G. Agegnehu, A. M. Bass, P. N. Nelson, B. Muirhead, G. Wright et al., Biochar and biochar-compost as soil amendments: Effects on peanut yield, soil properties and greenhouse gas emissions in tropical North Queensland, Australia, Agriculture, Ecosystems & Environment, vol.213, pp.72-85, 2015.
DOI : 10.1016/j.agee.2015.07.027

M. Ahmad, S. S. Lee, J. E. Lim, S. E. Lee, J. S. Cho et al., Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions, Chemosphere, vol.95, pp.433-441, 2014.
DOI : 10.1016/j.chemosphere.2013.09.077

H. Asai, B. K. Samson, H. M. Stephan, K. Songyikhangsuthor, K. Homma et al., Biochar amendment techniques for upland rice production in Northern Laos 1. Soil physical properties, leaf SPAD and grain yield. Field Crop Res, pp.81-84, 2009.

C. Atkinson, J. Fitzgerald, and N. Hipps, Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review, Plant and Soil, vol.79, issue.1-2, pp.1-18, 2010.
DOI : 10.1007/s11104-010-0464-5

S. Bart, M. Motelica-heino, F. Miard, E. Joussein, M. Soubrand et al., Phytostabilization of As, Sb and Pb by two willow species (S. viminalis and S. purpurea) on former mine technosols, pp.1-9, 2015.

L. Beesley, E. Moreno-jimenez, R. Clemente, N. Lepp, and N. Dickinson, Mobility of arsenic, cadmium and zinc in a multi-element contaminated soil profile assessed by in-situ soil pore water sampling, column leaching and sequential extraction, Environmental Pollution, vol.158, issue.1, pp.155-160, 2010.
DOI : 10.1016/j.envpol.2009.07.021

L. Beesley, E. Moreno-jiménez, and J. L. Gómez-eyles, Effects of biochar and greenwaste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil, Environmental Pollution, vol.158, issue.6, pp.2282-2287, 2010.
DOI : 10.1016/j.envpol.2010.02.003

L. Beesley and M. Marmiroli, The immobilisation and retention of soluble arsenic, cadmium and zinc by biochar, Environmental Pollution, vol.159, issue.2, pp.474-480, 2011.
DOI : 10.1016/j.envpol.2010.10.016

L. Beesley, M. Marmiroli, L. Pagano, V. Pigoni, G. Fellet et al., Biochar addition to an arsenic contaminated soil increases arsenic concentrations in the pore water but reduces uptake to tomato plants (Solanum lycopersicum L.), Science of The Total Environment, vol.454, issue.455, pp.598-603, 2013.
DOI : 10.1016/j.scitotenv.2013.02.047

N. Bolan, A. Kunhikrishnan, R. Thangarajan, J. Kumpiene, J. Park et al., Remediation of heavy metal(loid)s contaminated soils ??? To mobilize or to immobilize?, Journal of Hazardous Materials, vol.266, pp.141-166, 2014.
DOI : 10.1016/j.jhazmat.2013.12.018

A. G. Caporale, M. Pigna, A. Sommella, J. J. Dynes, V. Cozzolino et al., Influence of compost on the mobility of arsenic in soil and its uptake by bean plants (Phaseolus vulgaris L.) irrigated with arsenite-contaminated water, Journal of Environmental Management, vol.128, pp.837-843, 2013.
DOI : 10.1016/j.jenvman.2013.06.041

A. A. Carbonell-barrachina, F. Burlo, A. Burgos-hernandez, E. Lopez, and J. Mataix, The influence of arsenite concentration on arsenic accumulation in tomato and bean plants, Scientia Horticulturae, vol.71, issue.3-4, pp.167-176, 1997.
DOI : 10.1016/S0304-4238(97)00114-3

I. Cattani, G. Fragoulis, R. E. Boccelli, and E. Capri, Copper bioavailability in the rhizosphere of maize (Zea mays L.) grown in two Italian soils, Chemosphere, vol.64, issue.11, pp.1972-1979, 2006.
DOI : 10.1016/j.chemosphere.2006.01.007

K. Y. Chan, L. Van-zwiete, I. Meazaros, A. Downie, and S. Joseph, Using poultry litter biochars as soil amendments, Australian Journal of Soil Research, vol.46, issue.5, pp.437-444, 2008.
DOI : 10.1071/SR08036

R. Chintala, T. E. Schumacher, L. M. Mcdonald, D. E. Clay, D. D. Malo et al., Phosphorus Sorption and Availability from Biochars and Soil/Biochar Mixtures, CLEAN - Soil, Air, Water, vol.45, issue.5, pp.626-634, 2014.
DOI : 10.1002/clen.201300089

H. M. Conesa, R. Schulin, and B. Nowack, Suitability of using diffusive gradients in thin films (DGT) to study metal bioavailability in mine tailings: possibilities and constraints, Environmental Science and Pollution Research, vol.35, issue.3, pp.657-664, 2010.
DOI : 10.1007/s11356-009-0254-x

K. De-brouwere, E. Smolders, and R. Merckx, Soil properties affecting solid-liquid distribution of As(V) in soils, European Journal of Soil Science, vol.4, issue.1, pp.165-173, 2004.
DOI : 10.1002/1522-2624(200204)165:2<221::AID-JPLN221>3.0.CO;2-0

F. Degryse, E. Smolders, I. Oliver, and H. Zhang, Relating Soil Solution Zn Concentration to Diffusive Gradients in Thin Films Measurements in Contaminated Soils, Environmental Science & Technology, vol.37, issue.17, pp.3958-3965, 2003.
DOI : 10.1021/es034075p

D. R. Ellis, L. Gumaelius, E. Indriolo, I. J. Pickering, J. A. Banks et al., A Novel Arsenate Reductase from the Arsenic Hyperaccumulating Fern Pteris vittata, PLANT PHYSIOLOGY, vol.141, issue.4, pp.1544-1554, 2006.
DOI : 10.1104/pp.106.084079

H. Ernstberger, W. Davison, H. Zhang, A. Tye, and S. Young, Measurement and Dynamic Modeling of Trace Metal Mobilization in Soils Using DGT and DIFS, Environmental Science & Technology, vol.36, issue.3, pp.349-354, 2002.
DOI : 10.1021/es010917d

G. Fellet, L. Marchiol, G. Delle-vedove, and A. Peressotti, Application of biochar on mine tailings: Effects and perspectives for land reclamation, Chemosphere, vol.83, issue.9, pp.1262-1267, 2011.
DOI : 10.1016/j.chemosphere.2011.03.053

G. Fellet, M. Marmiroli, and L. Marchiol, Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar, Science of The Total Environment, vol.468, issue.469, pp.468-469, 2014.
DOI : 10.1016/j.scitotenv.2013.08.072

V. Gadepalle, S. Ouki, R. Van-herwijnen, and T. Hutchings, Immobilization of heavy metals in soil using natural and waste materials for vegetation establishment on contaminated sites. Soil Sediment Contam, pp.233-251, 2007.

D. K. Gupta, H. G. Huang, and F. J. Corpas, Lead tolerance in plants: strategies for phytoremediation, Environmental Science and Pollution Research, vol.220, issue.4, pp.2150-2161, 2013.
DOI : 10.1007/s11356-013-1485-4

N. Hattab, M. Motelica-heino, X. Bourrat, and M. Mench, Mobility and phytoavailability of Cu, Cr, Zn, and As in a contaminated soil at a wood preservation site after 4??years of aided phytostabilization, Environmental Science and Pollution Research, vol.35, issue.4, 2014.
DOI : 10.1007/s11356-014-2938-0

URL : https://hal.archives-ouvertes.fr/insu-00991112

N. Hattab, M. Motelica-heino, O. Faure, and J. L. Bouchardon, Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements, Journal of Environmental Management, vol.159, pp.37-47, 2015.
DOI : 10.1016/j.jenvman.2015.05.012

URL : https://hal.archives-ouvertes.fr/insu-01167311

D. Houben, L. Evrard, and P. Sonnet, Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.), Biomass and Bioenergy, vol.57, 2013.
DOI : 10.1016/j.biombioe.2013.07.019

C. D. Jadia and M. H. Fulekar, Phytoremediation of heavy metals: recent techniques, Afri. J. Biotechno, vol.8, pp.921-928, 2009.

W. Jiang and D. Liu, Pb-induced cellular defense system in the root meristematic cells of Allium sativum L, BMC Plant Biology, vol.10, issue.1, pp.1-8, 2010.
DOI : 10.1186/1471-2229-10-40

M. D. Jarvis and D. W. Leung, Chelated lead transport in Chamaecytisus proliferus (L.f.) link ssp. proliferus var. palmensis (H. Christ): an ultrastructural study, Plant Science, vol.161, issue.3, pp.433-441, 2001.
DOI : 10.1016/S0168-9452(01)00424-1

C. A. Johnson, H. Moench, P. Wersin, P. Kugler, and C. Wenger, Solubility of antimony and other elements in samples taken from shooting ranges, J. Environ. Qual, vol.34, pp.248-254, 2005.

S. Klitzke and F. Lang, Mobilization of Soluble and Dispersible Lead, Arsenic, and Antimony in a Polluted, Organic-rich Soil ??? Effects of pH Increase and Counterion Valency, Journal of Environment Quality, vol.38, issue.3, pp.933-939, 2009.
DOI : 10.2134/jeq2008.0239

S. Kloss, F. Zehetner, E. Oburger, J. Buecker, B. Kitzler et al., Trace element concentrations in leachates and mustard plant tissue (Sinapis alba L.) after biochar application to temperate soils, Science of The Total Environment, vol.481, pp.498-508, 2014.
DOI : 10.1016/j.scitotenv.2014.02.093

M. Komarek, A. Vanek, and V. Ettler, Chemical stabilization of metals and arsenic in contaminated soils using oxides ??? A review, Environmental Pollution, vol.172, pp.9-22, 2013.
DOI : 10.1016/j.envpol.2012.07.045

R. S. Kookana, The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils: a review, Australian Journal of Soil Research, vol.48, issue.7, pp.627-637, 2010.
DOI : 10.1071/SR10007

M. Krzeslowska, The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy, Acta Physiologiae Plantarum, vol.59, issue.1, pp.35-51, 2011.
DOI : 10.1007/s11738-010-0581-z

D. Laird, P. Fleming, B. Wang, R. Horton, and D. Karlen, Biochar impact on nutrient leaching from a Midwestern agricultural soil, Geoderma, vol.158, issue.3-4, pp.436-442, 2010.
DOI : 10.1016/j.geoderma.2010.05.012

L. Forestier, L. Motelica-heino, M. , L. Coustumer, P. Mench et al., Phytostabilisation of a copper contaminated topsoil aided by basic slags: assessment of Cu mobility and phytoavailability, Journal of Soils and Sediments, vol.67, issue.19, pp.10-1007, 2016.
DOI : 10.1007/s11368-015-1299-8

B. Liang, J. Lehmann, D. Solomon, J. Kinyang, J. Grossman et al., Black Carbon Increases Cation Exchange Capacity in Soils, Soil Science Society of America Journal, vol.70, issue.5, pp.1719-1730, 2006.
DOI : 10.2136/sssaj2005.0383

Y. Lin, P. Munroe, S. Joseph, S. Kimber, and L. Van-zwieten, Nanoscale organo-mineral retentions of biochars in ferrosol: and investigation using microscopy. Plant Soil, pp.369-80, 2012.

P. Lucchini, R. S. Quilliam, T. H. Deluca, T. Vameralia, and D. L. Jon, Does biochar application alter heavy metal dynamics in agricultural soil?, Agriculture, Ecosystems & Environment, vol.184, pp.149-157, 2014.
DOI : 10.1016/j.agee.2013.11.018

A. P. Marques, A. O. Rangel, and P. M. Castro, Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology, Critical Reviews in Environmental Science and Technology, vol.47, issue.8, pp.622-654, 2009.
DOI : 10.1080/00103629109368452

M. Mench, S. Bussiere, J. Boisson, E. Castaing, J. Vangronsveld et al., Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatment, Plant and Soil, vol.249, issue.1, pp.187-202, 2003.
DOI : 10.1023/A:1022566431272

A. Méndez, A. Gómez, J. Paz-ferreiro, and G. Gascó, Effects of sewage sludge biochar on plant metal availability after application to a Mediterranean soil, Chemosphere, vol.89, issue.11, pp.1354-1359, 2012.
DOI : 10.1016/j.chemosphere.2012.05.092

A. Moradi, H. Conesa, B. Robinson, E. Lehmann, A. Kaestner et al., Root responses to soil Ni heterogeneity in a hyperaccumulator and a non-accumulator species, Environmental Pollution, vol.157, issue.8-9, pp.2189-2196, 2009.
DOI : 10.1016/j.envpol.2009.04.015

E. Moreno-jiménez, R. Manzano, E. Esteban, and J. M. Peñalosa, The fate of arsenic in soils adjacent to an old mine site (Bustarviejo, Spain): mobility and transfer to native flora, Journal of Soils and Sediments, vol.300, issue.2, pp.301-312, 2012.
DOI : 10.1007/s11368-009-0099-4

E. Moreno-jimenez, E. Esteban, and J. M. Penalosa, The fate of Arsenic in the soil?plant system Reviews of environmental contamination and toxicology, 2012.

T. Namgay, B. Singh, and B. P. Singh, Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Soil Research, pp.638-647, 2010.

L. Ouyang, F. Wang, J. Tang, L. Yu, and R. Zhang, Effects of biochar amendment on soil aggregates and hydraulic properties, Journal of soil science and plant nutrition, vol.13, issue.ahead, pp.991-1002, 2013.
DOI : 10.4067/S0718-95162013005000078

J. Paz-ferreiro, H. Lu, S. Fu, A. Méndez, and G. Gascó, Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth, pp.65-75, 2014.

M. Pigna, V. Cozzolino, A. Violante, and A. A. Meharg, Influence of phosphate on the arsenic uptake by wheat (Triticum durum L.) irrigated with arsenic solutions at three different concentrations. Water Air Soil Poll, pp.371-380, 2009.

B. Pourrut, M. Shahid, F. Douay, C. Dumat, and E. Pinelli, Molecular Mechanisms Involved in lead uptake, toxicity and detoxification in higher plants. Heavy Metal Stress Plants, pp.121-147, 2013.

A. P. Puga, C. A. Abreu, L. C. Melo, J. Paz-ferreiro, and L. Beesley, Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar, Environmental Science and Pollution Research, vol.52, issue.230, pp.1-9, 2015.
DOI : 10.1007/s11356-015-4977-6

A. P. Puga, C. A. Abreu, L. C. Melo, and L. Beesley, Biochar application to a contaminated soil reduces the availability and plant uptake of zinc, lead and cadmium, Journal of Environmental Management, vol.159, pp.86-93, 2015.
DOI : 10.1016/j.jenvman.2015.05.036

M. A. Rahman, H. Hasegawa, M. M. Rahman, M. A. Rahman, and M. A. Miah, Accumulation of arsenic in tissues of rice plant (Oryza sativa L.). Chemosphere, pp.942-994, 2007.

F. Rees, T. Sterckeman, and J. L. Morel, Root development of non-accumulating and hyperaccumulating plants in metal-contaminated soils amended with biochar, Chemosphere, vol.142, pp.48-55, 2015.
DOI : 10.1016/j.chemosphere.2015.03.068

URL : https://hal.archives-ouvertes.fr/hal-01258345

J. Ren, L. Q. Ma, H. Sun, F. Cai, and J. Luo, Antimony uptake, translocation and speciation in rice plants exposed to antimonite and antimonate, Science of The Total Environment, vol.475, pp.83-89, 2014.
DOI : 10.1016/j.scitotenv.2013.12.103

C. E. Rostad, D. W. Rutherford, and R. L. Wershaw, Effects of formation conditions of biochar on water extracts, GSA Denver Annual Meeting, 2010.

M. Sadiq, Arsenic chemistry in soils: An overview of thermodynamic predictions and field observations, Water, Air, & Soil Pollution, vol.35, issue.1-4, pp.117-136, 1997.
DOI : 10.1007/BF02404751

A. Schaller and T. Diez, Plant specific aspects of heavy metal uptake and comparison with quality standards for food and forage crops, Der Einfluß von festen Abfa llen auf Bo den, pp.92-125, 1991.

S. M. Shaheen and J. Rinklebe, Impact of emerging and low cost alternative amendments on the (im)mobilization and phytoavailability of Cd and Pb in a contaminated floodplain soil, Ecological Engineering, vol.74, pp.319-326, 2015.
DOI : 10.1016/j.ecoleng.2014.10.024

M. Shahid, E. Pinelli, and C. Dumat, Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands, Journal of Hazardous Materials, vol.219, issue.220, pp.1-12, 2012.
DOI : 10.1016/j.jhazmat.2012.01.060

I. V. Seregin, L. K. Shpigun, and V. Ivanov, Distribution and Toxic Effects of Cadmium and Lead on Maize Roots, Russian Journal of Plant Physiology, vol.51, issue.4, pp.525-533, 2004.
DOI : 10.1023/B:RUPP.0000035747.42399.84

S. Sohi, E. Lopez-capel, E. Krull, and R. Bol, Biochar's role in soil and climate change: a review of research needs, 2009.

E. Smith, R. Naidu, and A. M. Alston, Chemistry of Inorganic Arsenic in Soils, Journal of Environment Quality, vol.31, issue.2, pp.557-563, 2002.
DOI : 10.2134/jeq2002.0557

N. J. Smith, ANTHROSOLS AND HUMAN CARRYING CAPACITY IN AMAZONIA???, Annals of the Association of American Geographers, vol.70, issue.4, pp.553-566, 1980.
DOI : 10.1111/j.1467-8306.1980.tb01332.x

J. L. Smith, H. P. Collins, and V. L. Bailey, The effect of young biochar on soil respiration, Soil Biology and Biochemistry, vol.42, issue.12, pp.2345-2347, 2010.
DOI : 10.1016/j.soilbio.2010.09.013

J. Song, F. J. Zhao, Y. M. Luo, S. P. Mcgrath, and H. Zhang, Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils, Environmental Pollution, vol.128, issue.3, pp.307-315, 2004.
DOI : 10.1016/j.envpol.2003.09.019

C. Spuller, H. Weigand, and C. Marb, Trace metal stabilisation in a shooting range soil: Mobility and phytotoxicity, Journal of Hazardous Materials, vol.141, issue.2, pp.378-387, 2007.
DOI : 10.1016/j.jhazmat.2006.05.082

J. D. Streubel, H. P. Collins, M. Garcia-perez, J. Tarara, D. Granatstein et al., Influence of Contrasting Biochar Types on Five Soils at Increasing Rates of Application, Soil Science Society of America Journal, vol.75, issue.4, pp.1402-1413, 2011.
DOI : 10.2136/sssaj2010.0325

A. Taghizadeh-toosi, T. J. Clough, R. R. Sherlock, and L. M. Condron, Biochar adsorbed ammonia is bioavailable, Plant and Soil, vol.1, issue.1-2, pp.57-69, 2012.
DOI : 10.1007/s11104-011-0870-3

M. Tighe, P. Lockwood, and S. Wilson, Adsorption of antimony(v) by floodplain soils, amorphous iron(iii) hydroxide and humic acid, Journal of Environmental Monitoring, vol.41, issue.12, pp.1177-1185, 2005.
DOI : 10.1039/b508302h

J. E. Thies and M. C. Rillig, Characteristics of biochar: biological properties, Biochar for Environmental Management, 2009.

R. D. Tripathi, S. Srivastava, S. Mishra, N. Singh, R. Tuli et al., Arsenic hazards: strategies for tolerance and remediation by plants, Trends in Biotechnology, vol.25, issue.4, pp.158-165, 2007.
DOI : 10.1016/j.tibtech.2007.02.003

S. M. Troy, P. G. Lawlor, C. J. O-'flynn, and M. G. Healy, The Impact of Biochar Addition on Nutrient Leaching and Soil Properties from Tillage Soil Amended with Pig Manure, Water, Air, & Soil Pollution, vol.89, issue.3, pp.1-15, 2014.
DOI : 10.1007/s11270-014-1900-6

M. Tschan, B. H. Robinson, and R. Schulin, Antimony in the soil???plant system ??? a review, Environmental Chemistry, vol.6, issue.2, pp.106-115, 2009.
DOI : 10.1071/EN08111

K. C. Uzoma, M. Inoue, H. Andry, H. Fujimaki, A. Zahoor et al., Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manage, pp.205-212, 2011.

H. Vandenhove, K. Antunes, J. Wannijn, L. Dunquene, and M. Van-hees, Method of diffusive gradients in thin films (DGT) compared with other soil testing methods to predict uranium phytoavailability, Science of The Total Environment, vol.373, issue.2-3, pp.542-555, 2007.
DOI : 10.1016/j.scitotenv.2006.12.023

R. Van-herwijnen, T. Laverye, J. Poole, M. Hodson, and T. Hutchings, The effect of organic materials on the mobility and toxicity of metals in contaminated soils, Applied Geochemistry, vol.22, issue.11, pp.2422-2434, 2007.
DOI : 10.1016/j.apgeochem.2007.06.013

F. G. Verheijen, S. Jeffery, A. C. Bastos, M. Van-der-velde, and I. Diafas, Biochar application to soilsa critical scientific review of effects on soil properties, processes and functions, 2010.

C. A. Waltham and M. J. Eick, Kinetics of Arsenic Adsorption on Goethite in the Presence of Sorbed Silicic Acid, Soil Science Society of America Journal, vol.66, issue.3, pp.818-825, 2002.
DOI : 10.2136/sssaj2002.8180

N. Wanat, E. Joussein, M. Soubrand, and J. F. Lenain, Arsenic (As), antimony (Sb), and lead (Pb) availability from Au-mine Technosols: a case study of transfer to natural vegetation cover in temperate climates, Environmental Geochemistry and Health, vol.77, issue.4, pp.783-795, 2014.
DOI : 10.1007/s10653-014-9596-5

M. H. Wierzbicka, E. Przedpe?ska, R. Ruzik, L. Ouerdane, K. Po?ec´-pawlak et al., Comparison of the toxicity and distribution of cadmium and lead in plant cells, Protoplasma, vol.51, issue.Suppl 1, pp.99-111, 2007.
DOI : 10.1007/s00709-006-0227-6

S. C. Wilson, P. V. Lockwood, P. M. Ashley, and M. Tighe, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review, Environmental Pollution, vol.158, issue.5, pp.1169-1181, 2010.
DOI : 10.1016/j.envpol.2009.10.045

Y. Chan, K. Xu, and Z. , Biochar: nutrient properties and their enhancement, Biochar for Environmental Management, 2009.

H. Zhang, F. J. Zhao, B. Sun, W. Davison, and S. Mcgrath, A New Method to Measure Effective Soil Solution Concentration Predicts Copper Availability to Plants, Environmental Science & Technology, vol.35, issue.12, pp.2602-2607, 2001.
DOI : 10.1021/es000268q

F. J. Zhao, J. F. Ma, A. A. Meharg, and S. P. Mcgrath, Arsenic uptake and metabolism in plants, New Phytologist, vol.154, issue.4, pp.777-794, 2009.
DOI : 10.1111/j.1469-8137.2008.02716.x

R. L. Zheng, C. Cai, J. H. Liang, Q. Huang, Z. Chen et al., The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings, Chemosphere, vol.89, issue.7, pp.856-62, 2012.
DOI : 10.1016/j.chemosphere.2012.05.008

. Fig, Labile metal(loid)s concentrations (a=As, b=Pb and c= Sb) determined by DGT. PF = technosol; PF 2%= PF with 2% biochar; PF 5%= PF with 5% biochar; PFG= 50% technosol+50% garden soil