Comprehensive quality assessment of GOME- and IASI-type multi-mission tropospheric ozone data records

To cite this version:

HAL Id: insu-01369154

https://hal-insu.archives-ouvertes.fr/insu-01369154

Submitted on 20 Sep 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ouprivés.
Comprehensive quality assessment of GOME- and IASI-type multi-mission tropospheric ozone data records

A. Keppens*, J.-C. Lambert, D. Hubert, J. Granville, T. Verhoest, S. Compernolle
Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

INTRODUCTION
- Tropospheric ozone plays a key role in air quality and has a significant impact on the radiation budget of the Earth, both directly and indirectly.
- Tropospheric ozone observations are provided by two series of European nadir-viewing ozone profilers:
 - UV-visible spectrometers of the GOME type, launched regularly since 1995: GOME, SCIAMACHY, OMI, GOME-2 on MetOp-A/B/C, upcoming Sentinel-4/5p missions
 - Thermal infrared sounders of the IASI type, launched regularly since 2006: IASI on MetOp platforms and IASI-NG on MetOp-SG
- Several tropospheric ozone data products have been improved and harmonised in the context of the ESA’s Climate Change Initiative (CCI) on ozone.
- To verify their fitness-for-purpose, we have applied to the Ozone CCI datasets a QA/validation expert system developed over years in the context of ESA’s Multi-TASTE and CCI projects, EUMETSAT’s O3M-SAF, and the European Commission’s GEOMon and QA4ECV.

DATA SELECTION / CO-LOCATION / HARMONISATION
- GOME and GOME-2 nadir UV retrievals by RAL:
 - RAL v2.24
 - 20 fixed retrieval levels (VMR & ND)
- IASI TIR retrievals by ULB/LATMOS:
 - FORLI v20140922
 - 41 fixed retrieval layers (PC)

INFORMATION CONTENT STUDY
- From fractional averaging kernel matrices!
- Number of independent layers (DFS) shows meridian and temporal dependence.
- Variations of vertical sensitivity and other information content measures are directly related to slant column density (SCD), affected by solar zenith angle (SZA), latitude...
- Impact of instrument degradation on information content appears clearly.
- Poor sensitivity below tropopause (TP) increases tropopolar uncertainty.

GROUND-BASED NETWORK VALIDATION
Half-year running median relative difference (thick lines) and 68 % IP spread (thin lines) for LRT-integrated tropospheric ozone column comparison with sonde network data:
- BIASES: GOME(2A) bias of 10-25 % with stronger outliers, smaller (5-10 % negative) IASI bias due to higher sensitivity below TP
- SMOOTH: Impact of vertical smoothing up to same 25 % order as GOME(2A) bias
- DRIFT: Pos. for GOME-2A, neg. for GOME, strongest drift for GOME at low latitudes (from 3-year median as green stairs for vertically smoothed data)
- TP-DEF: 6 km cut-off bias (not shown) typically slightly larger, with amplified seasonal bias variation for all instruments