrophysics - A&A Année : 2015

Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes (Corrigendum)

C. Sotomayor-Beltran (1) , C. Sobey (2) , J. W. T. Hessels (3) , G. de Bruyn (3) , A. Noutsos (2) , A. Alexov (3) , J. Anderson (4) , A. Asgekar (3) , I. M. Avruch (5) , R. Beck (6) , M. E. Bell (7, 8) , M. R. Bell (9) , M. J. Bentum (3) , G. Bernardi (10) , P. Best (11) , L. Birzan (12) , A. Bonafede (13) , F. Breitling (14) , J. Broderick (8) , W. N. Brouw (15) , M. Brüggen (13) , B. Ciardi (16) , F. de Gasperin (17) , R.-J. Dettmar (1) , A. van Duin (3) , S. Duscha (3) , J. Eislöffel (18) , H. Falcke (2) , R. A. Fallows (19) , R. Fender (8) , C. Ferrari (20) , W. Frieswijk (3) , M. A. Garrett (12) , Jean-Mathias Griessmeier (21, 22) , T. Grit (3) , A. W. Gunst (3) , T. E. Hassall (23) , G. Heald (3) , M. Hoeft (18) , A. Horneffer (16) , M. Iacobelli (24) , E. Juette (25) , A. Karastergiou (26) , E. Keane (27) , J. Kohler (28) , M. Kramer (23, 2) , V. I. Kondratiev (3) , L. V. E. Koopmans (15) , M. Kuniyoshi (2) , G. Kuper (3) , J. van Leeuwen (29) , P. Maat (3) , G. Macario (30) , S. Markoff (29) , J. P. Mckean (3) , D. D. Mulcahy (8) , H. Munk (3) , E. Orru (3) , H. Paas (31) , M. Pandey-Pommier (32) , M. Pilia (3) , R. Pizzo (3) , A. G. Polatidis (3) , W. Reich (2) , H. Röttgering (12) , M. Serylak (33, 21) , J. Sluman (3) , B. W. Stappers (23) , Michel Tagger (22) , Y. Tang (3) , C. Tasse (34, 35) , S. ter Veen (3) , R. Vermeulen (3) , R. J. van Weeren (36) , R. A. M. J. Wijers (29) , S. J. Wijnholds (3) , M. W. Wise (29) , O. Wucknitz (37) , S. Yatawatta (3) , P. Zarka (21, 34)
1 Astronomisches Institut der Ruhr-Universität Bochum
2 MPIFR - Max-Planck-Institut für Radioastronomie
3 ASTRON - Netherlands Institute for Radio Astronomy
4 School of Oceanography [Seattle]
5 SRON - SRON Netherlands Institute for Space Research
6 UT - Université de Tours
7 CSIRO Astronomy and Space Science
8 University of Southampton
9 MPA - Max-Planck-Institut für Astrophysik
10 LPNHE - Laboratoire de Physique Nucléaire et de Hautes Énergies
11 Edin. - University of Edinburgh
12 Leiden Observatory [Leiden]
13 Jacobs University = Constructor University [Bremen]
14 AIP - Leibniz-Institut für Astrophysik Potsdam
15 Kapteyn Astronomical Institute [Groningen]
16 Max Planck Institute for Astrophysics
17 Hamburger Sternwarte/Hamburg Observatory
18 TLS - Thüringer Landessternwarte Tautenburg
19 Institute of Mathematical and Physical Sciences
20 Department of Quantitative Methods
21 USN - Unité Scientifique de la Station de Nançay
22 LPC2E - Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
23 Jodrell Bank Centre for Astrophysics
24 DPMMS - Department of Pure Mathematics and Mathematical Statistics
25 RUB - Ruhr University Bochum = Ruhr-Universität Bochum
26 Oxford Astrophysics
27 Centre for Astrophysics and Supercomputing - Centre for Astrophysics and Supercomputing
28 Hessisches Landesmuseum Darmstadt
29 AI PANNEKOEK - Astronomical Institute Anton Pannekoek
30 LAGRANGE - Joseph Louis LAGRANGE
31 University of Groningen [Groningen]
32 CRAL - Centre de Recherche Astrophysique de Lyon
33 Department of Physics-Electronics
34 LESIA - Laboratoire d'études spatiales et d'instrumentation en astrophysique
35 SKA South Africa
36 CfA - Harvard-Smithsonian Center for Astrophysics
37 AlfA - Argelander-Institut für Astronomie
R. Beck
  • Fonction : Auteur
P. Best
  • Fonction : Auteur
J. Eislöffel
C. Ferrari
G. Macario
  • Fonction : Auteur
R. Pizzo
H. Röttgering

Résumé

Faraday rotation measurements using the current and next generation of low-frequency radio telescopes will provide a powerful probe of astronomical magnetic fields. However, achieving the full potential of these measurements requires accurate removal of the time-variable ionospheric Faraday rotation contribution. We present ionFR, a code that calculates the amount of ionospheric Faraday rotation for a specific epoch, geographic location, and line-of-sight. ionFR uses a number of publicly available, GPS-derived total electron content maps and the most recent release of the International Geomagnetic Reference Field. We describe applications of this code for the calibration of radio polarimetric observations, and demonstrate the high accuracy of its modeled ionospheric Faraday rotations using LOFAR pulsar observations. These show that we can accurately determine some of the highest-precision pulsar rotation measures ever achieved. Precision rotation measures can be used to monitor rotation measure variations – either intrinsic or due to the changing line-of-sight through the interstellar medium. This calibration is particularly important for nearby sources, where the ionosphere can contribute a significant fraction of the observed rotation measure. We also discuss planned improvements to ionFR, as well as the importance of ionospheric Faraday rotation calibration for the emerging generation of low-frequency radio telescopes, such as the SKA and its pathfinders.
Fichier principal
Vignette du fichier
aa20728-12.pdf (1.12 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

insu-01370009 , version 1 (13-03-2017)

Identifiants

Citer

C. Sotomayor-Beltran, C. Sobey, J. W. T. Hessels, G. de Bruyn, A. Noutsos, et al.. Calibrating high-precision Faraday rotation measurements for LOFAR and the next generation of low-frequency radio telescopes (Corrigendum). Astronomy and Astrophysics - A&A, 2015, 581 (A58), 13 p. ⟨10.1051/0004-6361/201220728e⟩. ⟨insu-01370009⟩
331 Consultations
378 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More