Comprehensive quality assessment of GOME- and IASI-type multi-mission tropospheric ozone data records

To cite this version:
Comprehensive quality assessment of GOME- and IASI-type multi-mission tropospheric ozone data records

A. Keppens*, J.-C. Lambert, D. Hubert, J. Granville, T. Verhoest, S. Compernolle

Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium

INTRODUCTION

- Tropospheric ozone plays a key role in air quality and has a significant impact on the radiation budget of the Earth, both directly and indirectly.
- Tropospheric ozone observations are provided by two series of European nadir-viewing ozone profilers:
 - Thermal infrared sounders of the IASI type, launched regularly since 2006: IASI on MetOp platforms and IASI-NG on MetOp-SG
- Several tropospheric ozone data products have been improved and harmonised in the context of the ESA’s Climate Change Initiative (CCI) on ozone.
- To verify their fitness-for-purpose, we have applied to the Ozone CCI datasets a QA/validation expert system developed over years in the context of ESA’s Multi-TASTE and CCI projects, EUMETSAT’s O3M-SAF, and the European Commission’s GEOmon and QA4ECV.

DATA SELECTION / CO-LOCATION / HARMONISATION

- GOME and GOME-2 nadir UV retrievals by RAL:
 - RAL v-3.4
 - 20 fixed retrieval levels (VMR & ND) → 19 layers (PC)
- IASI TIR retrievals by ULB/LATMOS:
 - FORLI v20140922
 - 41 fixed retrieval levels (PC)
- Mass-conservation regirding before optional AK-based vertical smoothing.
- Tropospheric from direct summation over partial column profiles
- Two ‘tropopause’ products are considered:
 - Lapse-rate tropopause (LRT WMO def.) based on ozonesonde T profile
 - Fixed-level cut-off at 6 km (adopted within CCI)

GROUND-BASED NETWORK VALIDATION

Half-year running median relative difference (thick lines) and 68 % IP spread (thin lines) for LRT-integrated tropospheric ozone column comparison with sondes network data:
- BIAS: GOME(2A) bias of 10-25 % with stronger outliers, smaller (5-10 % negative) IASI bias due to higher sensitivity below TP
- SMOOTH: Impact of vertical smoothing up to same 25 % order as GOME(2A) bias
- DRIFT: Pos. for GOME-2A, neg. for GOME, strongest drift for GOME at low latitudes (from 3-year median as green stairs for vertically smoothed data)
- TP-DEF: 6 km cut-off bias (not shown) typically slightly larger, with amplified seasonal bias variation for all instruments